References
Alarcón, R. (2010).
Congruence between visitation and pollen-transport networks in a
California plant–pollinator community. Oikos , 119, 35–44.
APSA. (2007). The Australasian Pollen and Spore Atlas V1.0. Australian
National University, Canberra. http://apsa.anu.edu.au/
Banks, J.E., Hannon, L., Hanson, P., Dietsch, T., Castro, S., Urena, N.,et al. (2013). Effects of proximity to forest habitat on
hymenoptera diversity in a Costa Rican coffee agroecosystem.Pan-Pac. Entomol. , 89, 60–68.
Bascompte, J., Jordano, P. & Olesen, J.M. (2006). Asymmetric
coevolutionary networks facilitate biodiversity maintenance.Science , 312, 431–433.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2014). lme4: Linear
mixed-effects models using Eigen and S4. R Package Version , 1,
1–23.
Berlow, E.L., Navarrete, S.A., Briggs, C.J., Power, M.E. & Menge, B.A.
(1999). Quantifying variation in the strengths of species interactions.Ecology , 80, 2206–2224.
Bommarco, R., Biesmeijer, J.C., Meyer, B., Potts, S.G., Poyry, J.,
Roberts, S.P.M., et al. (2010). Dispersal capacity and diet
breadth modify the response of wild bees to habitat loss. Proc. R.
Soc. B Biol. Sci. , 277, 2075–2082.
Bosch, J., González, A.M.M., Rodrigo, A. & Navarro, D. (2009).
Plant–pollinator networks: adding the pollinator’s perspective.Ecol. Lett. , 12, 409–419.
Brenchley, W.E. & Warington, K. (1933). The weed seed population of
arable soil: II. Influence of crop, soil and methods of cultivation upon
the relative abundance of viable seeds. J. Ecol. , 103–127.
Bretagnolle, V. & Gaba, S. (2015). Weeds for bees? A review.Agron. Sustain. Dev. , 35, 891–909.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg,
C.W., Nielsen, A., et al. (2017). Modeling zero-inflated count
data with glmmTMB. bioRxiv , 132753.
Cariveau, D.P., Williams, N.M., Benjamin, F.E. & Winfree, R. (2013).
Response diversity to land use occurs but does not consistently
stabilise ecosystem services provided by native pollinators. Ecol.
Lett. , 16, 903–911.
Clough, Y., Ekroos, J., Báldi, A., Batáry, P., Bommarco, R., Gross, N.,et al. (2014). Density of insect-pollinated grassland plants
decreases with increasing surrounding land-use intensity. Ecol.
Lett. , 17, 1168–1177.
CSIRO. (2018a). Australian Insect Families: Coleoptera, viewed 20
November 2018,
http://anic.ento.csiro.au/insectfamilies/key.aspx?OrderID=25407&PageID=identify&KeyID=37
CSIRO. (2018b). Australian Insect Families: Hymenoptera, viewed 24
November 2018,
http://anic.ento.csiro.au/insectfamilies/key.aspx?OrderID=27447andPageID=identifyandKeyID=27.
da Silva, P. M., Aguiar, C. A. S., Niemelä, J., Sousa, J. P., &
Serrano, A. R. M. (2008). Diversity patterns of ground-beetles
(Coleoptera: Carabidae) along a gradient of land-use disturbance.Agric. Eco. Environ , 124 (3), 270–274.
Decourtye, A., Mader, E. & Desneux, N. (2010). Landscape enhancement of
floral resources for honey bees in agro-ecosystems. Apidologie ,
41, 264–277.
Dormann, C.F., Fruend, J., Gruber, B., Dormann, M.C.F., LazyData, T. &
ByteCompile, T. (2019). Package “bipartite.”
Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices,
graphs and null models: analyzing bipartite ecological networks.Open Ecol. J. , 2 (1).
DSITI. (2016). Land use summary 1999–2015: Wet Tropics NRM region,
Department of Science, Information Technology and Innovation, Queensland
Government.
Dupont, Y.L., Padrón, B., Olesen, J.M. & Petanidou, T. (2009).
Spatio-temporal variation in the structure of pollination networks.Oikos , 118, 1261–1269.
ESRI. (2018). ArcGIS Desktop: Version 10.6.1. Environmental Systems
Research Institute. Redlands, CA.
