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Abstract :

This is a mathematical article that deals with the domain of complex numbers in order to contribute in the
worldwide collaboration of mathematicians who want to study and explain the Riemanns Zeta Function.

The aim of this work is to propose new mathematical statements of complex numbers and to give a new easy
criterion that may help to identify or deny the possible Landau-Siegel Zeros.Furthermore, this work invites the
mathematicians to study a new possible useful homomorphism.

Hence, this is a good article to be read by specialists of Analysis or Algebra and even by the beginners of
mathematics who want to improve their skills.

Keywords :complex analysis; fixed-point; implication and negation; Landau-Siegel Zero; Riemanns Zeta
function; Riemanns Hypothesis.

Introduction:
Many mathematical articles try to prove or disprove the Riemanns Hypothesis [1,2]. This is not only because

of the “One Million Dollars Prize” but also because of the usefulness of Riemanns Zeta Function in many scientific
fields.

After my thesis of mathematical physics that refuses the classical use of discrete mathematics in Newtonian
Mechanics [3], I chose to show my respect to mathematics and especially Analysis by writing my personal
articles that respect all the rules of classical mathematics [4,5]. This article is supposed to contribute in the
collaboration of mathematicians who try to explain and simplify the study of Riemanns Zeta Function [6]. The
purpose of this work is to propose new useful mathematical statements about complex numbers and to give a
new easy criterion that may help to identify or deny the possible Landau-Siegel Zeros [7].

These are the considerations and notations of this article:
Let S be a complex number that respects that S = 1

2 + ib where b is a strictly positive real number.
We can also write S as S = 1

2 + i 1ε = 1
2 + i tan(θ)

2 where b = tan(θ)
2 = 1

ε . (1)
In this case, we should only consider that 1

ε > 0 and 0 < θ < π
2 and we have S = eiθ

2 cos(θ) (2)
We have also: θ = arctan( 2

ε ) = π
2 − arctan( ε2 ) (3)

and cos(θ) = cos(arctan(2
ε )) = ε√

ε2+4
(4)

and sin(θ) = sin(arctan( 2
ε )) = 2√

ε2+4
(5)

consequently: sin(θ)× cos(θ) = 2ε
ε2+4 (6)

Lets consider also a function f of complex numbers defined from C in C as: f(n) = nS+1

S (7)
We will use the complex logarithm ln point by point during all this proof.

1. The considered complex function and its fixed-point:
Lets consider that the function f admits a fixed-point n .

We have: f(n) = n⇔ nS = S ⇔ eiθ

2 cos(θ) = n
eiθ

2 cos(θ) (8)

And we have: nS = S ⇔ eS×ln(n) = eiθ

2 cos(θ) (9)

Since we have: eS×ln(n) = eS×ln(n)+i2kπ = eS×(ln(n)+i 2kπS ) = eiθ

2 cos(θ) ∀k ∈ Z (10)
Then we have k numbers that respect nS = S and these numbers are (ln(n) + i 2kπS ) . (11)
However, the only real number among these k numbers is ln(n) which corresponds to k=0.
Hence we have only one unique real number ln(n) for each θ with 0 < θ < π

2 .
Consequently: ln( eiθ

2 cos(θ) ) = eiθ

2 cos(θ) × ln(n) (12)

Hence: ln(n) = 2 cos(θ)×(ln(eiθ)−ln(2 cos(θ)))
eiθ

(13)
Consequently: ln(n)

2 = (cos(θ)− i sin(θ))× cos(θ)× (ln(eiθ)− ln(2 cos(θ))) (14)
Hence: ln(n)

2 = (cos(θ)2 − i sin(2θ)
2 )× (iθ − ln(cos(θ))− ln(2)) (15)

We considered that ln(eiθ) = iθ + i× 2kπ = iθ with k=0 (16)
because we have one unique complex number ln(n) for each eiθ and for each cos(θ) with 0 < θ < π

2 .
And thus: ln(n)

2 = (− cos(θ)2×(ln(cos(θ))+ln(2))+ θ×sin(2θ)
2 )+ i(θ×cos(θ)2 + sin(2θ)×ln(cos(θ))

2 + sin(2θ)×ln(2)
2 )

(17)
And by using the formulas of the introduction, we get:
ln(n)

2 = ( −ε
2

ε2+4×(ln( ε√
ε2+4

)+ln(2))+arctan( 2
ε )×

2ε
ε2+4 )+ i(arctan( 2

ε )×
ε2

ε2+4 + 2ε
ε2+4×ln( ε√

ε2+4
)+ 2ε

ε2+4×ln(2))
(18)
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Consequently:
ln(n)

