References
Ali, A., Lin, S.-L., He, J.-K., Kong, F.-M., Yu, J.-H. & Jiang, H.-S. (2019). Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests.For. Ecol. Manage. , 432, 823–831.
Bailey, J.J., Boyd, D.S., Hjort, J., Lavers, C.P. & Field, R. (2017). Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant? Glob. Ecol. Biogeogr. , 26, 763–776.
Bisbing, S.M., Cooper, D.J., Amore, D.V.D. & Marshall, K.N. (2016). Determinants of conifer distributions across peatland to forest gradients in the coastal temperate rainforest of southeast Alaska. Ecohydrol., 9, 354–367.
Brown, J.L. (2014). SDM toolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. , 5, 694–700.
CBD. (2012). The Global Strategy for Plant Conservation: 2011-2020 . Botanic Gardens Conservation International.
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., et al.(2018). Plant diversity enhances productivity and soil carbon storage.Proc. Natl. Acad. Sci. , 115, 4027–4032.
Comer, P.J., Pressey, R.L., Hunter Jr, M.L., Schloss, C.A., Buttrick, S.C., Heller, N.E., et al. (2015). Incorporating geodiversity into conservation decisions. Conserv. Biol. , 29, 692–701.
Crawley, M.J. (2012). The R book . John Wiley & Sons.
Currie, D.J., Mittelbach, G.G., Cornell, H. V, Field, R., Guégan, J., Hawkins, B.A., et al. (2004). Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness.Ecol. Lett. , 7, 1121–1134.
D’amen, M., Rahbek, C., Zimmermann, N.E. & Guisan, A. (2017). Spatial predictions at the community level: from current approaches to future frameworks. Biol. Rev. , 92, 169–187.
Dakhil, M.A., Xiong, Q., Farahat, E.A., Zhang, L., Pan, K., Pandey, B.,et al. (2019). Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China. Ecol. Indic. , 107, 105559.
Fang, J., Wang, Z. & Tang, Z. (2011). Atlas of woody plants in China: distribution and climate . Springer Science & Business Media.
Faraway, J.J. (2016). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models . Chapman and Hall/CRC.
Farjon, A. (2010). A Handbook of the World’s Conifers (2 vols.) . Brill.
Farjon, A. & Filer, D. (2013). An atlas of the world’s conifers: an analysis of their distribution, biogeography, diversity and conservation status . Brill.
Farjon, A., Gardner, M. & Thomas, P. (2019). Conifer Database (version Jan 2014). Species 2000 ITIS Cat. Life, 2019 Annu. Checkl. (Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Nieukerken E. van, Zarucchi J., Penev L., eds.) .
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. , 37, 4302–4315.
Fisher, J.B., Whittaker, R.J. & Malhi, Y. (2011). ET come home: potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. , 20, 1–18.
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S.,et al. (2016). R-Core.(2016). Car: Companion to applied regression. R package version 2.1-2.
Fragniere, Y., Bétrisey, S., Cardinaux, L., Stoffel, M. & Kozlowski, G. (2015). Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms. J. Biogeogr. , 42, 809–820.
Francis, A.P. & Currie, D.J. (2003). A globally consistent richness-climate relationship for angiosperms. Am. Nat. , 161, 523–536.
Hawkins, B.A., Field, R., Cornell, H. V, Currie, D.J., Guégan, J.-F., Kaufman, D.M., et al. (2003). Energy, water, and broad‐scale geographic patterns of species richness. Ecology , 84, 3105–3117.
Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., et al. (2014). SoilGrids1km—global soil information based on automated mapping. PLoS One , 9, e105992.
Hijmans, R.J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M. & Greenberg, J.P. (2016). raster: Geographic Data Analysis and Modeling. 2.5-8. Release date , 2–6.
Hjort, J., Gordon, J.E., Gray, M. & Hunter Jr, M.L. (2015). Why geodiversity matters in valuing nature’s stage. Conserv. Biol. , 29, 630–639.
Hofer, G., Bunce, R.G.H., Edwards, P.J., Szerencsits, E., Wagner, H.H. & Herzog, F. (2011). Use of topographic variability for assessing plant diversity in agricultural landscapes. Agric. Ecosyst. Environ. , 142, 144–148.
Huang, J., Lu, X., Huang, J. & Ma, K. (2016). Conservation priority of endemic Chinese flora at family and genus levels. Biodivers. Conserv. , 25, 23–35.
Huston, M. (1980). Soil nutrients and tree species richness in Costa Rican forests. J. Biogeogr. , 147–157.
IBM, (2012). IBM SPSS statistics version 21. Boston, Mass: International Business Machines Corp , 126.
Knudson, C., Kay, K. & Fisher, S. (2018). Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nat. Clim. Chang. , 8, 678.