Ferreira, P.A., Boscolo, D. & Viana, B.F. (2013). What do we know about
the effects of landscape changes on plant–pollinator interaction
networks? Ecol. Indic. , Linking landscape structure and
biodiversity, 31, 35–40.
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S.,et al. (2016). car: An R companion to applied regression. R
package version 3.2-0.
Friedman, J. & Barrett, S.C. (2009). Wind of change: new insights on
the ecology and evolution of pollination and mating in wind-pollinated
plants. Ann. Bot. , 103, 1515–1527.
Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A.,
Bommarco, R., Cunningham, S.A., et al. (2013). Wild pollinators
enhance fruit set of crops regardless of honey bee abundance.Science , 339, 1608–1611.
Gibbs, J., Joshi, N.K., Wilson, J.K., Rothwell, N.L., Powers, K., Haas,
M., et al. (2017). Does passive sampling accurately reflect the
bee (Apoidea: Anthophila) communities pollinating apple and sour cherry
orchards? Environ. Entomol. , 1, 10.
Greenleaf, S.S. & Kremen, C. (2006). Wild bee species increase tomato
production and respond differently to surrounding land use in Northern
California. Biol. Conserv. , 133, 81–87.
Haenke, S., Kovács-Hostyánszki, A., Fründ, J., Batáry, P., Jauker, B.,
Tscharntke, T., et al. (2014). Landscape configuration of crops
and hedgerows drives local syrphid fly abundance. J. Appl. Ecol. ,
51, 505–513.
Haenke, S., Scheid, B., Schaefer, M., Tscharntke, T. & Thies, C.
(2009). Increasing syrphid fly diversity and density in sown flower
strips within simple vs. complex landscapes. J. Appl. Ecol. , 46,
1106–1114.
Hall, M. (2018). Blue and yellow vane traps differ in their sampling
effectiveness for wild bees in both open and wooded habitats.Agric. For. Entomol. , 20, 487–495.
Hall, M.A., Nimmo, D.G., Cunningham, S.A., Walker, K. & Bennett, A.F.
(2019). The response of wild bees to tree cover and rural land use is
mediated by species’ traits. Biol. Conserv. , 231, 1–12.
Hall, M.A. & Reboud, E.L. (2019). High sampling effectiveness for
non-bee flower visitors using vane traps in both open and wooded
habitats. Austral Entomol. (early view).
Hanula, J.L., Ulyshen, M.D. & Horn, S. (2016). Conserving pollinators
in North American forests: A Review. Nat. Areas J. , 36, 427–439.
Harrison, T., Gibbs, J. & Winfree, R. (2017). Forest bees are replaced
in agricultural and urban landscapes by native species with different
phenologies and life history traits. Glob. Change Biol ., 24,
287–296.
Henle, K., Davies, K.F., Kleyer, M., Margules, C. & Settele, J. (2004).
Predictors of species sensitivity to fragmentation. Biodivers.
Conserv. , 13, 207–251.
Holzschuh, A., Dainese, M., González-Varo, J.P., Mudri-Stojnić, S.,
Riedinger, V., Rundlöf, M., et al. (2016). Mass-flowering crops
dilute pollinator abundance in agricultural landscapes across Europe.Ecol. Lett ., 19, 1228–1236.
Howlett, B.G., Walker, M.K., Newstrom-Lloyd, L.E., Donovan, B.J. &
Teulon, D.A.J. (2009). Window traps and direct observations record
similar arthropod flower visitor assemblages in two mass flowering
crops. J. Appl. Entomol. , 133, 553–564.
Kearns, C.A. & Inouye, D.W. (1993). Techniques for pollination
biologists. University press of Colorado.
Klein, A.-M., Steffan-Dewenter, I., Buchori, D. & Tscharntke, T.
(2002). Effects of land-use intensity in tropical agroforestry systems
on coffee flower-visiting and trap-nesting bees and wasps.Conserv. Biol. , 16, 1003–1014.
Klein, A.-M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I.,
Cunningham, S.A., Kremen, C., et al. (2007). Importance of
pollinators in changing landscapes for world crops. Proc. R. Soc.
B Biol. Sci. , 274, 303–313.
