References
Adlassnig, W., Peroutka, M., Lambers, H., & Lichtscheidl, I. K. (2005)
The roots of carnivorous plants. Plant and Soil, 274, 127-140.
Baylis G.T.S. (1975) The magnolioid mycorrhiza and mycotrophy in root
systems derived from it. In, Sanders FE, Mosse B, Tinker PB, eds.Endomycorrhizas . New York, USA, Academic Press, 373-389.
Beaulieu, J. M., B. C. O’Meara, & M. J. Donoghue. (2013) Identifying
hidden rate changes in the evolution of a binary morphologicalcharacter:
the evolution of plant habit in campanulid angiosperms. Syst.
Biol. 62, 725–737.
Beimforde, C., Schäfer, N., Dörfelt, H., Nascimbene, P.C., Singh, H.,
Heinrichs, J., Reitner, J., Rana, R.S. & Schmidt, A.R., (2011)
Ectomycorrhizas from a Lower Eocene angiosperm forest. New
Phytol. , 202, 988-996.
Bell, C. D., Soltis, D. E., & Soltis, P. S. (2010) The age and
diversification of the angiosperms re-revisited. Am. J. Bot. 97,
1296-1303.
Boyce, C.K., Brodribb, T.J., Feild, T.S. & Zwieniecki, M.A., (2009)
Angiosperm leaf vein evolution was physiologically and environmentally
transformative. Proc. R. Soc. London B, Biological Sciences , 276,
1771-1776.
Boyce, C.K. & Lee, J.E., (2010). An exceptional role for flowering
plant physiology in the expansion of tropical rainforests and
biodiversity. Proc. of the R. Soc. of London B, Biol. Sc. ,
19100485.
Brodribb, T.J. & Feild, T.S., (2010) Leaf hydraulic evolution led a
surge in leaf photosynthetic capacity during early angiosperm
diversification. Ecol. Lett. , 13, 175-183.
Brodribb, T.J., Feild, T.S. & Sack, L., (2010) Viewing leaf structure
and evolution from a hydraulic perspective. Func. Plant
Biol. , 37 , 488-498.
Brodribb, T.J. & Holbrook, N.M., (2004) Stomatal protection against
hydraulic failure, a comparison of coexisting ferns and
angiosperms. New Phytol. , 162 , 663-670.
Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land
plants. New Phytol., 154, 275-304.
Brundrett M.C. (2009) Mycorrhizal associations and other means of
nutrition of vascular plants, understanding the global diversity of host
plants by resolving conflicting information and developing reliable
means of diagnosis. Plant and Soil, 320, 37–77.
Brundrett, M. C. (2017) Global diversity and importance of mycorrhizal
and nonmycorrhizal plants. Pp. 533-566, in Tedersoo, L.
(ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Switzerland.
Brundrett, M.C. & Tedersoo, L., (2018) Evolutionary history of
mycorrhizal symbioses and global host plant diversity. New
Phytol. 220, 1108-1115.
Brzostek, E.R. & Finzi, A.C., (2011) Substrate supply, fine roots, and
temperature control proteolytic enzyme activity in temperate forest
soils. Ecology , 92, 892-902.
Cairney, J.W.G., ((2000) Evolution of mycorrhiza
systems. Naturwissenschaften , 87, 467-475.
Chaurasia, B., Pandey, A. & Palni, L.M.S. (2005) Distribution,
colonization and diversity of arbuscular mycorrhizal fungi associated
with central Himalayan rhododendrons. For. Ecol. and Manag . 207,
315-324.
Chen, W., Zeng, H., Eissenstat, D.M. & Guo, D., (2013) Variation of
first‐order root traits across climatic gradients and evolutionary
trends in geological time. Global Ecol. and Biograph ., 22,
846-856.
Chen, W., Koide, R.T., Adams, T.S., DeForest, J.L., Cheng, L. &
Eissenstat, D.M., (2016) Root morphology and mycorrhizal symbioses
together shape nutrient foraging strategies of temperate
trees. PNAS , 113, 8741-8746.
Christman, M.A. & Sperry, J.S., (2010) Single‐vessel flow measurements
indicate scalariform perforation plates confer higher flow resistance
than previously estimated. Plant, Cell & Environment , 33 ,
431-443.
