References
Ali, A., Lin, S.-L., He, J.-K., Kong, F.-M., Yu, J.-H. & Jiang, H.-S.
(2019). Climate and soils determine aboveground biomass indirectly via
species diversity and stand structural complexity in tropical forests.For. Ecol. Manage. , 432, 823–831.
Bailey, J.J., Boyd, D.S., Hjort, J., Lavers, C.P. & Field, R. (2017).
Modelling native and alien vascular plant species richness: At which
scales is geodiversity most relevant? Glob. Ecol. Biogeogr. , 26,
763–776.
Bisbing, S.M., Cooper, D.J., Amore, D.V.D. & Marshall, K.N. (2016).
Determinants of conifer distributions across peatland to forest
gradients in the coastal temperate rainforest of southeast Alaska.
Ecohydrol., 9, 354–367.
Brown, J.L. (2014). SDM toolbox: a python‐based GIS toolkit for
landscape genetic, biogeographic and species distribution model
analyses. Methods Ecol. Evol. , 5, 694–700.
CBD. (2012). The Global Strategy for Plant Conservation:
2011-2020 . Botanic Gardens Conservation International.
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., et al.(2018). Plant diversity enhances productivity and soil carbon storage.Proc. Natl. Acad. Sci. , 115, 4027–4032.
Comer, P.J., Pressey, R.L., Hunter Jr, M.L., Schloss, C.A., Buttrick,
S.C., Heller, N.E., et al. (2015). Incorporating geodiversity
into conservation decisions. Conserv. Biol. , 29, 692–701.
Crawley, M.J. (2012). The R book . John Wiley & Sons.
Currie, D.J., Mittelbach, G.G., Cornell, H. V, Field, R., Guégan, J.,
Hawkins, B.A., et al. (2004). Predictions and tests of
climate‐based hypotheses of broad‐scale variation in taxonomic richness.Ecol. Lett. , 7, 1121–1134.
D’amen, M., Rahbek, C., Zimmermann, N.E. & Guisan, A. (2017). Spatial
predictions at the community level: from current approaches to future
frameworks. Biol. Rev. , 92, 169–187.
Dakhil, M.A., Xiong, Q., Farahat, E.A., Zhang, L., Pan, K., Pandey, B.,et al. (2019). Past and future climatic indicators for
distribution patterns and conservation planning of temperate coniferous
forests in southwestern China. Ecol. Indic. , 107, 105559.
Fang, J., Wang, Z. & Tang, Z. (2011). Atlas of woody plants in
China: distribution and climate . Springer Science & Business Media.
Faraway, J.J. (2016). Extending the linear model with R:
generalized linear, mixed effects and nonparametric regression models .
Chapman and Hall/CRC.
Farjon, A. (2010). A Handbook of the World’s Conifers (2 vols.) .
Brill.
Farjon, A. & Filer, D. (2013). An atlas of the world’s conifers:
an analysis of their distribution, biogeography, diversity and
conservation status . Brill.
Farjon, A., Gardner, M. & Thomas, P. (2019). Conifer Database (version
Jan 2014). Species 2000 ITIS Cat. Life, 2019 Annu. Checkl. (Roskov
Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T.,
DeWalt R.E., Decock W., Nieukerken E. van, Zarucchi J., Penev L.,
eds.) .
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial
resolution climate surfaces for global land areas. Int. J.
Climatol. , 37, 4302–4315.
Fisher, J.B., Whittaker, R.J. & Malhi, Y. (2011). ET come home:
potential evapotranspiration in geographical ecology. Glob. Ecol.
Biogeogr. , 20, 1–18.
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S.,et al. (2016). R-Core.(2016). Car: Companion to applied
regression. R package version 2.1-2.
Fragniere, Y., Bétrisey, S., Cardinaux, L., Stoffel, M. & Kozlowski, G.
(2015). Fighting their last stand? A global analysis of the distribution
and conservation status of gymnosperms. J. Biogeogr. , 42,
809–820.
Francis, A.P. & Currie, D.J. (2003). A globally consistent
richness-climate relationship for angiosperms. Am. Nat. , 161,
523–536.
Hawkins, B.A., Field, R., Cornell, H. V, Currie, D.J., Guégan, J.-F.,
Kaufman, D.M., et al. (2003). Energy, water, and broad‐scale
geographic patterns of species richness. Ecology , 84, 3105–3117.
Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink,
G.B.M., Ribeiro, E., et al. (2014). SoilGrids1km—global soil
information based on automated mapping. PLoS One , 9, e105992.