2 = −ε2
ε2+4 × (ln(ε)− ln(ε2+4)

2 + ln(2)) + arctan( 2
ε )×

2ε
ε2+4 + i(arctan( 2

ε )×
ε2

ε2+4 + ε
ε2+4 × (2 ln(ε)− ln(ε2 +

4)) + 2ε
ε2+4 × ln(2)) (19)

2. First investigation: if n is a real positive number:
The number n cant be equal to zero because zero is not a solution to the equation: nS = S.
If n is a real strictly positive number then =( ln(n)

2 ) = 0.
Hence we have: ε× arctan( 2

ε ) = −2 ln(ε) + ln(ε2 + 4)− 2 ln(2) (20)
And thus, our equation (19) becomes:
ln(n)

2 = −ε2
ε2+4 × (ln(ε)− ln(ε2+4)

2 + ln(2)) + arctan( 2
ε )×

2ε
ε2+4 (21)

Hence:
ln(n)

2 = −ε2
ε2+4 × (ln(ε)− ln(ε2+4)

2 + ln(2)) + (−2 ln(ε) + ln(ε2 + 4)− 2 ln(2))× 2ε
ε2+4 (22)

Consequently:
ln(n)

2 = −ε
ε2+4 × (ε× (ln(ε)− ln(ε2+4)

2 + ln(2)) + 4
ε × (ln(ε)− ln (ε2+4)

2 + ln(2))) (23)

And thus: ln(n)
2 = −ε

ε2+4 × (ε+ 4
ε )× (ln(ε)− ln(ε2+4)

2 + ln(2)) (24)

We conclude finally that: ln(n)
2 = − ln(ε) + ln(ε2+4)

2 − ln(2) (25)
Which is equivalent to: ln(n) = ln( ε

2+4
4ε2 ) (26)

Also, we have: ln(n) = ln( ε
2+4
4ε2 )⇔ n = ε2+4

4ε2 ⇔ n = 1
4 + 1

ε2 (27)
We proved also that: ε× arctan( 2

ε ) = −2 ln(ε) + ln(ε2 + 4)− 2 ln(2) (28)
This means that: ε× θ = ln( ε

2+4
4ε2 ) (29)

And thus: eε×θ = 1
4 + 1

ε2 (30)
We conclude that: n = eε×θ = eε×arctan( 2

ε ) = e
2θ

tan(θ) = e
arctan(2b)

b (31)
We can also remark that we have: eε×θ = 1

4 + 1
ε2 ⇔

ε2

ε2×eε×θ−1
= 4 (32)

This means that: ε2

(ε×e
ε
2×arctan( 2

ε
))2−1

= 4 (33)

And we know that the maximum of arctan(x)
x is 1. (34)

Hence ε
2 × arctan( 2

ε ) < 1
(35)

And thus: e
ε
2×arctan( 2

ε ) < e (36)
Finally, we conclude that we should have ε ≥ 1

e (37)
which is equivalent to: tan(θ) 6 2e (38)
otherwise we will have a contradiction in the equation ε2

(ε×e
ε
2×arctan( 2

ε
))2−1

= 4 (39)

because 4 cant be equal to any negative value.

3. Second investigation: if n is a strictly negative real number:
Since we have: eS×ln(n) = eS×ln(n)+i2kπ = eS×(ln(n)+i 2kπS ) = eiθ

2 cos(θ) ∀k ∈ Z (40)
Then we have k numbers that respect nS = S and these numbers are (ln(n) + i 2kπS ) . (41)
If n is a strictly negative number then ln(n) is a complex number .
And we have ∃k′ ∈ Z with ln(n) = ln(−n) + iπ + i2k′π. (42)
Hence, we have nS = eS×(ln(n)+i 2kπS ) = eS×(ln(−n)+iπ+i2k′π+i 2kπS ) (43)
And thus, we should have: ei2k

′πS+i2kπ = 1 . (44)
We conclude that: ∃k′′ ∈ Z and ∃k′′′ ∈ Z with k′πS + kπ = k′′′π (45)
Since b is a strictly positive number, then we should have obviously k=0.
Finally, we conclude that we should investigate about the unique complex number ln(n) that corresponds

to each θ with 0 < θ < π
2 and that respects: ln(n) = ln(−n) + iπ . (46)

