References
1.
Aronson, E.L. & Helliker, B.R. (2010). Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology , 91, 3242-3251.
2.
Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature , 431, 181-184.
3.
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J. et al. (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology , 16, 358-372.
4.
Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S. et al. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society , 82, 2415-2434.
5.
Bédard, C. & Knowles, R. (1989). Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiological Reviews , 53, 68-84.
6.
Blankinship, J.C., Brown, J.R., Dijkstra, P. & Hungate, B.A. (2010). Effects of interactive global changes on methane uptake in an annual grassland. Journal of Geophysical Research , 115.
7.
Bodelier, P.L.E. & Laanbroek, H.J. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology , 47, 265-277.
8.
Bollag, J.-M. & Czlonkowski, S. (1973). Inhibition of methane formation in soil by various nitrogen-containing compounds. Soil biology and Biochemistry , 5, 673-678.
9.
Brahney, J., Mahowald, N., Ward, D.S., Ballantyne, A.P. & Neff, J.C. (2015). Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry? Global Biogeochemical Cycles , 29, 1369-1383.
10.
Carlsen, H.N., Joergensen, L. & Degn, H. (1991). Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Applied Microbiology and Biotechnology , 35, 124-127.
11.
Chen, W., Wolf, B., Zheng, X., Yao, Z., BUTTERBACH‐BAHL, K., Brüggemann, N. et al. (2011). Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology , 17, 2803-2816.
12.
Chen, W., Zheng, X., Chen, Q., Wolf, B., Butterbach-Bahl, K., Brüggemann, N. et al. (2013). Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma , 192, 335-340.
13.
Curry, C.L. (2007). Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles , 21, doi:10.1029/2006GB002818.
14.
Davidson, E.A. & Schimel, J.P. (1995). Microbial processes production and consumption of nitrix oxide and methane . Blackwell, Oxford, U.K.
15.
Dijkstra, F.A., Morgan, J.A., Follett, R.F. & Lecain, D.R. (2013). Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Global Change Biology , 19, 1816-1826.
16.
Dunfield, P. & Knowles, R. (1995). Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Applied and Environmental Microbiology , 61, 3129-3135.
17.
Fan, G.Z., Zhang, T.J., Ji, J.J., Li, K.R. & Liu, J.Y. (2007). Numerical simulation of the carbon cycle over the Tibetan plateau, China. Arctic Antarctic and Alpine Research , 39, 723-731.
18.
Fay, P.A., Prober, S.M., Harpole, W.S., Knops, J.M., Bakker, J.D., Borer, E.T. et al. (2015). Grassland productivity limited by multiple nutrients. Nature Plants , 1, 15080.
19.
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R. et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science , 320, 889-892.
20.
Giese, M., Brueck, H., Gao, Y., Lin, S., Steffens, M., Kögel-Knabner, I.et al. (2013). N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs , 83, 195-219.
21.
Gulledge, J., Hrywna, Y., Cavanaugh, C. & Steudler, P.A. (2004). Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils. FEMS Microbiology Ecology , 49, 389-400.
22.
Gulledge, J. & Schimel, J.P. (1998). Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH4+ inhibition.Applied and Environmental Microbiology , 64, 4291-4298.
23.
Holst, J., Liu, C., Brüggemann, N., Butterbach-Bahl, K., Zheng, X., Wang, Y. et al. (2007). Microbial N turnover and N-oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems , 10, 623-634.
24.
Hooper, D., Coughlan, J. & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods , 6, 53-60.
25.
IPCC (2013). Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(eds. Stocker, TF, Qin, D, Plattner, GK, Tignor, M, Allen, SK, Boschung, J et al. ) Cambridge, United Kingdom and New York, NY, USA.
26.
Kattge, J., Diaz, S., Lavorel, S., Prentice, C., Leadley, P., Bonisch, G. et al. (2011). TRY - a global database of plant traits.Global Change Biology , 17, 2905-2935.
27.
Ladwig, L.M., Collins, S.L., Swann, A.L., Xia, Y., Allen, M.F. & Allen, E.B. (2012). Above-and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia , 169, 177-185.
28.
Latham, J., Cumani, R., Rosati, I. & Bloise, M. (2014). Global land cover share (GLC-SHARE) database beta-release version 1.0-2014.FAO: Rome, Italy .
29.
Li, K., Gong, Y., Song, W., He, G., Hu, Y., Tian, C. et al.(2012). Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains. Chemosphere , 88, 140-143.
30.
Liebig, M.A., Kronberg, S.L. & Gross, J.R. (2008). Effects of normal and altered cattle urine on short-term greenhouse gas flux from mixed-grass prairie in the Northern Great Plain. Agriculture Ecosystems & Environment , 125, 57-64.
31.
Liu, L. & Greaver, T. (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4emission. Ecology Letters , 12, 1103-1117.
32.
Liu, X., Zhang, Q., Li, S., Zhang, L. & Ren, J. (2017). Simulated NH4+-N Deposition Inhibits CH4 Uptake and Promotes N2O Emission in the Meadow Steppe of Inner Mongolia, China. Pedosphere , 27, 306-317.
