Literature
Araya, Y.N., Silvertown, J., Gowing, D.J., Mcconway, K., Linder, P. & Midgley, G. (2010). Variation in δ13C among species and sexes in the family Restionaceae along a fine-scale hydrological gradient.Austral Ecol. , 35, 818–824.
Baltzer, J.L., Davies, S.J., Bunyavejchewin, S. & Noor, N.S.M. (2008). The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct. Ecol. , 22, 221–231.
Bartlett, M.K., Klein, T., Jansen, S., Choat, B. & Sack, L. (2016a). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl. Acad. Sci. , 113, 13098–13103.
Bartlett, M.K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K.,et al. (2012a). Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point.Methods Ecol. Evol. , 3, 880–888.
Bartlett, M.K., Scoffoni, C. & Sack, L. (2012b). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. , 15, 393–405.
Bartlett, M.K., Zhang, Y., Yang, J., Kreidler, N., Sun, S.W., Lin, L.,et al. (2016b). Drought tolerance as a driver of tropical forest assembly: Resolving Spatial signatures for multiple processes.Ecology , 97, 503–514.
de Bello, F., Janeček, Š., Lepš, J., Doležal, J., Macková, J., Lanta, V., et al. (2012). Different plant trait scaling in dry versus wet Central European meadows, 23, 709–720.
Brodribb, T.J. (2017). Commentary Progressing from ‘ functional ’ to mechanistic traits. New Phytol. , 215, 9–11.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nat. Clim. Chang. , 3, 52–58.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., et al. (2016). The global spectrum of plant form and function. Nature , 529, 167–171.
Durka, W. & Michalski, S.G. (2012). Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses.Ecology , 93, 2297–2297.
Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., et al. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature , 447, 80–82.
Farquhar, G.D., Ehleringer, J.R. & Hubick, K.T. (1989). Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. , 40, 503–537.
Farrell, C., Szota, C. & Arndt, S.K. (2017). Does the turgor loss point characterize drought response in dryland plants? Plant Cell Environ. , 40, 1500–1511.
Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.
Garland, T., Harvey, P.H. & Ives, A.R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. , 41, 18–32.
Garnier, E., Shipley, B., Roumet, C. & Laurent, G. (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. , 15, 688–695.
Griffin-Nolan, R.J., Bushey, J.A., Carroll, C.J.W., Challis, A., Chieppa, J., Garbowski, M., et al. (2018). Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct. Ecol. , 32, 1746–1756.
Griffin-Nolan, R.J., Ocheltree, T.W., Mueller, K.E., Blumenthal, D.M., Kray, J.A. & Knapp, A.K. (2019). Extending the osmometer method for assessing drought tolerance in herbaceous species. Oecologia , 189, 353–363.
Hodgson, J.G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P., Shipley, B., et al. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Ann. Bot. , 108, 1337–1345.
IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., … White, L. L. (eds.)]. Cambridge University Press: Cambridge and New York.
John, G.P., Scoffoni, C., Buckley, T.N., Villar, R., Poorter, H. & Sack, L. (2017). The anatomical and compositional basis of leaf mass per area. Ecol. Lett. , 20, 412–425.
Keddy, P.A. & Shipley, B. (1989). Competitive hierarchies in herbaceous plant communities. Oikos , 54, 234–241.
Koide, R.T., Robichaux, R.H., Morse, S.R. & Smith, C.M. (2000). Plant water status, hydraulic resistance and capacitance. In: Plant Physiological Ecology: Field Methods and Instrumentation (eds. Pearcy, R.W., Ehleringer, J.R., Mooney, H.A. & Rundel, P.W.). Kluwer, Dordrecht, Netherlands, pp. 161–183.
Kramer, P.J. & Boyer, J.S. (1995). Water Relations of Plants and Soils . Soil Sci. Academic Press, San Di.