Hijmans, R.J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M. &
Greenberg, J.P. (2016). raster: Geographic Data Analysis and Modeling.
2.5-8. Release date , 2–6.
Hjort, J., Gordon, J.E., Gray, M. & Hunter Jr, M.L. (2015). Why
geodiversity matters in valuing nature’s stage. Conserv. Biol. ,
29, 630–639.
Hofer, G., Bunce, R.G.H., Edwards, P.J., Szerencsits, E., Wagner, H.H.
& Herzog, F. (2011). Use of topographic variability for assessing plant
diversity in agricultural landscapes. Agric. Ecosyst. Environ. ,
142, 144–148.
Huang, J., Lu, X., Huang, J. & Ma, K. (2016). Conservation priority of
endemic Chinese flora at family and genus levels. Biodivers.
Conserv. , 25, 23–35.
Huston, M. (1980). Soil nutrients and tree species richness in Costa
Rican forests. J. Biogeogr. , 147–157.
IBM, (2012). IBM SPSS statistics version 21. Boston, Mass:
International Business Machines Corp , 126.
Knudson, C., Kay, K. & Fisher, S. (2018). Appraising geodiversity and
cultural diversity approaches to building resilience through
conservation. Nat. Clim. Chang. , 8, 678.
Laliberté, E., Zemunik, G. & Turner, B.L. (2014). Environmental
filtering explains variation in plant diversity along resource
gradients. Science , 345, 1602–1605.
Lee, C.-B. & Chun, J.-H. (2016). Environmental drivers of patterns of
plant diversity along a wide environmental gradient in Korean temperate
forests. Forests , 7, 19.
Legendre, P. & Legendre, L. (2012). Numerical Ecology 3rd English edn
Elsevier: Amsterdam. The Netherlands .
Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G.,et al. (2016). Positive biodiversity-productivity relationship
predominant in global forests. Science , 354, aaf8957.
Liu, X., Garcia-Ulloa, J., Cornioley, T., Liu, X., Wang, Z. & Garcia,
C. (2019). Main ecological drivers of woody plant species richness
recovery in secondary forests in China. Sci. Rep. , 9, 250.
Liu, X., Trogisch, S., He, J.-S., Niklaus, P.A., Bruelheide, H., Tang,
Z., et al. (2018a). Tree species richness increases ecosystem
carbon storage in subtropical forests. Proc. R. Soc. B Biol.
Sci. , 285, 20181240.
Liu, Y., Shen, Z., Wang, Q., Su, X., Zhang, W., Shrestha, N., et
al. (2017). Determinants of richness patterns differ between rare and
common species: implications for Gesneriaceae conservation in China.Divers. Distrib. , 23, 235–246.
Liu, Y., Su, X., Shrestha, N., Xu, X., Wang, S., Li, Y., et al.(2018b). Effects of contemporary environment and Quaternary climate
change on drylands plant diversity differ between growth forms.Ecography (Cop.). , 42, 334–345.
López-Pujol, J. & Zhao, A. (2004). China: a rich flora needed of urgent
conservation. Orsis Org. i Sist. , 19, 49–89.
López‐Pujol, J., Zhang, F., Sun, H., Ying, T. & Ge, S. (2011). Centres
of plant endemism in China: places for survival or for speciation?J. Biogeogr. , 38, 1267–1280.
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V.,
Delgado-Baquerizo, M., et al. (2012). Plant species richness and
ecosystem multifunctionality in global drylands. Science , 335,
214–218.
Miao, G. & West, R.A. (2004). Chinese collective forestlands:
contributions and constraints. Int. For. Rev. , 6, 282–296.
Mod, H.K., Scherrer, D., Luoto, M. & Guisan, A. (2016). What we use is
not what we know: environmental predictors in plant distribution models.J. Veg. Sci. , 27, 1308–1322.
Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T. & Svenning, J.
(2013). Topography as a driver of local terrestrial vascular plant
diversity patterns. Nord. J. Bot. , 31, 129–144.
O’Brien, E. (1998). Water‐energy dynamics, climate, and prediction of
woody plant species richness: an interim general model. J.
Biogeogr. , 25, 379–398.
Oliver, T.H., Heard, M.S., Isaac, N.J.B., Roy, D.B., Procter, D.,
Eigenbrod, F., et al. (2015). Biodiversity and resilience of
ecosystem functions. Trends Ecol. Evol. , 30, 673–684.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell,
G.V.N., Underwood, E.C., et al. (2001). Terrestrial Ecoregions of
the World: A New Map of Life on EarthA new global map of terrestrial
ecoregions provides an innovative tool for conserving biodiversity.Bioscience , 51, 933–938.