In this case, we use =( ln(n)
2 ) = π

2 (47)
and we get:
arctan( 2

ε )×
ε2

ε2+4 + ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4)) + 2ε

ε2+4 × ln(2) = π
2 (48)

Hence: arctan( 2
ε )×

ε2

ε2+4 = π
2 −

ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4))− 2ε

ε2+4 × ln(2) (49)
Consequently: arctan( 2

ε )×
ε2

ε2+4 = π
2 −

ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4))− 2ε

ε2+4 × ln(2) (50)
And thus: arctan( 2

ε )×
2ε
ε2+4 = π

ε −
2

(ε2+4) × (2 ln(ε)− ln(ε2 + 4))− 4
ε2+4 × ln(2) (51)

We conclude that: θ × 2ε
ε2+4 = π

ε −
2

ε2+4 × ln( 4ε2

ε2+4 ) (52)
which is equivalent to: ln( 4ε2

ε2+4 ) = (−θ × 2ε
ε2+4 + π

ε )× ε2+4
2 = −εθ + επ

2 + 2π
ε (53)

Consequently, we get: 4ε2

ε2+4 = e−εθ × e επ2 × e 2π
ε (54)

Hence: 4ε2

e−εθ×e
επ
2 ×e

2π
ε

= ε2 + 4 (55)



And thus: 4 = ε2 × ( 4

e−εθ×e
επ
2 ×e

2π
ε
− 1) (56)

Hence, in order to avoid the contradiction, we should have: 4

e−εθ×e
επ
2 ×e

2π
ε
> 1 . (57)

And this is equivalent to: (2e
ε
2 θ)2

e
επ
2 ×e

2π
ε
> 1⇔ (2e

ε
2 arctan( 2

ε
))2

e
επ
2 ×e

2π
ε

> 1 (58)

And we proved that: e
ε
2×arctan( 2

ε ) < e (59)
And thus we should have: e

επ
2 × e 2π

ε < (2e)2 (60)
in order to avoid the contradiction. Now lets check if this inequality is possible.
We can notice that: επ

2 + 2π
ε − 4 = ε2π−8ε+4π

2ε (61)
and that the discriminant of the quadratic equation ε2π − 8ε+ 4π is negative,
Hence ε2π−8ε+4π

2ε > 0 (62)
And thus: επ

2 + 2π
ε > 4 (63)

Consequently: e
επ
2 × e 2π

ε > e4 (64)
And we should have: e

επ
2 × e 2π

ε < 4e2 (65)
However e4 > 4e2 (66)
so we conclude that we can never have e

επ
2 × e 2π

ε < (2e)2 (67)
and this leads to the contradiction because we conclude that: ε2× ( 4

e−εθ×e
επ
2 ×e

2π
ε
− 1) cant be equal to 4 .

And thus we have always: arctan( 2
ε )×

ε2

ε2+4 + ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4)) + 2ε

ε2+4 × ln(2) 6= π
2 (68)

Finally we conclude that if n<0 then we have always nS 6= S .

4. First conclusion:
If we have: nS = S and S = 1

2 + ib and n = A + iC with A and C are real numbers, then we have the
following implications:

First of all: n ∈ R and S = 1
2 + ib ⇒ n > 0 (69)

And also: n ∈ R and S = 1
2 + ib ⇒ n = eε×θ = eε×arctan( 2

ε ) = e
2θ

tan(θ) = e
arctan(2b)

b (70)
Which is equivalent to: n 6= e

arctan(2b)
b ⇒ n /∈ R or (S 6= 1

2 + ib) (71)
And we have also: n ∈ R and S = 1

2 + ib ⇒ b 6 e (72)
And also: b > e⇒ n /∈ R or (S 6= 1

2 + ib) (73)

5. Third investigation:: if n = eiB with B a real number and ∀k′ ∈ Z B 6= k′π
The statement ∀k′ ∈ Z B 6= k′π means that n /∈ R. (74)
We have n = eiB ⇒ ∃k ∈ Z with ln(n) = i× (B + 2kπ) with nS = S . (75)
We proved that: ln(n)

2 = −ε2
ε2+4 × (ln(ε)− ln(ε2+4)

2 + ln(2)) + arctan( 2
ε )×

2ε
ε2+4+ i(arctan( 2

ε )×
ε2

ε2+4 + ε
ε2+4 ×

(2 ln(ε)− ln(ε2 + 4)) + 2ε
ε2+4 × ln(2)) (76)