Kubiske, M.E. & Abrams, M.D. (1990). Pressure‐volume relationships in non‐rehydrated tissue at various water deficits. Plant. Cell Environ. , 13, 995–1000.
Lenz, T.I., Wright, I.J. & Westoby, M. (2006). Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. , 127, 423–433.
Lepš, J. (2014). Scale- and time-dependent effects of fertilization , mowing and dominant removal on a grassland community during a 15-year experiment. J. Appl. Ecol. , 51, 978–987.
Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G.,et al. (2019). Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. , 5.
Liu, H. & Osborne, C.P. (2015). Water relations traits of C<inf>4</inf> grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. J. Exp. Bot. , 66, 761–773.
Májeková, M., Martínková, J. & Hájek, T. (2019). Grassland plants show no relationship between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in soil moisture. Funct. Ecol. , 33, 774–785.
Maréchaux, I., Bartlett, M.K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., et al. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. , 29, 1268–1277.
Maréchaux, I., Saint-André, L., Bartlett, M.K., Sack, L. & Chave, J. (2019). Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. J. Ecol. , n/a, 0–2.
Markesteijn, L., Poorter, L., Bongers, F., Paz, H. & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol. , 191, 480–495.
Mitchell, P.J., Veneklaas, E.J., Lambers, H. & Burgess, S.S.O. (2008). Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant. Cell Environ. , 31, 1791–1802.
Mudrák, O., Doležal, J., Vítová, A. & Lepš, J. (2019). Variation in plant functional traits is best explained by the species identity : Stability of trait ‐ based species ranking across meadow management regimes. Funct. Ecol. , 33, 746–755.
Noy-Meir, I. (1973). Desert ecosystems : environment and producers.Annu. Rev. Ecol. Syst. , 4, 25–51.
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature , 401, 877–884.
Paradis, E., Claude, J. & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics , 20, 289–290.
Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New Handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. , 61, 167–234.
Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B.E.L. (2013). Allocating CSR plant functional types : the use of leaf economics and size traits to classify woody and herbaceous vascular plants.Functional , 1002–1010.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA):a meta-analysis. New Phytol. , 182, 565–588.
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Reich, P.B. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. J. Ecol. , 102, 275–301.
Revell, L.J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. , 3, 217–223.
Ryan, M.G., Phillips, N. & Bond, B.J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell Environ. , 29, 367–381.
Sack, L. (2004). Responses of temperate woody seedlings to shade and drought: Do trade-offs limit potential niche differentiation?Oikos , 107, 110–127.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E. a & Hammel, H.T. (1965). Sap pressure in vascular plants. Science (80-. ). , 148, 339–46.
Schulze, E.-D., Robichaux, R.H., Grace, J., Rundel, P.. & Ehleringer, J.. (1987). Plant Water Balance. Bioscience , 37, 30–37.
Seibt, U., Rajabi, A., Griffiths, H. & Berry, J.A. (2008). Carbon isotopes and water use efficiency: Sense and sensitivity.Oecologia , 155, 441–454.
Stebbins, G. L. (1950). Variation and evolution in plants. Columbia University Press.
Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Díaz, S., Garnier, E., et al. (2008). Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. , 14, 1125–1140.
Vendramini, F., Díaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. & Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. , 154, 147–157.
Vile, D., Garnier, É., Shipley, B., Laurent, G., Navas, M.L., Roumet, C., et al. (2005). Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. , 96, 1129–1136.
Volaire, F. (2018). A unified framework of plant adaptive strategies to drought: Crossing scales and disciplines. Glob. Chang. Biol. , 24, 2929–2938.
Walters, M.B. & Reich, P.B. (1999). Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytol. , 143, 143–154.
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil , 199, 213–227.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. , 33, 125–159.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature , 428, 821-827 ST-The worldwide leaf economics spectru.
Zhu, S., Chen, Y., Ye, Q., He, P., Liu, H., Li, R., et al.(2018). Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits, 1–6.