Comas, L.H. & Eissenstat, D.M., (2009) Patterns in root trait variation
among 25 co‐existing North American forest species. New
Phytol, 182, 920-928.
Comas, L.H., Callahan, H.S. & Midford, P.E., (2014) Patterns in root
traits of woody species hosting arbuscular and ectomycorrhizas,
implications for the evolution of belowground strategies. Ecol.
and Evol. , 4, 2979-2990.
Comas, L.H., Mueller, K.E., Taylor, L.L., Midford, P.E., Callahan, H.S.
& Beerling, D.J., (2012) Evolutionary patterns and biogeochemical
significance of angiosperm root traits. Int. J. of Plant
Sc. , 173, 584-595.
Cordlandwehr, V., Meredith, R.L., Ozinga, W.A., Bekker, R.M., van
Groenendael, J.M., & Bakker, J.P. (2013) Do plant traits retrieved from
a database accurately predict on‐site measurements? J Ecol 101,
662-670.
Datta, S., Kim, C.M., Pernas, M., Pires, N.D., Proust, H., Tam, T.,
Vijayakumar, P. & Dolan, L., (2011) Root hairs, development, growth and
evolution at the plant-soil interface. Plant and Soil , 346, 1-14.
Egerton-Warburton L, & Allen M.F., (2001) Endo- and ectomycorrhizas inQuercus agrifolia Nee. (Fagaceae), patterns of root colonization
and effects on seedling growth. Mycorrhiza 11, 283–290.
Eissenstat, D.M. & Achor, D.S., (1999) Anatomical characteristics of
roots of citrus rootstocks that vary in specific root length. New
Phytol. , 141, 309-321.
Eissenstat, D.M., Wells, C.E., Yanai, R.D. & Whitbeck, J.L., (2000)
Building roots in a changing environment, implications for root
longevity. New Phytol. , 147, 33-42.
Feild, T.S. & Brodribb, T.J., (2013) Hydraulic tuning of vein cell
microstructure in the evolution of angiosperm venation
networks. New Phytol. , 209, 720-726.
Feild, T.S., Brodribb, T.J., Iglesias, A., Chatelet, D.S., Baresch, A.,
Upchurch, G.R., Gomez, B., Mohr, B.A., Coiffard, C., Kvacek, J. &
Jaramillo, C., (2011) Fossil evidence for Cretaceous escalation in
angiosperm leaf vein evolution. PNAS , 108, 8363-8366.
Field, K.J. & Pressel, S. (2018) Unity in diversity, structural and
functional insights into the ancient partnerships between plants and
fungi. New Phytol. 220, 996-1011.
Fitter, A.H., (2005) Darkness visible, reflections on underground
ecology. Journal of Ecology , 93, 231-243.
Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J.,
Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W. & Malhi,
Y., (2018) Widespread but heterogeneous responses of Andean forests to
climate change. Nature , 564, 207.
Franks, P.J. & Beerling, D.J., (2009) Maximum leaf conductance driven
by CO2 effects on stomatal size and density over
geologic time. PNAS , 106, 10343-10347.
Freschet, G.T., Valverde‐Barrantes, O.J., Tucker, C.M., Craine, J.M.,
McCormack, M.L., Violle, C., Fort, F., Blackwood, C.B., Urban‐Mead,
K.R., Iversen, C.M. & Bonis, A., (2017) Climate, soil and plant
functional types as drivers of global fine‐root trait
variation. J. Ecol. , 105, 1182-1206.
Gehring, C.A., Mueller, R.C. & Whitham, T.G. (2006) Environmental and
genetic effects on the formation of ectomycorrhizal and arbuscular
mycorrhizal associations in cottonwoods. Oecologia , 149,158-164.
Guo, D., Xia M., Wei, X., Chang, W., Liu, Y. & Wang, Z., (2008)
Anatomical traits associated with absorption and mycorrhizal
colonization are linked to root branch order in twenty‐three Chinese
temperate tree species. New Phytol. , 180, 673-683.
Hernández EI, Vilagrosa A, Pausas JG, & Bellot J (2010) Morphological
traits and water use strategies in seedlings of Mediterranean coexisting
species. Plant Ecol. , 207, 233–244
Hetherington, A.M. & Woodward, F.I., (2003) The role of stomata in
sensing and driving environmental change. Nature , 424, 901.
Hickey, L.J. & Doyle, J.A., (1977). Early Cretaceous fossil evidence
for angiosperm evolution. The Botanical Review , 43, 3-104.