Kremen, C. & M’Gonigle, L.K. (2015). Small-scale restoration in
intensive agricultural landscapes supports more specialized and less
mobile pollinator species. J. Appl. Ecol. , 52, 602–610.
Kremen, C., Williams, N.M. & Thorp, R.W. (2002). Crop pollination from
native bees at risk from agricultural intensification. Proc. Natl.
Acad. Sci. , 99, 16812–16816.
Lenth, R.V. (2018). Emmeans: estimated marginal means, aka least-squares
means. R Package Version , 1.
Marini, L., Bartomeus, I., Rader, R. & Lami, F. (2019).
Species–habitat networks: A tool to improve landscape management for
conservation. J. Appl. Ecol. , 56, 923–928.
Marshall, E.J.P., Brown, V.K., Boatman, N.D., Lutman, P.J.W., Squire,
G.R. & Ward, L.K. (2003). The role of weeds in supporting biological
diversity within crop fields. Weed Res. , 43, 77–89.
Marshall, S.A. (2017). Key to Diptera families - adults. InKirk-Spriggs, A.H. and Sinclair, B.J. Manual of Afrotropical Diptera.
Volume 1. Introductory chapters and keys to Diptera families. Suricata
4. South African National Biodiversity Institute, Pretoria, pp. 267-356.
Memmott, J. (1999). The structure of a plant-pollinator food web.Ecol. Lett. , 2, 276–280.
Mogren, C.L., Rand, T.A., Fausti, S.W. & Lundgren, J.G. (2016). The
effects of crop intensification on the diversity of native pollinator
communities. Environ. Entomol. , 45, 865–872.
Orford, K.A., Vaughan, I.P. & Memmott, J. (2015). The forgotten flies:
the importance of non-syrphid Diptera as pollinators. Proc. R.
Soc. B Biol. Sci. , 282, 20142934.
Pasquet, R.S., Peltier, A., Hufford, M.B., Oudin, E., Saulnier, J.,
Paul, L., et al. (2008). Long-distance pollen flow assessment
through evaluation of pollinator foraging range suggests transgene
escape distances. Proc. Natl. Acad. Sci. , 105, 13456–13461.
Poisot, T., Bever, J.D., Nemri, A., Thrall, P.H. & Hochberg, M.E.
(2011). A conceptual framework for the evolution of ecological
specialisation. Ecol. Lett. , 14, 841–851.
Popic, T.J., Wardle, G.M. & Davila, Y.C. (2013). Flower-visitor
networks only partially predict the function of pollen transport by
bees. Austral Ecol. , 38, 76–86.
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. &
Kunin, W.E. (2010). Global pollinator declines: trends, impacts and
drivers. Trends Ecol. Evol. , 25, 345–353.
Power, E.F. & Stout, J.C. (2011). Organic dairy farming: impacts on
insect–flower interaction networks and pollination. J. Appl.
Ecol. , 48, 561–569.
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing Vienna, Austria.
Retrieved from http://www.R-project.org
Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P.D., Howlett,
B.G., Winfree, R., et al. (2016). Non-bee insects are important
contributors to global crop pollination. Proc. Natl. Acad. Sci. ,
113, 146–151.
Rader, R., Bartomeus, I., Tylianakis, J.M. & Laliberté, E. (2014). The
winners and losers of land use intensification: Pollinator community
disassembly is non-random and alters functional diversity. Divers.
Distrib. , 20, 908–917.
Rader, R., Cunningham, S.A., Howlett, B.G. & Inouye, D.W. (2020).
Non-bee insects as visitors and pollinators of crops: Biology, ecology
and management. Annu. Rev. Entomol. , 65, null.
Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A. & Howlett,
B.G. (2011). Pollen transport differs among bees and flies in a
human-modified landscape. Divers. Distrib. , 17, 519–529.
Reemer, M. & Rotheray, G.E. (2009). Pollen feeding larvae in the
presumed predatory syrphine genus Toxomerus Macquart (Diptera,
Syrphidae). J. Nat. Hist. , 43, 939–949.
Requier, F., Odoux, J.-F., Tamic, T., Moreau, N., Henry, M., Decourtye,
A., et al. (2015). Honey bee diet in intensive farmland habitats
reveals an unexpectedly high flower richness and a major role of weeds.Ecol. Appl. , 25, 881–890.