We know that if n = eiB then the real part of ln(n) is null.
Hence we get: ε2

ε2+4 × (ln(ε)− ln(ε2+4)
2 + ln(2)) = arctan( 2

ε )×
2ε
ε2+4 (77)

Consequently: ε
2 × (ln(ε)− ln(ε2+4)

2 + ln(2)) = arctan( 2
ε ) (78)

We can use this result in the imaginary part and we get:
ln(n)

2 = i(arctan( 2
ε )×

ε2

ε2+4 + ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4)) + 2ε

ε2+4 × ln(2)) (79)
Hence:
ln(n)

2 = i( ε2 × (ln(ε)− ln(ε2+4)
2 + ln(2))× ε2

ε2+4 + ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4)) + 2ε

ε2+4 × ln(2)) (80)
Consequently:
ln(n)

2 = i( ε4 × (2 ln(ε)− ln(ε2 + 4) + 2 ln(2))× ε2

ε2+4 + ε
ε2+4 × (2 ln(ε)− ln(ε2 + 4) + 2 ln(2))) (81)

And thus:
ln(n)

2 = i(2 ln(ε)− ln(ε2 + 4) + 2 ln(2))× ε
ε2+4 × (1 + ε2

4 ) (82)
We conclude that: ln(n)

2 = i ε4 × (2 ln(ε)− ln(ε2 + 4) + 2 ln(2)) (83)
which means that: ln(n)

2 = i ε4 × ln( 4ε2

ε2+4 ) (84)

Also, we proved that: ε
2 × (ln(ε)− ln(ε2+4)

2 + ln(2)) = arctan(2
ε ) = θ (85)

Hence: ε
4 × ln( 4ε2

ε2+4 ) = θ (86)
And thus: ln(n)

2 = iθ (87)
We conclude that: n = ei2θ (88)
And from: ε

4 × ln( 4ε2

ε2+4 ) = θ we conclude that: e4θ = ( 4ε2

ε2+4 )ε (89)
And we have also: ln( 4ε2

ε2+4 ) = θ×ε
4 (90)

We know that: cos(θ)2 = ε2

ε2+4 Hence we have: cos(θ)2 = e
θ×4
ε (91)

We remark that: 0 < θ < π
2 ⇒ 1 < e4

θ
ε < e2

π
ε (92)



Consequently we have: 1 < 4× cos(θ)2 < e2
π
ε (93)

And since: 0 < θ < π
2 then we have: cos(θ)2 > 1

4 ⇒ cos(θ) > 1
2 (94)

We conclude that: θ < π
3 and since the function tangent is a monotonic increasing function in 0 < θ < π

2

, then we get: b = tan(θ)
2 <

tan(π3 )

2 (95)
We can also remark that nS = S ⇒ S = e(S×i2θ) (96)
Hence: 1

2 + ib = e(−b×2θ+iθ) (97)
And thus: 1

2 = e(−2×bθ) × cos(θ) (98)
with b = e(−2×bθ) × sin(θ) (99)
Consequently: cos(θ) = e(2×bθ)

2 (100)
and we have cos(θ) < 1 Hence we have: e2×bθ < 2 (101)
Finally we conclude that: e2b×arctan(2b) < 2 (102)

6. Second conclusion:
If we have: nS = S and S = 1

2 + ib and n = eiB with B is a real number, then we have the following
implications:

First of all: ∃B ∈ R with n = eiB and ∀k′ ∈ Z B 6= k′π and S = 1
2 + ib ⇒ n = ei2θ ⇒ ∃k ∈ Z with B =

2θ + 2kπ
(103)

Which is equivalent to:

∃B ∈ R with n = eiB and ∀k′ ∈ Z B 6= k′π and S =
1
2

+ ib ⇒ ∃k ∈ Z with B = 2arctan(2b) + 2kπ

(104)
And also to:

∀k ∈ Z B 6= 2arctan(2b) + 2kπ ⇒ ∀B ∈ R we have n 6= eiB or ∃k′ ∈ Z B = k′π or S 6= 1
2

+ ib

(105)
And we have also:
∃B ∈ R with n = eiB and ∀k′ ∈ Z B 6= k′π and S = 1

2 + ib ⇒ b <
tan(π3 )

2 =
√

3
2 (106)

And also: b ≥
√

3
2 ⇒ ∀B ∈ R we have n 6= eiB or ∃k′ ∈ Z B = k′π or S 6= 1

2 + ib (107)
And also: ∃B ∈ R with n = eiB and ∀k′ ∈ Z B 6= k′π and S = 1

2 + ib ⇒ e2b×arctan(2b) < 2
(108)

