References
Adlassnig, W., Peroutka, M., Lambers, H., & Lichtscheidl, I. K. (2005) The roots of carnivorous plants. Plant and Soil,  274, 127-140.
Baylis G.T.S. (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In, Sanders FE, Mosse B, Tinker PB, eds.Endomycorrhizas . New York, USA, Academic Press, 373-389.
Beaulieu, J. M., B. C. O’Meara, & M. J. Donoghue. (2013) Identifying hidden rate changes in the evolution of a binary morphologicalcharacter: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737.
Beimforde, C., Schäfer, N., Dörfelt, H., Nascimbene, P.C., Singh, H., Heinrichs, J., Reitner, J., Rana, R.S. & Schmidt, A.R., (2011) Ectomycorrhizas from a Lower Eocene angiosperm forest. New Phytol. , 202, 988-996.
Bell, C. D., Soltis, D. E., & Soltis, P. S. (2010) The age and diversification of the angiosperms re-revisited. Am. J. Bot.  97, 1296-1303.
Boyce, C.K., Brodribb, T.J., Feild, T.S. & Zwieniecki, M.A., (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. London B, Biological Sciences , 276, 1771-1776.
Boyce, C.K. & Lee, J.E., (2010). An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proc. of the R. Soc. of London B, Biol. Sc. , 19100485.
Brodribb, T.J. & Feild, T.S., (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. , 13, 175-183.
Brodribb, T.J., Feild, T.S. & Sack, L., (2010) Viewing leaf structure and evolution from a hydraulic perspective. Func. Plant Biol.37 , 488-498.
Brodribb, T.J. & Holbrook, N.M., (2004) Stomatal protection against hydraulic failure, a comparison of coexisting ferns and angiosperms. New Phytol.162 , 663-670.
Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol.,  154, 275-304.
Brundrett M.C. (2009) Mycorrhizal associations and other means of nutrition of vascular plants, understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37–77.
Brundrett, M. C. (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. Pp. 533-566, in Tedersoo, L. (ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Switzerland.
Brundrett, M.C. & Tedersoo, L., (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108-1115.
Brzostek, E.R. & Finzi, A.C., (2011) Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology , 92, 892-902.
Cairney, J.W.G., ((2000) Evolution of mycorrhiza systems. Naturwissenschaften , 87, 467-475.
Chaurasia, B., Pandey, A. & Palni, L.M.S. (2005) Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. For. Ecol. and Manag . 207, 315-324.
Chen, W., Zeng, H., Eissenstat, D.M. & Guo, D., (2013) Variation of first‐order root traits across climatic gradients and evolutionary trends in geological time. Global Ecol. and Biograph ., 22, 846-856.
Chen, W., Koide, R.T., Adams, T.S., DeForest, J.L., Cheng, L. & Eissenstat, D.M., (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. PNAS , 113, 8741-8746.
Christman, M.A. & Sperry, J.S., (2010) Single‐vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant, Cell & Environment33 , 431-443.
Comas, L.H. & Eissenstat, D.M., (2009) Patterns in root trait variation among 25 co‐existing North American forest species. New Phytol,  182, 920-928.
Comas, L.H., Callahan, H.S. & Midford, P.E., (2014) Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas, implications for the evolution of belowground strategies. Ecol. and Evol. , 4, 2979-2990.
Comas, L.H., Mueller, K.E., Taylor, L.L., Midford, P.E., Callahan, H.S. & Beerling, D.J., (2012) Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int. J. of Plant Sc. , 173, 584-595.
Cordlandwehr, V., Meredith, R.L., Ozinga, W.A., Bekker, R.M., van Groenendael, J.M., & Bakker, J.P. (2013) Do plant traits retrieved from a database accurately predict on‐site measurements? J Ecol 101, 662-670.
Datta, S., Kim, C.M., Pernas, M., Pires, N.D., Proust, H., Tam, T., Vijayakumar, P. & Dolan, L., (2011) Root hairs, development, growth and evolution at the plant-soil interface. Plant and Soil , 346, 1-14.
Egerton-Warburton L, & Allen M.F., (2001) Endo- and ectomycorrhizas inQuercus agrifolia Nee. (Fagaceae), patterns of root colonization and effects on seedling growth. Mycorrhiza 11, 283–290.
