References
Alarcón, R. (2010). Congruence between visitation and pollen-transport networks in a California plant–pollinator community. Oikos , 119, 35–44.
APSA. (2007). The Australasian Pollen and Spore Atlas V1.0. Australian National University, Canberra. http://apsa.anu.edu.au/
Banks, J.E., Hannon, L., Hanson, P., Dietsch, T., Castro, S., Urena, N.,et al. (2013). Effects of proximity to forest habitat on hymenoptera diversity in a Costa Rican coffee agroecosystem.Pan-Pac. Entomol. , 89, 60–68.
Bascompte, J., Jordano, P. & Olesen, J.M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance.Science , 312, 431–433.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R Package Version , 1, 1–23.
Berlow, E.L., Navarrete, S.A., Briggs, C.J., Power, M.E. & Menge, B.A. (1999). Quantifying variation in the strengths of species interactions.Ecology , 80, 2206–2224.
Bommarco, R., Biesmeijer, J.C., Meyer, B., Potts, S.G., Poyry, J., Roberts, S.P.M., et al. (2010). Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B Biol. Sci. , 277, 2075–2082.
Bosch, J., González, A.M.M., Rodrigo, A. & Navarro, D. (2009). Plant–pollinator networks: adding the pollinator’s perspective.Ecol. Lett. , 12, 409–419.
Brenchley, W.E. & Warington, K. (1933). The weed seed population of arable soil: II. Influence of crop, soil and methods of cultivation upon the relative abundance of viable seeds. J. Ecol. , 103–127.
Bretagnolle, V. & Gaba, S. (2015). Weeds for bees? A review.Agron. Sustain. Dev. , 35, 891–909.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al. (2017). Modeling zero-inflated count data with glmmTMB. bioRxiv , 132753.
Cariveau, D.P., Williams, N.M., Benjamin, F.E. & Winfree, R. (2013). Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. , 16, 903–911.
Clough, Y., Ekroos, J., Báldi, A., Batáry, P., Bommarco, R., Gross, N.,et al. (2014). Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. , 17, 1168–1177.
CSIRO. (2018a). Australian Insect Families: Coleoptera, viewed 20 November 2018, http://anic.ento.csiro.au/insectfamilies/key.aspx?OrderID=25407&PageID=identify&KeyID=37
CSIRO. (2018b). Australian Insect Families: Hymenoptera, viewed 24 November 2018, http://anic.ento.csiro.au/insectfamilies/key.aspx?OrderID=27447andPageID=identifyandKeyID=27.
da Silva, P. M., Aguiar, C. A. S., Niemelä, J., Sousa, J. P., & Serrano, A. R. M. (2008). Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land-use disturbance.Agric. Eco. Environ , 124 (3), 270–274.
Decourtye, A., Mader, E. & Desneux, N. (2010). Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie , 41, 264–277.
Dormann, C.F., Fruend, J., Gruber, B., Dormann, M.C.F., LazyData, T. & ByteCompile, T. (2019). Package “bipartite.”
Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks.Open Ecol. J. , 2 (1).
DSITI. (2016). Land use summary 1999–2015: Wet Tropics NRM region, Department of Science, Information Technology and Innovation, Queensland Government.
Dupont, Y.L., Padrón, B., Olesen, J.M. & Petanidou, T. (2009). Spatio-temporal variation in the structure of pollination networks.Oikos , 118, 1261–1269.
ESRI. (2018). ArcGIS Desktop: Version 10.6.1. Environmental Systems Research Institute. Redlands, CA.
Ferreira, P.A., Boscolo, D. & Viana, B.F. (2013). What do we know about the effects of landscape changes on plant–pollinator interaction networks? Ecol. Indic. , Linking landscape structure and biodiversity, 31, 35–40.
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S.,et al. (2016). car: An R companion to applied regression. R package version 3.2-0.
Friedman, J. & Barrett, S.C. (2009). Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. , 103, 1515–1527.
Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., et al. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance.Science , 339, 1608–1611.
Gibbs, J., Joshi, N.K., Wilson, J.K., Rothwell, N.L., Powers, K., Haas, M., et al. (2017). Does passive sampling accurately reflect the bee (Apoidea: Anthophila) communities pollinating apple and sour cherry orchards? Environ. Entomol. , 1, 10.
Greenleaf, S.S. & Kremen, C. (2006). Wild bee species increase tomato production and respond differently to surrounding land use in Northern California. Biol. Conserv. , 133, 81–87.