Hill, R. S., & Brodribb, T. J. (2006) The evolution of Australia’s
living biota. pp. 20-40, in Attiwill, P., & Wilson, B. (eds), Ecology,
An Australian Perspective. Oxford University Press, Melbourne.
Hohmann, N., Wolf, E. M., Lysack, M. A., & Koch, M. A. (2015) A
time-calibrated road map of Brassicaceae species radiation and
evolutionary history. Plant Cell 27, 2770-2784.
Huang, B. & Eissenstat, D.M., (2000) Linking hydraulic conductivity to
anatomy in plants that vary in specific root length. J. Am. Soc.
Hort. Sc., 125, 260-264.
Iles, W. J. D., Smith, S. Y., Gandolfo, M. A., & Graham, S. W. (2015)
Monocot fossils suitable for molecular dating analyses. Bot. J.
Linnean Soc. 178, 346-374.
Iversen, C.M., McCormack, M.L., Powell, A.S., Blackwood, C.B., Freschet,
G.T., Kattge, J., Roumet, C., Stover, D.B., Soudzilovskaia, N.A.,
Valverde‐Barrantes, O.J. & van Bodegom, P.M. (2017) A global Fine‐Root
Ecology Database to address below‐ground challenges in plant
ecology. New Phytol, 215, 15-26.
Ives, A.R. & Garland, T., (2014) Phylogenetic regression for binary
dependent variables. In Modern phylogenetic comparative methods and
their application in evolutionary biology (pp. 231-261). Springer,
Berlin, Heidelberg.
Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J., & Reich, P.
B. (2012). No globally consistent effect of ectomycorrhizal status on
foliar traits. New Phytol ., 196, 845-852.
Kong, D., Wang, J., Zeng, H., Liu, M., Miao, Y., Wu, H. & Kardol, P.
(2017) The nutrient absorption–transportation hypothesis, optimizing
structural traits in absorptive roots. New Phytol. , 213,
1569-1572.
Kong, D., Wang, J., Wu, H., Valverde-Barrantes, O.J., Wang, R., Zeng,
H., Kardol, P., Zhang, H. & Feng, Y. (2019). Nonlinearity of root trait
relationships and the root economics spectrum. Nature Comm. , 10,
2203
Kubisch, P., Hertel, D. & Leuschner, C., (2016). Fine root productivity
and turnover of ectomycorrhizal and arbuscular mycorrhizal tree species
in a temperate broad-leaved mixed forest. Frontiers Plant
Sc. , 7 , 1233.
Laliberté, E., (2017) Below‐ground frontiers in trait‐based plant
ecology. New Phytol. , 213, 1597-1603.
Lambers, H., Shane, M.W., Cramer, M.D, Pearse, S.J., & Veneklaas, E.J.
(2006) Root structure and function for efficient acquisition of
phosphorous, matching morphological and physiological traits. Ann.
Bot. 98, 693–713.
Lambers, H., Raven, J.A., Shaver, G.R. & Smith, S.E., (2008) Plant
nutrient-acquisition strategies change with soil
age. TREE , 23, 95-103.
Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P., (2009)
Plant-microbe-soil interactions in the rhizosphere, an evolutionary
perspective. Plant and Soil , 321, 83-115.
Lepage, B.A., Currah, R.S., Stockey, R.A. & Rothwell, G.W., (1997)
Fossil ectomycorrhizae from the Middle Eocene. Am J. Bot. , 84,
410-412.
Li, L., McCormack, M.L., Ma, C., Kong, D., Zhang, Q., Chen, X., Zeng,
H., Niinemets, Ü. & Guo, D. (2015). Leaf economics and hydraulic traits
are decoupled in five species‐rich tropical‐subtropical
forests. Ecol.Lett., 18, 899-906.
Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M.,
McCormack, M.L. & Hedin, L.O., (2018). Evolutionary history resolves
global organization of root functional traits. Nature , 555, 94.
Magallón, S., & Castillo, A. (2009) Angiosperm diversification through
time. Am. J. Bot. 96, 349-365.
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L., &
Hernández-Hernández, T. (2015) A metacalibrated time-tree documents the
early rise of flowering plant phylogenetic diversity. New
Phytol. 207, 437-453.