Panda, R.M., Behera, M.D., Roy, P.S. & Biradar, C. (2017). Energy
determines broad pattern of plant distribution in Western Himalaya.Ecol. Evol. , 7, 10850–10860.
Pennington, V.E., Palmquist, K.A., Bradford, J.B. & Lauenroth, W.K.
(2017). Climate and soil texture influence patterns of forb species
richness and composition in big sagebrush plant communities across their
spatial extent in the western US. Plant Ecol. , 218, 957–970.
Piedallu, C. & Gégout, J. (2008). Efficient assessment of topographic
solar radiation to improve plant distribution models. Agric. For.
Meteorol. , 148, 1696–1706.
Piedallu, C., Gégout, J., Perez, V. & Lebourgeois, F. (2013). Soil
water balance performs better than climatic water variables in tree
species distribution modelling. Glob. Ecol. Biogeogr. , 22,
470–482.
Pierce, D. (2017). ncdf4: interface to Unidata netCDF (version 4 or
earlier) format data files.–R package ver. 1.16.
Poorter, L., Sande, M.T. Van Der, Thompson, J., Arets, E.J.M.M.,
Alarcón, A., Ascarrunz, N., et al. (2015). Diversity enhances
carbon storage in tropical forests, 1314–1328.
van der Putten, W.H., Bradford, M.A., Pernilla Brinkman, E., van de
Voorde, T.F.J. & Veen, G.F. (2016). Where, when and how plant–soil
feedback matters in a changing world. Funct. Ecol. , 30,
1109–1121.
Quesada, C.A. & Lloyd, J. (2016). Soil–vegetation interactions in
Amazonia. In: Interactions between biosphere, atmosphere and human
land use in the Amazon Basin . Springer, pp. 267–299.
Ren, H., Qin, H., Ouyang, Z., Wen, X., Jin, X., Liu, H., et al.(2019). Progress of implementation on the Global Strategy for Plant
Conservation in ( 2011 – 2020 ) China. Biol. Conserv. , 230,
169–178.
Rosenblad, K.C., Perret, D.L. & Sax, D.F. (2019). Niche syndromes
reveal climate-driven extinction threat to island endemic conifers.Nat Clim Chang, 9(8), 627-631.
Rueda, M., Godoy, O. & Hawkins, B.A. (2018). Trait syndromes among
North American trees are evolutionarily conserved and show adaptive
value over broad geographic scales. Ecography (Cop.). , 41,
540–550.
van der Sande, M.T., Arets, E.J.M.M., Peña‐Claros, M., Hoosbeek, M.R.,
Cáceres‐Siani, Y., van der Hout, P., et al. (2018). Soil
fertility and species traits, but not diversity, drive productivity and
biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. ,
32, 461–474.
Schmiedinger, A., Kreyling, J., Steinbauer, M.J., Macdonald, S.E.,
Jentsch, A. & Beierkuhnlein, C. (2012). A continental comparison
indicates long-term effects of forest management on understory diversity
in coniferous forests. Can. J. For. Res. , 42, 1239–1252.
Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., et
al. (2013). A China data set of soil properties for land surface
modeling. J. Adv. Model. Earth Syst. , 5, 212–224.
Sharma, N., Behera, M.D., Das, A.P. & Panda, R.M. (2019). Plant
richness pattern in an elevation gradient in the Eastern Himalaya.Biodivers. Conserv. , 1–20.
Sharrock, S., Oldfield, S. & Wilson, O. (2014). Plant Conservation
Report 2014: a review of progress towards the Global Strategy for Plant
Conservation 2011-2020. CBD Tech. Ser.
Shrestha, N., Su, X., Xu, X. & Wang, Z. (2018). The drivers of high
Rhododendron diversity in south-west China: Does seasonality matter?J. Biogeogr. , 45, 438–447.
Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity
as a universal driver of species richness across taxa, biomes and
spatial scales. Ecol. Lett. , 17, 866–880.
Tashi, S., Singh, B., Keitel, C. & Adams, M. (2016). Soil carbon and
nitrogen stocks in forests along an altitudinal gradient in the eastern
Himalayas and a meta‐analysis of global data. Glob. Chang. Biol. ,
22, 2255–2268.
Threatened Conifers of the World. (2019). Threatened Conifers of the
World. Available at https://threatenedconifers.rbge.org.uk .