Haenke, S., Kovács-Hostyánszki, A., Fründ, J., Batáry, P., Jauker, B., Tscharntke, T., et al. (2014). Landscape configuration of crops and hedgerows drives local syrphid fly abundance. J. Appl. Ecol. , 51, 505–513.
Haenke, S., Scheid, B., Schaefer, M., Tscharntke, T. & Thies, C. (2009). Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J. Appl. Ecol. , 46, 1106–1114.
Hall, M. (2018). Blue and yellow vane traps differ in their sampling effectiveness for wild bees in both open and wooded habitats.Agric. For. Entomol. , 20, 487–495.
Hall, M.A., Nimmo, D.G., Cunningham, S.A., Walker, K. & Bennett, A.F. (2019). The response of wild bees to tree cover and rural land use is mediated by species’ traits. Biol. Conserv. , 231, 1–12.
Hall, M.A. & Reboud, E.L. (2019). High sampling effectiveness for non-bee flower visitors using vane traps in both open and wooded habitats. Austral Entomol. (early view).
Hanula, J.L., Ulyshen, M.D. & Horn, S. (2016). Conserving pollinators in North American forests: A Review. Nat. Areas J. , 36, 427–439.
Harrison, T., Gibbs, J. & Winfree, R. (2017). Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life history traits. Glob. Change Biol ., 24, 287–296.
Henle, K., Davies, K.F., Kleyer, M., Margules, C. & Settele, J. (2004). Predictors of species sensitivity to fragmentation. Biodivers. Conserv. , 13, 207–251.
Holzschuh, A., Dainese, M., González-Varo, J.P., Mudri-Stojnić, S., Riedinger, V., Rundlöf, M., et al. (2016). Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe.Ecol. Lett ., 19, 1228–1236.
Howlett, B.G., Walker, M.K., Newstrom-Lloyd, L.E., Donovan, B.J. & Teulon, D.A.J. (2009). Window traps and direct observations record similar arthropod flower visitor assemblages in two mass flowering crops. J. Appl. Entomol. , 133, 553–564.
Kearns, C.A. & Inouye, D.W. (1993). Techniques for pollination biologists. University press of Colorado.
Klein, A.-M., Steffan-Dewenter, I., Buchori, D. & Tscharntke, T. (2002). Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps.Conserv. Biol. , 16, 1003–1014.
Klein, A.-M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., et al. (2007). Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. , 274, 303–313.
Kremen, C. & M’Gonigle, L.K. (2015). Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. , 52, 602–610.
Kremen, C., Williams, N.M. & Thorp, R.W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. , 99, 16812–16816.
Lenth, R.V. (2018). Emmeans: estimated marginal means, aka least-squares means. R Package Version , 1.
Marini, L., Bartomeus, I., Rader, R. & Lami, F. (2019). Species–habitat networks: A tool to improve landscape management for conservation. J. Appl. Ecol. , 56, 923–928.
Marshall, E.J.P., Brown, V.K., Boatman, N.D., Lutman, P.J.W., Squire, G.R. & Ward, L.K. (2003). The role of weeds in supporting biological diversity within crop fields. Weed Res. , 43, 77–89.
Marshall, S.A. (2017). Key to Diptera families - adults. InKirk-Spriggs, A.H. and Sinclair, B.J. Manual of Afrotropical Diptera. Volume 1. Introductory chapters and keys to Diptera families. Suricata 4. South African National Biodiversity Institute, Pretoria, pp. 267-356.
Memmott, J. (1999). The structure of a plant-pollinator food web.Ecol. Lett. , 2, 276–280.
Mogren, C.L., Rand, T.A., Fausti, S.W. & Lundgren, J.G. (2016). The effects of crop intensification on the diversity of native pollinator communities. Environ. Entomol. , 45, 865–872.
Orford, K.A., Vaughan, I.P. & Memmott, J. (2015). The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. , 282, 20142934.
Pasquet, R.S., Peltier, A., Hufford, M.B., Oudin, E., Saulnier, J., Paul, L., et al. (2008). Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. , 105, 13456–13461.
Poisot, T., Bever, J.D., Nemri, A., Thrall, P.H. & Hochberg, M.E. (2011). A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. , 14, 841–851.
Popic, T.J., Wardle, G.M. & Davila, Y.C. (2013). Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecol. , 38, 76–86.
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. , 25, 345–353.