Maherali, H. (2014) Is there an association between root architecture
and mycorrhizal growth response? New Phytol. , 204, 192-200.
Maherali, H., Oberle, B., Stevens, P.F., Cornwell, W.K. & McGlinn,
D.J., (2016) Mutualism persistence and abandonment during the evolution
of the mycorrhizal symbiosis. The American Naturalist , 188,
E113-E125.
Markmann, K. & Parniske, M., (2009) Evolution of root endosymbiosis
with bacteria, how novel are nodules? Trends Plant Sc ., 14,
77-86.
McCormack, M.L., Adams, T.S., Smithwick, E.A. & Eissenstat, D.M.,
(2012) Predicting fine root lifespan from plant functional traits in
temperate trees. New Phytol. , 195, 823-831.
Medeiros, J.S., Burns, J.H., Nicholson, J., Rogers, L. and
Valverde‐Barrantes, O. (2017) Decoupled leaf and root carbon economics
is a key component in the ecological diversity and evolutionary
divergence of deciduous and evergreen lineages of genusRhododendron . Am. J. of Bot. , 104, 803-816.
Moora, M. (2014). Mycorrhizal traits and plant communities: perspectives
for integration. Journal of Vegetation Science, 25(5), 1126-1132.
Morris, H., Plavcová, L., Cvecko, P., Fichtler, E., Gillingham, M.A.,
Martínez‐Cabrera, H.I., McGlinn, D.J., Wheeler, E., Zheng, J.,
Ziemińska, K. & Jansen, S., (2016) A global analysis of parenchyma
tissue fractions in secondary xylem of seed plants. New
Phytol. , 209, 1553-1565.
Nardini, A. & Jansen, S. (2013) Hydraulic engineering of the angiosperm
leaf, do the Baileyan trends in perforation plate evolution account for
the origin of high vein density? New Phytol , 209, 627-629.
O’Meara, B.C., Ané, C., Sanderson, M.J. & Wainwright, P.C. (2006)
Testing for different rates of continuous trait evolution using
likelihood. Evolution, 60, 922-933.
Oliveira, R.S., Galvão, H.C., de Campos, M.C., Eller, C.B., Pearse, S.J.
& Lambers, H., (2015) Mineral nutrition of campos rupestres plant
species on contrasting nutrient‐impoverished soil types. New
Phytol , 205, 1183-1204.
Orchard S., Hilton S., Bending G.D., Dickie I.A., Standish R.J., Gleeson
D.B., Jeffery R.P., Powell J.R., Walker C., Bass D. et al. (2017)
Fine endophytes (Glomus tenue ) are related to Mucoromycotina, not
Glomeromycotina. New Phytol . 213, 481–486.
Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M.R., Lõhmus,
K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A. & Vanguelova,
E., (2007) Specific root length as an indicator of environmental
change. Plant Biosystems , 141, 426-442.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,et al. (2012) A Cenozoic record of the equatorial Pacific
carbonate compensation depth. Nature 488, 609-615
Paradis, E. & Claude, J., (2002) Analysis of comparative data using
generalized estimating equations. J. Theor. Biol. , 218, 175-185.
Paradis, E., Claude, J. & Strimmer, K., (2004). APE, analyses of
phylogenetics and evolution in R language. Bioinformatics , 20,
289-290.
Peat H, & Fitter, A.H., (1993) The distribution of arbuscular
mycorrhizas in the British flora. New Phytol 125, 845-854.
Phillips, R.P. & Fahey, T.J., (2006) Tree species and mycorrhizal
associations influence the magnitude of rhizosphere
effects. Ecology , 87, 1302-1313.
Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim,
J.H., Maeght, J.L., Mao, Z., Pierret, A., Portillo, N. & Roupsard, O.,
(2015) Root functional parameters along a land‐use gradient, evidence of
a community‐level economics spectrum. J. Ecol. , 103, 361-373.
Raven, J.A. & Edwards, D., (2001) Roots, evolutionary origins and
biogeochemical significance. Journal of Exper. Bot. , 52, 381-401.
Read, D.J. & Perez‐Moreno, J. (2003. Mycorrhizas and nutrient cycling
in ecosystems–a journey towards relevance? New Phytol , 157,
475-492.
Redecker, D., Kodner, R. & Graham, L.E. (2000) Glomalean fungi from the
Ordovician. Science , 289, 2020-2021.