Laliberté, E., Zemunik, G. & Turner, B.L. (2014). Environmental filtering explains variation in plant diversity along resource gradients. Science , 345, 1602–1605.
Lee, C.-B. & Chun, J.-H. (2016). Environmental drivers of patterns of plant diversity along a wide environmental gradient in Korean temperate forests. Forests , 7, 19.
Legendre, P. & Legendre, L. (2012). Numerical Ecology 3rd English edn Elsevier: Amsterdam. The Netherlands .
Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G.,et al. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science , 354, aaf8957.
Liu, X., Garcia-Ulloa, J., Cornioley, T., Liu, X., Wang, Z. & Garcia, C. (2019). Main ecological drivers of woody plant species richness recovery in secondary forests in China. Sci. Rep. , 9, 250.
Liu, X., Trogisch, S., He, J.-S., Niklaus, P.A., Bruelheide, H., Tang, Z., et al. (2018a). Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci. , 285, 20181240.
Liu, Y., Shen, Z., Wang, Q., Su, X., Zhang, W., Shrestha, N., et al. (2017). Determinants of richness patterns differ between rare and common species: implications for Gesneriaceae conservation in China.Divers. Distrib. , 23, 235–246.
Liu, Y., Su, X., Shrestha, N., Xu, X., Wang, S., Li, Y., et al.(2018b). Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms.Ecography (Cop.). , 42, 334–345.
López-Pujol, J. & Zhao, A. (2004). China: a rich flora needed of urgent conservation. Orsis Org. i Sist. , 19, 49–89.
López‐Pujol, J., Zhang, F., Sun, H., Ying, T. & Ge, S. (2011). Centres of plant endemism in China: places for survival or for speciation?J. Biogeogr. , 38, 1267–1280.
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science , 335, 214–218.
Miao, G. & West, R.A. (2004). Chinese collective forestlands: contributions and constraints. Int. For. Rev. , 6, 282–296.
Mod, H.K., Scherrer, D., Luoto, M. & Guisan, A. (2016). What we use is not what we know: environmental predictors in plant distribution models.J. Veg. Sci. , 27, 1308–1322.
Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T. & Svenning, J. (2013). Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. , 31, 129–144.
O’Brien, E. (1998). Water‐energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J. Biogeogr. , 25, 379–398.
Oliver, T.H., Heard, M.S., Isaac, N.J.B., Roy, D.B., Procter, D., Eigenbrod, F., et al. (2015). Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. , 30, 673–684.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., et al. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.Bioscience , 51, 933–938.
Panda, R.M., Behera, M.D., Roy, P.S. & Biradar, C. (2017). Energy determines broad pattern of plant distribution in Western Himalaya.Ecol. Evol. , 7, 10850–10860.
Pennington, V.E., Palmquist, K.A., Bradford, J.B. & Lauenroth, W.K. (2017). Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western US. Plant Ecol. , 218, 957–970.
Piedallu, C. & Gégout, J. (2008). Efficient assessment of topographic solar radiation to improve plant distribution models. Agric. For. Meteorol. , 148, 1696–1706.
Piedallu, C., Gégout, J., Perez, V. & Lebourgeois, F. (2013). Soil water balance performs better than climatic water variables in tree species distribution modelling. Glob. Ecol. Biogeogr. , 22, 470–482.
Pierce, D. (2017). ncdf4: interface to Unidata netCDF (version 4 or earlier) format data files.–R package ver. 1.16.
Poorter, L., Sande, M.T. Van Der, Thompson, J., Arets, E.J.M.M., Alarcón, A., Ascarrunz, N., et al. (2015). Diversity enhances carbon storage in tropical forests, 1314–1328.
van der Putten, W.H., Bradford, M.A., Pernilla Brinkman, E., van de Voorde, T.F.J. & Veen, G.F. (2016). Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. , 30, 1109–1121.
Quesada, C.A. & Lloyd, J. (2016). Soil–vegetation interactions in Amazonia. In: Interactions between biosphere, atmosphere and human land use in the Amazon Basin . Springer, pp. 267–299.
Ren, H., Qin, H., Ouyang, Z., Wen, X., Jin, X., Liu, H., et al.(2019). Progress of implementation on the Global Strategy for Plant Conservation in ( 2011 – 2020 ) China. Biol. Conserv. , 230, 169–178.
Rosenblad, K.C., Perret, D.L. & Sax, D.F. (2019). Niche syndromes reveal climate-driven extinction threat to island endemic conifers.Nat Clim Chang, 9(8), 627-631.
Rueda, M., Godoy, O. & Hawkins, B.A. (2018). Trait syndromes among North American trees are evolutionarily conserved and show adaptive value over broad geographic scales. Ecography (Cop.). , 41, 540–550.
van der Sande, M.T., Arets, E.J.M.M., Peña‐Claros, M., Hoosbeek, M.R., Cáceres‐Siani, Y., van der Hout, P., et al. (2018). Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. , 32, 461–474.