Eissenstat, D.M. & Achor, D.S., (1999) Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol. , 141, 309-321.
Eissenstat, D.M., Wells, C.E., Yanai, R.D. & Whitbeck, J.L., (2000) Building roots in a changing environment, implications for root longevity. New Phytol. , 147, 33-42.
Feild, T.S. & Brodribb, T.J., (2013) Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. New Phytol. , 209, 720-726.
Feild, T.S., Brodribb, T.J., Iglesias, A., Chatelet, D.S., Baresch, A., Upchurch, G.R., Gomez, B., Mohr, B.A., Coiffard, C., Kvacek, J. & Jaramillo, C., (2011) Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS , 108, 8363-8366.
Field, K.J. & Pressel, S. (2018) Unity in diversity, structural and functional insights into the ancient partnerships between plants and fungi. New Phytol. 220, 996-1011.
Fitter, A.H., (2005) Darkness visible, reflections on underground ecology. Journal of Ecology , 93, 231-243.
Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W. & Malhi, Y., (2018) Widespread but heterogeneous responses of Andean forests to climate change. Nature , 564, 207.
Franks, P.J. & Beerling, D.J., (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS , 106, 10343-10347.
Freschet, G.T., Valverde‐Barrantes, O.J., Tucker, C.M., Craine, J.M., McCormack, M.L., Violle, C., Fort, F., Blackwood, C.B., Urban‐Mead, K.R., Iversen, C.M. & Bonis, A., (2017) Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. , 105, 1182-1206.
Gehring, C.A., Mueller, R.C. & Whitham, T.G. (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia , 149,158-164.
Guo, D., Xia M., Wei, X., Chang, W., Liu, Y. & Wang, Z., (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species. New Phytol. , 180, 673-683.
Hernández EI, Vilagrosa A, Pausas JG, & Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol. , 207, 233–244
Hetherington, A.M. & Woodward, F.I., (2003) The role of stomata in sensing and driving environmental change. Nature , 424, 901.
Hickey, L.J. & Doyle, J.A., (1977). Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review , 43, 3-104.
Hill, R. S., & Brodribb, T. J. (2006) The evolution of Australia’s living biota. pp. 20-40, in Attiwill, P., & Wilson, B. (eds), Ecology, An Australian Perspective. Oxford University Press, Melbourne.
Hohmann, N., Wolf, E. M., Lysack, M. A., & Koch, M. A. (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell  27, 2770-2784.
Huang, B. & Eissenstat, D.M., (2000) Linking hydraulic conductivity to anatomy in plants that vary in specific root length. J. Am. Soc. Hort. Sc.,  125, 260-264.
Iles, W. J. D., Smith, S. Y., Gandolfo, M. A., & Graham, S. W. (2015) Monocot fossils suitable for molecular dating analyses. Bot. J. Linnean Soc.  178, 346-374.
Iversen, C.M., McCormack, M.L., Powell, A.S., Blackwood, C.B., Freschet, G.T., Kattge, J., Roumet, C., Stover, D.B., Soudzilovskaia, N.A., Valverde‐Barrantes, O.J. & van Bodegom, P.M. (2017) A global Fine‐Root Ecology Database to address below‐ground challenges in plant ecology. New Phytol,  215, 15-26.
Ives, A.R. & Garland, T., (2014) Phylogenetic regression for binary dependent variables. In Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 231-261). Springer, Berlin, Heidelberg.
Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J., & Reich, P. B. (2012). No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol ., 196, 845-852.
Kong, D., Wang, J., Zeng, H., Liu, M., Miao, Y., Wu, H. & Kardol, P. (2017) The nutrient absorption–transportation hypothesis, optimizing structural traits in absorptive roots. New Phytol. , 213, 1569-1572.
Kong, D., Wang, J., Wu, H., Valverde-Barrantes, O.J., Wang, R., Zeng, H., Kardol, P., Zhang, H. & Feng, Y. (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Comm. , 10, 2203
Kubisch, P., Hertel, D. & Leuschner, C., (2016). Fine root productivity and turnover of ectomycorrhizal and arbuscular mycorrhizal tree species in a temperate broad-leaved mixed forest. Frontiers Plant Sc.7 , 1233.