Power, E.F. & Stout, J.C. (2011). Organic dairy farming: impacts on insect–flower interaction networks and pollination. J. Appl. Ecol. , 48, 561–569.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. Retrieved from http://www.R-project.org
Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P.D., Howlett, B.G., Winfree, R., et al. (2016). Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. , 113, 146–151.
Rader, R., Bartomeus, I., Tylianakis, J.M. & Laliberté, E. (2014). The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. , 20, 908–917.
Rader, R., Cunningham, S.A., Howlett, B.G. & Inouye, D.W. (2020). Non-bee insects as visitors and pollinators of crops: Biology, ecology and management. Annu. Rev. Entomol. , 65, null.
Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A. & Howlett, B.G. (2011). Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. , 17, 519–529.
Reemer, M. & Rotheray, G.E. (2009). Pollen feeding larvae in the presumed predatory syrphine genus Toxomerus Macquart (Diptera, Syrphidae). J. Nat. Hist. , 43, 939–949.
Requier, F., Odoux, J.-F., Tamic, T., Moreau, N., Henry, M., Decourtye, A., et al. (2015). Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds.Ecol. Appl. , 25, 881–890.
Sabugosa-Madeira, B., Ribeiro, H., Cunha, M. & Abreu, I. (2008). The importance of plantain (Plantago spp.) as a supplementary pollen source in the diet of honey bees. J. Apic. Res. , 47, 77–81.
Saunders, M.E. (2018). Insect pollinators collect pollen from wind-pollinated plants: implications for pollination ecology and sustainable agriculture. Insect Conserv. Divers. , 11, 13–31.
Saunders, M.E. & Luck, G.W. (2013). Pan trap catches of pollinator insects vary with habitat. Aust. J. Entomol. , 52, 106–113.
Saunders, M.E. & Rader, R. (2019). Network modularity influences plant reproduction in a mosaic tropical agroecosystem. Proc. R. Soc. B , 286, 20190296.
Schleuning, M., Fründ, J. & García, D. (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography , 38, 380–392.
Smith, T.J. & Mayfield, M.M. (2015). Diptera species and functional diversity across tropical Australian countryside landscapes. Biol. Conserv. , 191, 436–443.
Stavert, J.R., Pattemore, D.E., Bartomeus, I., Gaskett, A.C. & Beggs, J.R. (2018). Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. J. Appl. Ecol. , 55, 1737–1746.
Stavert, J.R., Pattemore, D.E., Gaskett, A.C., Beggs, J.R. & Bartomeus, I. (2017). Exotic species enhance response diversity to land-use change but modify functional composition. Proc. R. Soc. B Biol. Sci. , 284, 20170788.
Tylianakis, J.M., Didham, R.K., Bascompte, J. & Wardle, D.A. (2008). Global change and species interactions in terrestrial ecosystems.Ecol. Lett. , 11, 1351–1363.
Verhoeven, K.J., Simonsen, K.L. & McIntyre, L.M. (2005). Implementing false discovery rate control: increasing your power. Oikos , 108, 643–647.
Waser, N.M., Chittka, L., Price, M.V., Williams, N.M. & Ollerton, J. (1996). Generalization in pollination systems, and why it matters.Ecology , 77, 1043–1060.
Weiner, C.N., Werner, M., Linsenmair, K.E. & Blüthgen, N. (2011). Land use intensity in grasslands: Changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. , 12, 292–299.
Weiner, C.N., Werner, M., Linsenmair, K.E. & Blüthgen, N. (2014). Land-use impacts on plant–pollinator networks: interaction strength and specialization predict pollinator declines. Ecology , 95, 466–474.
Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. (2003). Mass flowering crops enhance pollinator densities at a landscape scale: Flowering crops enhance pollinator densities. Ecol. Lett. , 6, 961–965.
Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L. & Potts, S.G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. , 143, 2280–2291.
Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J., May, E.A.,et al. (2015). Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. , 25, 2119–2131.
Williams, N.M. & Winfree, R. (2013). Local habitat characteristics but not landscape urbanization drive pollinator visitation and native plant pollination in forest remnants. Biol. Conserv. , 160, 10–18.
Winfree, R., Bartomeus, I. & Cariveau, D.P. (2011). Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. , 42, 1–22.
Winfree, R. & Kremen, C. (2009). Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. , 276, 229–237.
Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S. & Dorn, S. (2010). Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances.Biol. Conserv. , 143, 669–676.
Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009).Mixed effects models and extensions in ecology with R . Springer Science & Business Media.