Revell, L.J. (2012) phytools, an R package for phylogenetic comparative
biology (and other things). Meth. Ecol. Evol. , 3, 217-223.
Selosse M-A, Strullu-Derrien C, Martin FM, Kamoun S, & Kenrick P.
(2015) Plants, fungi and oomycetes, a 400-million year affair that
shapes the biosphere. New Phytol. 206, 501–506.
Setaro, S., Kottke, I. & Oberwinkler, F. (2006) Anatomy and
ultrastructure of mycorrhizal associations of neotropical
Ericaceae. Myc. Progress, 5, 243.
Solari, L.I., Pernice, F. & DeJong, T.M., (2006) The relationship of
hydraulic conductance to root system characteristics of peach
(Prunus persica ) rootstocks. Physiologia Plantarum , 128,
324-333.
Steudle E., & Peterson, C.A. (1998) How does water get through roots?J. Exp. Bot. 49, 775-788.
Tung Ho, L.S. & Ané, C., (2014). A linear-time algorithm for Gaussian
and non-Gaussian trait evolution models. Syst. Biol. , 63,
397-408.
Valverde‐Barrantes, O.J., Smemo, K.A. & Blackwood, C.B., (2015) Fine
root morphology is phylogenetically structured, but nitrogen is related
to the plant economics spectrum in temperate trees. Func,
Ecol. , 29, 796-807.
Valverde-Barrantes, O.J., Horning, A.L., Smemo, K.A. & Blackwood, C.B.,
(2016) Phylogenetically structured traits in root systems influence
arbuscular mycorrhizal colonization in woody angiosperms. Plant
and Soil , 404, 1-12.
Valverde‐Barrantes, O.J., Freschet, G.T., Roumet, C. & Blackwood, C.B.,
(2017) A worldview of root traits, the influence of ancestry, growth
form, climate and mycorrhizal association on the functional trait
variation of fine‐root tissues in seed plants. New Phytol. , 215,
1562-1573.
Valverde-Barrantes, O.J., Smemo, K.A., Feinstein, L.M., Kershner, M.W.
& Blackwood, C.B., (2018). Patterns in spatial distribution and root
trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a
mixed broadleaf forest. Oecologia , 186, 731-741.
Verheijen, L.M., Brovkin, V., Aerts, R. et al. (2013) Impacts of
trait variation through observed trait–climate relationships on
performance of an Earth system model, a conceptual analysis.Biogeosciences , 10, 5497–5515
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L.I.N., Albert, C.H.,
Hulshof, C., Jung, V. and Messier, J. (2012) The return of the variance:
intraspecific variability in community ecology. TREE , 27,
244-252.
Walls, R.L., (2011) Angiosperm leaf vein patterns are linked to leaf
functions in a global‐scale data set. Am. J. Bot. , 98, 244-253.
Wang, X.Q., Tank, D.C. & Sang, T. (2000) Phylogeny and divergence times
in Pinaceae, evidence from three genomes. Mol. Biol. Evol ., 17,
773-781.
Wang, H., Moore, M.J., Soltis, P.S., Bell, C.D., Brockington, S.F.,
Alexandre, R., Davis, C.C., Latvis, M., Manchester, S.R. & Soltis, D.E.
(2009) Rosid radiation and the rapid rise of angiosperm-dominated
forests. PNAS , 0813376106.
Wang, B., & Qiu, Y.L. (2006) Phylogenetic distribution and evolution of
mycorrhizas in land plants. Mycorrhiza , 16, 299-363.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A.,
FitzJohn, R.G., McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B.
& Royer, D.L. (2014) Three keys to the radiation of angiosperms into
freezing environments. Nature , 506, 89.
Table 1. Summary of results from phylogenetic logistic
regression (PLR) analyses testing the effect of transitions in
mycorrhizal affiliations (AM = Arbuscular mycorrhizal; AMNM =
Facultative Non-mycorrhizal, EM= Ecto and Ericoid mycorrhizal, NM=
Non-mycorrhizal) on root diameter, specific root length (SRL) and leaf
vein density for seed plants and its major clades. Numbers represent the
estimated slope for each regression, bold values represent significant
regressions after phylogenetic correction (p<0.05). For each
transition, the first row shows the coefficient (standard error) for the
logistic regression slope and the second row shows the phylogenetic
correlation α-value.