Laliberté, E., (2017) Below‐ground frontiers in trait‐based plant ecology. New Phytol. , 213, 1597-1603.
Lambers, H., Shane, M.W., Cramer, M.D, Pearse, S.J., & Veneklaas, E.J. (2006) Root structure and function for efficient acquisition of phosphorous, matching morphological and physiological traits. Ann. Bot. 98, 693–713.
Lambers, H., Raven, J.A., Shaver, G.R. & Smith, S.E., (2008) Plant nutrient-acquisition strategies change with soil age. TREE , 23, 95-103.
Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P., (2009) Plant-microbe-soil interactions in the rhizosphere, an evolutionary perspective. Plant and Soil , 321, 83-115.
Lepage, B.A., Currah, R.S., Stockey, R.A. & Rothwell, G.W., (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J. Bot. , 84, 410-412.
Li, L., McCormack, M.L., Ma, C., Kong, D., Zhang, Q., Chen, X., Zeng, H., Niinemets, Ü. & Guo, D. (2015). Leaf economics and hydraulic traits are decoupled in five species‐rich tropical‐subtropical forests. Ecol.Lett.,  18, 899-906.
Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M., McCormack, M.L. & Hedin, L.O., (2018). Evolutionary history resolves global organization of root functional traits. Nature , 555, 94.
Magallón, S., & Castillo, A. (2009) Angiosperm diversification through time. Am. J. Bot.  96, 349-365.
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L., & Hernández-Hernández, T. (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol.  207, 437-453.
Maherali, H. (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol. , 204, 192-200.
Maherali, H., Oberle, B., Stevens, P.F., Cornwell, W.K. & McGlinn, D.J., (2016) Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. The American Naturalist , 188, E113-E125.
Markmann, K. & Parniske, M., (2009) Evolution of root endosymbiosis with bacteria, how novel are nodules? Trends Plant Sc ., 14, 77-86.
McCormack, M.L., Adams, T.S., Smithwick, E.A. & Eissenstat, D.M., (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. , 195, 823-831.
Medeiros, J.S., Burns, J.H., Nicholson, J., Rogers, L. and Valverde‐Barrantes, O. (2017) Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genusRhododendronAm. J. of Bot. , 104, 803-816.
Moora, M. (2014). Mycorrhizal traits and plant communities: perspectives for integration. Journal of Vegetation Science, 25(5), 1126-1132.
Morris, H., Plavcová, L., Cvecko, P., Fichtler, E., Gillingham, M.A., Martínez‐Cabrera, H.I., McGlinn, D.J., Wheeler, E., Zheng, J., Ziemińska, K. & Jansen, S., (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. , 209, 1553-1565.
Nardini, A. & Jansen, S. (2013) Hydraulic engineering of the angiosperm leaf, do the Baileyan trends in perforation plate evolution account for the origin of high vein density? New Phytol , 209, 627-629.
O’Meara, B.C., Ané, C., Sanderson, M.J. & Wainwright, P.C. (2006) Testing for different rates of continuous trait evolution using likelihood. Evolution, 60, 922-933.
Oliveira, R.S., Galvão, H.C., de Campos, M.C., Eller, C.B., Pearse, S.J. & Lambers, H., (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient‐impoverished soil types. New Phytol , 205, 1183-1204.
Orchard S., Hilton S., Bending G.D., Dickie I.A., Standish R.J., Gleeson D.B., Jeffery R.P., Powell J.R., Walker C., Bass D. et al. (2017) Fine endophytes (Glomus tenue ) are related to Mucoromycotina, not Glomeromycotina. New Phytol . 213, 481–486.
Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M.R., Lõhmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A. & Vanguelova, E., (2007) Specific root length as an indicator of environmental change. Plant Biosystems , 141, 426-442.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,et al. (2012) A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature  488, 609-615
Paradis, E. & Claude, J., (2002) Analysis of comparative data using generalized estimating equations. J. Theor. Biol. , 218, 175-185.
Paradis, E., Claude, J. & Strimmer, K., (2004). APE, analyses of phylogenetics and evolution in R language. Bioinformatics , 20, 289-290.
Peat H, & Fitter, A.H., (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125, 845-854.
