Literature
Araya, Y.N., Silvertown, J., Gowing, D.J., Mcconway, K., Linder, P. &
Midgley, G. (2010). Variation in δ13C among species and sexes in the
family Restionaceae along a fine-scale hydrological gradient.Austral Ecol. , 35, 818–824.
Baltzer, J.L., Davies, S.J., Bunyavejchewin, S. & Noor, N.S.M. (2008).
The role of desiccation tolerance in determining tree species
distributions along the Malay-Thai Peninsula. Funct. Ecol. , 22,
221–231.
Bartlett, M.K., Klein, T., Jansen, S., Choat, B. & Sack, L. (2016a).
The correlations and sequence of plant stomatal, hydraulic, and wilting
responses to drought. Proc. Natl. Acad. Sci. , 113, 13098–13103.
Bartlett, M.K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K.,et al. (2012a). Rapid determination of comparative drought
tolerance traits: Using an osmometer to predict turgor loss point.Methods Ecol. Evol. , 3, 880–888.
Bartlett, M.K., Scoffoni, C. & Sack, L. (2012b). The determinants of
leaf turgor loss point and prediction of drought tolerance of species
and biomes: A global meta-analysis. Ecol. Lett. , 15, 393–405.
Bartlett, M.K., Zhang, Y., Yang, J., Kreidler, N., Sun, S.W., Lin, L.,et al. (2016b). Drought tolerance as a driver of tropical forest
assembly: Resolving Spatial signatures for multiple processes.Ecology , 97, 503–514.
de Bello, F., Janeček, Š., Lepš, J., Doležal, J., Macková, J., Lanta,
V., et al. (2012). Different plant trait scaling in dry versus
wet Central European meadows, 23, 709–720.
Brodribb, T.J. (2017). Commentary Progressing from ‘ functional ’ to
mechanistic traits. New Phytol. , 215, 9–11.
Dai, A. (2013). Increasing drought under global warming in observations
and models. Nat. Clim. Chang. , 3, 52–58.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S.,
Dray, S., et al. (2016). The global spectrum of plant form and
function. Nature , 529, 167–171.
Durka, W. & Michalski, S.G. (2012). Daphne: a dated phylogeny of a
large European flora for phylogenetically informed ecological analyses.Ecology , 93, 2297–2297.
Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree,
M.T., Turner, B.L., et al. (2007). Drought sensitivity shapes
species distribution patterns in tropical forests. Nature , 447,
80–82.
Farquhar, G.D., Ehleringer, J.R. & Hubick, K.T. (1989). Carbon Isotope
Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant
Mol. Biol. , 40, 503–537.
Farrell, C., Szota, C. & Arndt, S.K. (2017). Does the turgor loss point
characterize drought response in dryland plants? Plant Cell
Environ. , 40, 1500–1511.
Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.
Garland, T., Harvey, P.H. & Ives, A.R. (1992). Procedures for the
analysis of comparative data using phylogenetically independent
contrasts. Syst. Biol. , 41, 18–32.
Garnier, E., Shipley, B., Roumet, C. & Laurent, G. (2001). A
standardized protocol for the determination of specific leaf area and
leaf dry matter content. Funct. Ecol. , 15, 688–695.
Griffin-Nolan, R.J., Bushey, J.A., Carroll, C.J.W., Challis, A.,
Chieppa, J., Garbowski, M., et al. (2018). Trait selection and
community weighting are key to understanding ecosystem responses to
changing precipitation regimes. Funct. Ecol. , 32, 1746–1756.
Griffin-Nolan, R.J., Ocheltree, T.W., Mueller, K.E., Blumenthal, D.M.,
Kray, J.A. & Knapp, A.K. (2019). Extending the osmometer method for
assessing drought tolerance in herbaceous species. Oecologia ,
189, 353–363.
Hodgson, J.G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P.,
Shipley, B., et al. (2011). Is leaf dry matter content a better
predictor of soil fertility than specific leaf area? Ann. Bot. ,
108, 1337–1345.
IPCC (2014). Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Part A: Global and Sectoral Aspects. Contribution of
Working Group II to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change [Field, C. B., Barros, V. R., Dokken, D. J.,
Mach, K. J., Mastrandrea, M. D., Bilir, T. E., … White, L. L.
(eds.)]. Cambridge University Press: Cambridge and New York.
John, G.P., Scoffoni, C., Buckley, T.N., Villar, R., Poorter, H. &
Sack, L. (2017). The anatomical and compositional basis of leaf mass per
area. Ecol. Lett. , 20, 412–425.
Keddy, P.A. & Shipley, B. (1989). Competitive hierarchies in herbaceous
plant communities. Oikos , 54, 234–241.
Koide, R.T., Robichaux, R.H., Morse, S.R. & Smith, C.M. (2000). Plant
water status, hydraulic resistance and capacitance. In: Plant
Physiological Ecology: Field Methods and Instrumentation (eds. Pearcy,
R.W., Ehleringer, J.R., Mooney, H.A. & Rundel, P.W.). Kluwer,
Dordrecht, Netherlands, pp. 161–183.
Kramer, P.J. & Boyer, J.S. (1995). Water Relations of Plants and
Soils . Soil Sci. Academic Press, San Di.
Kubiske, M.E. & Abrams, M.D. (1990). Pressure‐volume relationships in
non‐rehydrated tissue at various water deficits. Plant. Cell
Environ. , 13, 995–1000.
Lenz, T.I., Wright, I.J. & Westoby, M. (2006). Interrelations among
pressure-volume curve traits across species and water availability
gradients. Physiol. Plant. , 127, 423–433.
Lepš, J. (2014). Scale- and time-dependent effects of fertilization ,
mowing and dominant removal on a grassland community during a 15-year
experiment. J. Appl. Ecol. , 51, 978–987.
Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G.,et al. (2019). Hydraulic traits are coordinated with maximum
plant height at the global scale. Sci. Adv. , 5.
Liu, H. & Osborne, C.P. (2015). Water relations traits of
C<inf>4</inf> grasses
depend on phylogenetic lineage, photosynthetic pathway, and habitat
water availability. J. Exp. Bot. , 66, 761–773.
Májeková, M., Martínková, J. & Hájek, T. (2019). Grassland plants show
no relationship between leaf drought tolerance and soil moisture
affinity, but rapidly adjust to changes in soil moisture. Funct.
Ecol. , 33, 774–785.
Maréchaux, I., Bartlett, M.K., Sack, L., Baraloto, C., Engel, J.,
Joetzjer, E., et al. (2015). Drought tolerance as predicted by
leaf water potential at turgor loss point varies strongly across species
within an Amazonian forest. Funct. Ecol. , 29, 1268–1277.
Maréchaux, I., Saint-André, L., Bartlett, M.K., Sack, L. & Chave, J.
(2019). Leaf drought tolerance cannot be inferred from classic leaf
traits in a tropical rainforest. J. Ecol. , n/a, 0–2.
Markesteijn, L., Poorter, L., Bongers, F., Paz, H. & Sack, L. (2011).
Hydraulics and life history of tropical dry forest tree species:
Coordination of species’ drought and shade tolerance. New
Phytol. , 191, 480–495.
Mitchell, P.J., Veneklaas, E.J., Lambers, H. & Burgess, S.S.O. (2008).
Leaf water relations during summer water deficit: differential responses
in turgor maintenance and variation in leaf structure among different
plant communities in south-western Australia. Plant. Cell
Environ. , 31, 1791–1802.
Mudrák, O., Doležal, J., Vítová, A. & Lepš, J. (2019). Variation in
plant functional traits is best explained by the species identity :
Stability of trait ‐ based species ranking across meadow management
regimes. Funct. Ecol. , 33, 746–755.
Noy-Meir, I. (1973). Desert ecosystems : environment and producers.Annu. Rev. Ecol. Syst. , 4, 25–51.
Pagel, M. (1999). Inferring the historical patterns of biological
evolution. Nature , 401, 877–884.
Paradis, E., Claude, J. & Strimmer, K. (2004). APE: Analyses of
phylogenetics and evolution in R language. Bioinformatics , 20,
289–290.
Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H.,
Jaureguiberry, P., et al. (2013). New Handbook for standardized
measurment of plant functional traits worldwide. Aust. J. Bot. ,
61, 167–234.
Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B.E.L. (2013).
Allocating CSR plant functional types : the use of leaf economics and
size traits to classify woody and herbaceous vascular plants.Functional , 1002–1010.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. & Villar, R.
(2009). Causes and consequences of variation in leaf mass per area
(LMA):a meta-analysis. New Phytol. , 182, 565–588.
R Core Team (2016). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Reich, P.B. (2014). The world-wide “fast-slow” plant economics
spectrum: A traits manifesto. J. Ecol. , 102, 275–301.
Revell, L.J. (2012). phytools: An R package for phylogenetic comparative
biology (and other things). Methods Ecol. Evol. , 3, 217–223.
Ryan, M.G., Phillips, N. & Bond, B.J. (2006). The hydraulic limitation
hypothesis revisited. Plant, Cell Environ. , 29, 367–381.
Sack, L. (2004). Responses of temperate woody seedlings to shade and
drought: Do trade-offs limit potential niche differentiation?Oikos , 107, 110–127.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E. a & Hammel, H.T.
(1965). Sap pressure in vascular plants. Science (80-. ). , 148,
339–46.
Schulze, E.-D., Robichaux, R.H., Grace, J., Rundel, P.. & Ehleringer,
J.. (1987). Plant Water Balance. Bioscience , 37, 30–37.
Seibt, U., Rajabi, A., Griffiths, H. & Berry, J.A. (2008). Carbon
isotopes and water use efficiency: Sense and sensitivity.Oecologia , 155, 441–454.
Stebbins, G. L. (1950). Variation and evolution in plants. Columbia
University Press.
Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Díaz, S.,
Garnier, E., et al. (2008). Scaling environmental change through
the community-level: A trait-based response-and-effect framework for
plants. Glob. Chang. Biol. , 14, 1125–1140.
Vendramini, F., Díaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. &
Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy
in floras with succulent species. New Phytol. , 154, 147–157.
Vile, D., Garnier, É., Shipley, B., Laurent, G., Navas, M.L., Roumet,
C., et al. (2005). Specific leaf area and dry matter content
estimate thickness in laminar leaves. Ann. Bot. , 96, 1129–1136.
Volaire, F. (2018). A unified framework of plant adaptive strategies to
drought: Crossing scales and disciplines. Glob. Chang. Biol. , 24,
2929–2938.
Walters, M.B. & Reich, P.B. (1999). Low-light carbon balance and shade
tolerance in the seedlings of woody plants: Do winter deciduous and
broad-leaved evergreen species differ? New Phytol. , 143,
143–154.
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy
scheme. Plant Soil , 199, 213–227.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J.
(2002). Plant ecological strategies: Some leading dimensions of
variation between species. Annu. Rev. Ecol. Syst. , 33, 125–159.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z.,
Bongers, F., et al. (2004). The worldwide leaf economics
spectrum. Nature , 428, 821-827 ST-The worldwide leaf economics
spectru.
Zhu, S., Chen, Y., Ye, Q., He, P., Liu, H., Li, R., et al.(2018). Leaf turgor loss point is correlated with drought tolerance and
leaf carbon economics traits, 1–6.