33.
Lund, M., Christensen, T.R., Mastepanov, M., Lindroth, A. & Ström, L. (2009). Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates.Biogeosciences , 6, 2135-2144.
34.
Mahowald, N., Jickells, T.D., Baker, A.R., Artaxo, P., Benitez‐Nelson, C.R., Bergametti, G. et al. (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global biogeochemical cycles , 22, GB4026.
35.
Mosier, A.R., Pendall, E. & Morgan, J.A. (2003). Effect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado Shortgrass Steppe. Atmospheric Chemistry and Physics , 3, 1703-1708.
36.
Nikiema, P., Rothstein, D.E., Min, D.-H. & Kapp, C.J. (2011). Nitrogen fertilization of switchgrass increases biomass yield and improves net greenhouse gas balance in northern Michigan, USA. Biomass and Bioenergy , 35, 4356-4367.
37.
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L. et al. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe.Nature Communications , 4, 2934.
38.
Penuelas, J., Sardans, J., Rivas-ubach, A. & Janssens, I.A. (2012). The human-induced imbalance between C, N and P in Earth’s life system.Global Change Biology , 18, DOI: 10.1111/j.1365-2486.2011.02568.x.
39.
Phoenix, G.K., Booth, R.E., Leake, J.R., Read, D.J., Grime, J.P. & Lee, J.A. (2003). Effects of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of semi‐natural grasslands. Global Change Biology , 9, 1309-1321.
40.
Potter, C.S., Davidson, E.A. & Verchot, L.V. (1996). Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere , 32, 2219-2246.
41.
Ridgwell, A.J., Marshall, S.J. & Gregson, K. (1999). Consumption of atmospheric methane by soils: a process-based model. Global Biogeochemical Cycles , 13, 59-70.
42.
Schnell, S. & King, G.M. (1994). Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils.Applied and Environmental Microbiology , 60, 3514-3521.
43.
Singh, J.S. & Strong, P. (2016). Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicology and environmental safety , 124, 267-276.
44.
Song, C., Xu, X., Tian, H. & Wang, Y. (2009). Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China.Global Change Biology , 15, 692-705.
45.
Templer, P.H., Pinder, R.W. & Goodale, C.L. (2012). Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America. Frontiers in Ecology and the Environment , 10, 547-553.
46.
Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B. et al.(2015). Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability , 1, art4.
47.
Veraart, A.J., Steenbergh, A.K., Ho, A., Kim, S.Y. & Bodelier, P.L. (2015). Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma , 259, 337-346.
48.
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais, P. et al. (2017). Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global change biology , 23, 4854-4872.
49.
Wang, Y., Cheng, S., Fang, H., Yu, G., Xu, X., Xu, M. et al.(2015). Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China. Biology and Fertility of Soils , 51, 815-825.
50.
Wu, M.-Y., Niu, S.-L. & Wan, S.-Q. (2010). Contrasting effects of clipping and nutrient addition on reproductive traits of Heteropappus altaicus at the individual and population levels. Ecological research , 25, 867-874.
51.
Xu, X. (2010). Modeling methane and nitrous oxide exchanges between the atmosphere and terrestrial ecosystems over North America in the context of multifactor global change. In: School of Forestry and Wildlife Sciences . Auburn University Auburn, p. 199.
52.
Xu, X., Thornton, P.E. & Post, W.M. (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography , 22, 737-749.
53.
Xu, X., Yuan, F., Hanson, P.J., Wullschleger, S.D., Thornton, P.E., Riley, W.J. et al. (2016). Review and Synthesis: Four decades of modeling methane cycling within terrestrial ecosystems.Biogeosciences , 13, 3735-3755.
54.
Xu, X.F., Tian, H.Q., Zhang, C., Liu, M.L., Ren, W., Chen, G.S. et al. (2010). Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences , 7, 3637-3655.
55.
Yu, L., Huang, Y., Zhang, W., Li, T. & Sun, W. (2017). Methane uptake in global forest and grassland soils from 1981 to 2010. Science of The Total Environment , 607, 1163-1172.
56.
Yue, P., Li, K., Gong, Y., Hu, Y., Mohammat, A., Christie, P. et al. (2016). A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland. Scientific Reports , 6, 32064.
57.
Zhang, L., Hou, L., Guo, D., Li, L. & Xu, X. (2017). Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Science of The Total Environment , 578, 523-534.
58.
Zhang, L., Huo, Y., Guo, D., Wang, Q., Bao, Y. & Li, L. (2014). Effects of Multi-nutrient Additions on GHG Fluxes in a Temperate Grassland of Northern China. Ecosystems , 17, 657-672.
59.
Zhang, T., Zhu, W., Mo, J., Liu, L. & Dong, S. (2011). Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China. Biogeosciences , 8, 2805-2813.
60.
Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y. et al. (2013). Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochemical Cycles , 27, 650-663.