Phillips, R.P. & Fahey, T.J., (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology , 87, 1302-1313.
Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J.H., Maeght, J.L., Mao, Z., Pierret, A., Portillo, N. & Roupsard, O., (2015) Root functional parameters along a land‐use gradient, evidence of a community‐level economics spectrum. J. Ecol. , 103, 361-373.
Raven, J.A. & Edwards, D., (2001) Roots, evolutionary origins and biogeochemical significance. Journal of Exper. Bot. , 52, 381-401.
Read, D.J. & Perez‐Moreno, J. (2003. Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol , 157, 475-492.
Redecker, D., Kodner, R. & Graham, L.E. (2000) Glomalean fungi from the Ordovician. Science , 289, 2020-2021.
Revell, L.J. (2012) phytools, an R package for phylogenetic comparative biology (and other things). Meth. Ecol. Evol. , 3, 217-223.
Selosse M-A, Strullu-Derrien C, Martin FM, Kamoun S, & Kenrick P. (2015) Plants, fungi and oomycetes, a 400-million year affair that shapes the biosphere. New Phytol. 206, 501–506.
Setaro, S., Kottke, I. & Oberwinkler, F. (2006) Anatomy and ultrastructure of mycorrhizal associations of neotropical Ericaceae. Myc. Progress,  5, 243.
Solari, L.I., Pernice, F. & DeJong, T.M., (2006) The relationship of hydraulic conductance to root system characteristics of peach (Prunus persica ) rootstocks. Physiologia Plantarum , 128, 324-333.
Steudle E., & Peterson, C.A. (1998) How does water get through roots?J. Exp. Bot. 49, 775-788.
Tung Ho, L.S. & Ané, C., (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. , 63, 397-408.
Valverde‐Barrantes, O.J., Smemo, K.A. & Blackwood, C.B., (2015) Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Func, Ecol. , 29, 796-807.
Valverde-Barrantes, O.J., Horning, A.L., Smemo, K.A. & Blackwood, C.B., (2016) Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant and Soil , 404, 1-12.
Valverde‐Barrantes, O.J., Freschet, G.T., Roumet, C. & Blackwood, C.B., (2017) A worldview of root traits, the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants. New Phytol. , 215, 1562-1573.
Valverde-Barrantes, O.J., Smemo, K.A., Feinstein, L.M., Kershner, M.W. & Blackwood, C.B., (2018). Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest. Oecologia , 186, 731-741.
Verheijen, L.M., Brovkin, V., Aerts, R. et al. (2013) Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model, a conceptual analysis.Biogeosciences , 10, 5497–5515
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L.I.N., Albert, C.H., Hulshof, C., Jung, V. and Messier, J. (2012) The return of the variance: intraspecific variability in community ecology. TREE , 27, 244-252.
Walls, R.L., (2011) Angiosperm leaf vein patterns are linked to leaf functions in a global‐scale data set. Am. J. Bot. , 98, 244-253.
Wang, X.Q., Tank, D.C. & Sang, T. (2000) Phylogeny and divergence times in Pinaceae, evidence from three genomes. Mol. Biol. Evol ., 17, 773-781.
Wang, H., Moore, M.J., Soltis, P.S., Bell, C.D., Brockington, S.F., Alexandre, R., Davis, C.C., Latvis, M., Manchester, S.R. & Soltis, D.E. (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. PNAS , 0813376106.
Wang, B., & Qiu, Y.L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza , 16, 299-363.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B. & Royer, D.L. (2014) Three keys to the radiation of angiosperms into freezing environments. Nature , 506, 89.
Table 1. Summary of results from phylogenetic logistic regression (PLR) analyses testing the effect of transitions in mycorrhizal affiliations (AM = Arbuscular mycorrhizal; AMNM = Facultative Non-mycorrhizal, EM= Ecto and Ericoid mycorrhizal, NM= Non-mycorrhizal) on root diameter, specific root length (SRL) and leaf vein density for seed plants and its major clades. Numbers represent the estimated slope for each regression, bold values represent significant regressions after phylogenetic correction (p<0.05). For each transition, the first row shows the coefficient (standard error) for the logistic regression slope and the second row shows the phylogenetic correlation α-value.