And also: e2b×arctan(2b) ≥ 2⇒ ∀B ∈ R we have n 6= eiB or ∃k′ ∈ Z B = k′π or S 6= 1
2 + ib

(109)

7. Third conclusion:
If we have: nS = S and S = 1

2 + ib and n = eiB with B is a real number, then we have the following
conclusions:

We know that: b > e⇒ b ≥
√

3
2 (110)

And we know that the function 2x× arctan(2x) is an increasing monotonic function when x is a real strictly
positive number. Hence: b > e⇒ 2b× arctan(2b) > 2e× arctan(2e) (111)

Consequently: b > e⇒ e2b×arctan(2b) > e2e×arctan(2e) ' 1902.2422648 (112)
And thus: b > e⇒ e2b×arctan(2b) > 2 (113)
We conclude finally that :
b > e⇒ (∀B ∈ R we have n 6= eiB and n /∈ R) or (S 6= 1

2 + ib) (114)
And we know that: n /∈ R causes that ∀k′ ∈ Z B 6= k′π .

8. Example of usefulness for Riemanns Zeta Function:

Lets consider that: ∃γ ∈ R with n = eiγ and f(n) = n⇔ nS = S . (115)
We consider also that: S=a+ib with b>e .
In this case we already have n = eiγ = eiB and nS = S and we can also have n ∈ R .
However, since b>e then a 6= 1

2 .
If we need to have b ≤ e, we can also find a setof pairs aand blinked by the same relationship and

respecting that: a 6= 1
2 . However, in this case, we should besurethat ∀k ∈ Z B 6= 2 arctan(2b) + 2kπ while

n = eiγ = eiB and nS = S . In this case, if we know Band it is a small number then we can fix bwith
B
2 < arctan(2b) < B

2 + π (116)



or with B
2 −π < arctan(2b) < B

2 (117)
and if Bis a big number we should find a positiveinteger krespecting that B

2 +(k−1)π < arctan(2b) < B
2 +kπ

(118)
or B

2 − kπ < arctan(2b) < B
2 − (k − 1)π. (119)

We can find a set of different real numbers γ (Gamma) and each one of these numbers respects that
e(S×iγ) = S and thus each number γ creates a set of pairs of real numbers (a,b) linked by a special relationship
that respects that a 6= 1

2 .
We can define this relationship since we have nS = S ⇒ S = e(S×iγ)

Hence: a+ ib = e(−b×γ+iaγ) (120)
And thus we have: a = e(−bγ) × cos(aγ) (121)
And we have: b = e(−bγ) × sin(aγ) (122)
Consequently: |S|2 = a2 + b2 = e(−2bγ) (123)
This result can be useful in many mathematical cases as a criterion since we can find one useful representative

of all the γ (Gamma) numbers possibilities easily from formula (123) and we have:
γ = − ln(a2+b2)

2b (124)
Furthermore the number γ (Gamma) always exists since we use b>0.
The example of usefulness:
For example, if S=a+ibis a non-trivialzero of Riemanns Zeta Function and we use n = eiγ with γ =

− ln(a2+b2)
2b asdemonstrated above, then wehave not only:
a = e(−bγ) × cos(aγ) and b = e(−bγ) × sin(aγ) with S = e(S×iγ) (125)
But we have also: a 6= 1

2 (126)
This means that Sis a Landau-Siegel Zero. And in this case, we have of course b>e since the study of

non-trivial zeros Sof Riemanns Zeta Function is only interesting when bgets big. Furthermore, we wont need
in this case a criterion for bnegative because Riemanns XiFunction causes that if S is a non-trivial Zero of
Riemanns Zeta Function then(1-S)is also a non-trivial Zero of Riemanns Zeta Function.

9. Related Algebraic mathematical projects:
The work that remains about the functions f of complex numbers defined from C in C as f(n) = nS+1

S is
when S=a+ib with a and b are real numbers, and f(n) = n⇔ nS = S:

1) How can we describe in this case the homomorphism that may link the set V containing all the pairs of
real numbers (a, b) excepting the pairs ( 1

2 , b) with the set of fixed-points of the functions f that depend on each
complex number S ? This is interesting because the set V contains obviously any possible Landau-Siegel Zero.

2) How can we describe in this case the homomorphism that may link the set W containing all the pairs of
real numbers ( 1

2 , b) with the set of fixed-points of the functions f that depend on each complex number S ?
This is interesting because the set W contains the zeros that respect Riemanns Hypothesis.
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