Trabucco, A., Zomer, R.J., Bossio, D.A., van Straaten, O. & Verchot, L.
V. (2008). Climate change mitigation through
afforestation/reforestation: a global analysis of hydrologic impacts
with four case studies. Agric. Ecosyst. Environ. , 126, 81–97.
Tripathi, P., Behera, M.D. & Roy, P.S. (2019). Spatial heterogeneity of
climate explains plant richness distribution at the regional scale in
India. PLoS One , 14, e0218322.
Tukiainen, H., Bailey, J.J., Field, R., Kangas, K. & Hjort, J. (2017).
Combining geodiversity with climate and topography to account for
threatened species richness. Conserv. Biol. , 31, 364–375.
Ulrich, W., Soliveres, S., Maestre, F.T., Gotelli, N.J., Quero, J.L.,
Delgado‐Baquerizo, M., et al. (2014). Climate and soil attributes
determine plant species turnover in global drylands. J.
Biogeogr. , 41, 2307–2319.
Venables, W.N. & Ripley, B.D. (2013). Modern applied statistics
with S-PLUS . Springer Science & Business Media.
Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones,
K.R., et al. (2016). Sixteen years of change in the global
terrestrial human footprint and implications for biodiversity
conservation. Nat. Commun. , 7, 1–11.
Walsh, C. & Mac Nally, R. (2013). hier. part: Hierarchical
Partitioning. R package version 1.0-4. Part R software, R Found.
Stat. Comput. Vienna, Austria .
Wan, J.Z., Wang, C.J. & Yu, F.H. (2017). Spatial conservation
prioritization for dominant tree species of Chinese forest communities
under climate change. Clim. Change , 144, 303–316.
Wang, J., Cui, P., Zhong, Y., Li, J. & Chu, J. (2019). Biogeographic
patterns and environmental interpretation of plant regional species
richness in Alxa Plateau of northern China. J. BEIJING For.
Univ. , 41, 14–23.
Wang, Z., Fang, J., Tang, Z. & Lin, X. (2010). Patterns, determinants
and models of woody plant diversity in China. Proc. R. Soc. B
Biol. Sci. , 278, 2122–2132.
Wildlife Conservation Society‐WCS (2005). Last of the Wild Project,
Version 2, 2005 (LWP‐2): Global Human Influence Index (HII) Dataset
(Geographic).
WWF. (2018). Terrestrial Ecoregions: Temperate Coniferous Forest.Available at:
https://www.worldwildlife.org/biomes/temperate-coniferous-forest
(accessed on March 2018) .
Xing, Y. & Ree, R.H. (2017). Uplift-driven diversification in the
Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl.
Acad. Sci. , 114, E3444–E3451.
Xu, W., Ci, X., Song, C., He, T., Zhang, W., Li, Q., et al.(2016). Soil phosphorus heterogeneity promotes tree species diversity
and phylogenetic clustering in a tropical seasonal rainforest.Ecol. Evol. , 6, 8719–8726.
Xu, W., Xiao, Y., Zhang, J., Yang, W., Zhang, L., Hull, V., et
al. (2017). Strengthening protected areas for biodiversity and
ecosystem services in China. Proc. Natl. Acad. Sci. , 114,
1601–1606.
Yao, R., Palmer, D., Hock, B., Harrison, D., Payn, T. & Monge, J.
(2019). Forest Investment Framework as a Support Tool for the
Sustainable Management of Planted Forests. Sustainability , 11,
3477.
Ye, X., Liu, G., Li, Z., Wang, H. & Zeng, Y. (2015). Assessing local
and surrounding threats to the protected area network in a biodiversity
hotspot: the Hengduan Mountains of Southwest China. PLoS One , 10,
e0138533.
Zellweger, F., Braunisch, V., Morsdorf, F., Baltensweiler, A., Abegg,
M., Roth, T., et al. (2015). Forest Ecology and Management
Disentangling the effects of climate , topography , soil and vegetation
on stand-scale species richness in temperate forests. For. Ecol.
Manage. , 349, 36–44.
Zhang, M., Zhou, Z., Chen, W., Cannon, C.H., Raes, N. & Slik, J.W.F.
(2014). Major declines of woody plant species ranges under climate
change in Y unnan, C hina. Divers. Distrib. , 20, 405–415.
Zhang, M.G., Slik, J.W.F. & Ma, K.P. (2016). Using species distribution
modeling to delineate the botanical richness patterns and
phytogeographical regions of China. Sci. Rep. , 6.