Sabugosa-Madeira, B., Ribeiro, H., Cunha, M. & Abreu, I. (2008). The
importance of plantain (Plantago spp.) as a supplementary pollen source
in the diet of honey bees. J. Apic. Res. , 47, 77–81.
Saunders, M.E. (2018). Insect pollinators collect pollen from
wind-pollinated plants: implications for pollination ecology and
sustainable agriculture. Insect Conserv. Divers. , 11, 13–31.
Saunders, M.E. & Luck, G.W. (2013). Pan trap catches of pollinator
insects vary with habitat. Aust. J. Entomol. , 52, 106–113.
Saunders, M.E. & Rader, R. (2019). Network modularity influences plant
reproduction in a mosaic tropical agroecosystem. Proc. R. Soc. B ,
286, 20190296.
Schleuning, M., Fründ, J. & García, D. (2015). Predicting ecosystem
functions from biodiversity and mutualistic networks: an extension of
trait-based concepts to plant–animal interactions. Ecography ,
38, 380–392.
Smith, T.J. & Mayfield, M.M. (2015). Diptera species and functional
diversity across tropical Australian countryside landscapes. Biol.
Conserv. , 191, 436–443.
Stavert, J.R., Pattemore, D.E., Bartomeus, I., Gaskett, A.C. & Beggs,
J.R. (2018). Exotic flies maintain pollination services as native
pollinators decline with agricultural expansion. J. Appl. Ecol. ,
55, 1737–1746.
Stavert, J.R., Pattemore, D.E., Gaskett, A.C., Beggs, J.R. & Bartomeus,
I. (2017). Exotic species enhance response diversity to land-use change
but modify functional composition. Proc. R. Soc. B Biol. Sci. ,
284, 20170788.
Tylianakis, J.M., Didham, R.K., Bascompte, J. & Wardle, D.A. (2008).
Global change and species interactions in terrestrial ecosystems.Ecol. Lett. , 11, 1351–1363.
Verhoeven, K.J., Simonsen, K.L. & McIntyre, L.M. (2005). Implementing
false discovery rate control: increasing your power. Oikos , 108,
643–647.
Waser, N.M., Chittka, L., Price, M.V., Williams, N.M. & Ollerton, J.
(1996). Generalization in pollination systems, and why it matters.Ecology , 77, 1043–1060.
Weiner, C.N., Werner, M., Linsenmair, K.E. & Blüthgen, N. (2011). Land
use intensity in grasslands: Changes in biodiversity, species
composition and specialisation in flower visitor networks. Basic
Appl. Ecol. , 12, 292–299.
Weiner, C.N., Werner, M., Linsenmair, K.E. & Blüthgen, N. (2014).
Land-use impacts on plant–pollinator networks: interaction strength and
specialization predict pollinator declines. Ecology , 95,
466–474.
Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. (2003). Mass
flowering crops enhance pollinator densities at a landscape scale:
Flowering crops enhance pollinator densities. Ecol. Lett. , 6,
961–965.
Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L.
& Potts, S.G. (2010). Ecological and life-history traits predict bee
species responses to environmental disturbances. Biol. Conserv. ,
143, 2280–2291.
Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J., May, E.A.,et al. (2015). Native wildflower plantings support wild bee
abundance and diversity in agricultural landscapes across the United
States. Ecol. Appl. , 25, 2119–2131.
Williams, N.M. & Winfree, R. (2013). Local habitat characteristics but
not landscape urbanization drive pollinator visitation and native plant
pollination in forest remnants. Biol. Conserv. , 160, 10–18.
Winfree, R., Bartomeus, I. & Cariveau, D.P. (2011). Native pollinators
in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. , 42,
1–22.
Winfree, R. & Kremen, C. (2009). Are ecosystem services stabilized by
differences among species? A test using crop pollination. Proc. R.
Soc. B Biol. Sci. , 276, 229–237.
Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S. & Dorn,
S. (2010). Maximum foraging ranges in solitary bees: only few
individuals have the capability to cover long foraging distances.Biol. Conserv. , 143, 669–676.
Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009).Mixed effects models and extensions in ecology with R . Springer
Science & Business Media.