Schmiedinger, A., Kreyling, J., Steinbauer, M.J., Macdonald, S.E., Jentsch, A. & Beierkuhnlein, C. (2012). A continental comparison indicates long-term effects of forest management on understory diversity in coniferous forests. Can. J. For. Res. , 42, 1239–1252.
Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., et al. (2013). A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. , 5, 212–224.
Sharma, N., Behera, M.D., Das, A.P. & Panda, R.M. (2019). Plant richness pattern in an elevation gradient in the Eastern Himalaya.Biodivers. Conserv. , 1–20.
Sharrock, S., Oldfield, S. & Wilson, O. (2014). Plant Conservation Report 2014: a review of progress towards the Global Strategy for Plant Conservation 2011-2020. CBD Tech. Ser.
Shrestha, N., Su, X., Xu, X. & Wang, Z. (2018). The drivers of high Rhododendron diversity in south-west China: Does seasonality matter?J. Biogeogr. , 45, 438–447.
Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. , 17, 866–880.
Tashi, S., Singh, B., Keitel, C. & Adams, M. (2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta‐analysis of global data. Glob. Chang. Biol. , 22, 2255–2268.
Threatened Conifers of the World. (2019). Threatened Conifers of the World. Available at https://threatenedconifers.rbge.org.uk .
Trabucco, A., Zomer, R.J., Bossio, D.A., van Straaten, O. & Verchot, L. V. (2008). Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. , 126, 81–97.
Tripathi, P., Behera, M.D. & Roy, P.S. (2019). Spatial heterogeneity of climate explains plant richness distribution at the regional scale in India. PLoS One , 14, e0218322.
Tukiainen, H., Bailey, J.J., Field, R., Kangas, K. & Hjort, J. (2017). Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. , 31, 364–375.
Ulrich, W., Soliveres, S., Maestre, F.T., Gotelli, N.J., Quero, J.L., Delgado‐Baquerizo, M., et al. (2014). Climate and soil attributes determine plant species turnover in global drylands. J. Biogeogr. , 41, 2307–2319.
Venables, W.N. & Ripley, B.D. (2013). Modern applied statistics with S-PLUS . Springer Science & Business Media.
Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., et al. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. , 7, 1–11.
Walsh, C. & Mac Nally, R. (2013). hier. part: Hierarchical Partitioning. R package version 1.0-4. Part R software, R Found. Stat. Comput. Vienna, Austria .
Wan, J.Z., Wang, C.J. & Yu, F.H. (2017). Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Clim. Change , 144, 303–316.
Wang, J., Cui, P., Zhong, Y., Li, J. & Chu, J. (2019). Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China. J. BEIJING For. Univ. , 41, 14–23.
Wang, Z., Fang, J., Tang, Z. & Lin, X. (2010). Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B Biol. Sci. , 278, 2122–2132.
Wildlife Conservation Society‐WCS (2005). Last of the Wild Project, Version 2, 2005 (LWP‐2): Global Human Influence Index (HII) Dataset (Geographic).
WWF. (2018). Terrestrial Ecoregions: Temperate Coniferous Forest.Available at: https://www.worldwildlife.org/biomes/temperate-coniferous-forest (accessed on March 2018) .
Xing, Y. & Ree, R.H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. , 114, E3444–E3451.
Xu, W., Ci, X., Song, C., He, T., Zhang, W., Li, Q., et al.(2016). Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.Ecol. Evol. , 6, 8719–8726.
Xu, W., Xiao, Y., Zhang, J., Yang, W., Zhang, L., Hull, V., et al. (2017). Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. , 114, 1601–1606.
Yao, R., Palmer, D., Hock, B., Harrison, D., Payn, T. & Monge, J. (2019). Forest Investment Framework as a Support Tool for the Sustainable Management of Planted Forests. Sustainability , 11, 3477.
Ye, X., Liu, G., Li, Z., Wang, H. & Zeng, Y. (2015). Assessing local and surrounding threats to the protected area network in a biodiversity hotspot: the Hengduan Mountains of Southwest China. PLoS One , 10, e0138533.
Zellweger, F., Braunisch, V., Morsdorf, F., Baltensweiler, A., Abegg, M., Roth, T., et al. (2015). Forest Ecology and Management Disentangling the effects of climate , topography , soil and vegetation on stand-scale species richness in temperate forests. For. Ecol. Manage. , 349, 36–44.
Zhang, M., Zhou, Z., Chen, W., Cannon, C.H., Raes, N. & Slik, J.W.F. (2014). Major declines of woody plant species ranges under climate change in Y unnan, C hina. Divers. Distrib. , 20, 405–415.
Zhang, M.G., Slik, J.W.F. & Ma, K.P. (2016). Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Sci. Rep. , 6.