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Abstract
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]The comparison and quantification of different uncertainties of future climate change involved in the modeling of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have accurately estimated the relative importance of different sources of uncertainty involved in climate change predictions. In this study, an advanced hierarchical uncertainty analysis framework incorporated with a variance-based global sensitivity analysis, was developed to quantify different sources of uncertainty in hydrological projections under climate change. The uncertainties considered in this research are from greenhouse gas emission scenarios (GGES), global climate models (GCMs), hydrological models (Xinanjiang and variable infiltration capacity (VIC) models) and hydrological parameters, and this new methodology was implemented in a humid subtropical basin in southern China. The results indicated that the GCMs and hydrological parameters (GGESs) are the main (least) contributor of uncertainty in the discharge projections at the interannual scale. At the intra-annual scale, GCMs contribute the largest uncertainty of the discharge predictions during summer season, whereas the uncertainty due to GGESs, hydrological model and parameters is generally larger in winter. It was also found that although there is a strong temporal and spatial variability of general sources of uncertainty, this heterogeneity does not affect the importance of uncertainty sources. This study provides a better understanding of the uncertainty sources in hydrological predictions in the context of climate change. And the uncertainty analysis framework used is mathematically rigorous and can be applied to a wide range of climate and hydrological models with different uncertainty sources. 
[bookmark: OLE_LINK66][bookmark: OLE_LINK67][bookmark: OLE_LINK36][bookmark: OLE_LINK42][bookmark: OLE_LINK8][bookmark: OLE_LINK9][bookmark: OLE_LINK68][bookmark: OLE_LINK69][bookmark: OLE_LINK70]Key words: Hierarchical sensitivity analysis; future climate change; climate–influenced hydrological modeling; uncertainty quantification. 
1 Introduction
[bookmark: _Hlk5031766]It is widely accepted that the most certain impact of future climate change is an increase in temperature across the globe, particularly in the Northern Hemisphere (IPCC, 2007, 2013). Global warming is expected to intensify the hydrological cycle and alter evapotranspiration, with consequences for water resources (Abbaspour et al., 2009; Arnell, 1999, 2004; Piao et al., 2010; Thompson et al., 2013; Vörösmarty et al., 2000), ecosystem services (Hoegh–Guldberg and Bruno, 2010; Matthews and Quesne, 2009; Preston et al., 2002), and feedback to regional and global climates (Jung et al., 2010). Assessment of the hydrologic impacts of future climate change over large domains are commonly performed by coupling atmospheric climate projections from global climate models (GCMs) and regional climate models (RCMs) with land–surface schemes and hydrological models (e.g., Alfieri et al., 2015; Chen et al., 2011a, 2011b, 2017; Deepashree et al., 2010; Gädeke et al., 2014; Habets et al., 2013; Jha and Gassman., 2014; Kay et al., 2009; Lu et al., 2018; Maurer and Duffy, 2005; Stephens et al., 2018; Wu et al., 2014, 2015; Xu et al., 2013; Zhang et al., 2011). 
Uncertainty is inevitable and important for numerical models, especially for the complex hydrological models with future climate change impacts (Kay et al., 2009; Neuman, 2003; Refsgaard et al., 2007). Uncertainties arise from variant sources, including unpredictable future conditions, lack of knowledge or data of the system, and variability in the natural characteristics (Neuman, 2003; Refsgaard et al., 2007; Rubin et al., 2010; Tartakovsky, 2013). For the future impacts of climate change, GCMs and greenhouse gas emission scenarios (GGESs) are generally considered to be the two major uncertain factors influencing the assessment of hydrologic systems (Chen et al., 2011a, 2011b; Kay et al., 2009; Liu et al., 2013; Minville et al., 2008; Thompson et al., 2013; Wilby and Harris, 2006; Wu et al., 2015; Xu et al., 2013). 
In addition to the uncertainty in GCMs and GGESs, other sources of uncertainty, such as hydrological model uncertainty and parametric uncertainty, were also found to be important for the hydrological impact assessments. For example, Chen et al. (2011b, 2013) and Teutschbein et al. (2011) noted that the dynamical and statistical approaches for quantifying the impacts of climate change on hydrological systems are considerably influenced by uncertainty. Wilby (2005) investigated the impact of climate change on the monthly flows of the Thames by considering the effect of hydrological model parameters and showed that parameter uncertainty from the hydrological model is comparable in size to the GGES uncertainty. Jiang et al. (2007) investigated the hydrological impacts of climate change in the Dongjiang basin in southern China by comparing six hydrological models, and the results emphasized a large difference in modeling hydrological variables (e.g., runoff, evapotranspiration, and soil moisture). This finding has been confirmed by Najafi et al. (2011), who suggested that hydrologic model selection is necessary when assessing hydrologic climate change impacts. 
[bookmark: OLE_LINK20][bookmark: OLE_LINK24]The estimation for the importance of different uncertainty sources in climate and hydrological model systems is essential for modelers and managers, a sensitivity analysis is required for this estimation process. In the uncertainty viewpoint, sensitivity analyses focus on quantifying the uncertainty from different uncertain model inputs that contribute to the model predictions (Dai and Ye., 2015; Saltelli et al., 2010). Among the previous studies that have investigated the uncertainty of climate hydrological models, the majority of sensitivity analysis works mainly involve qualitative comparison, and these works only provided the general ranking of uncertainty sources according to the range of probability density functions (PDF) or cumulative distribution function (CDF) of model outputs (Chen et al., 2011b, 2013; Dobler et al., 2012; Nóbrega et al., 2011; Satish et al., 2011; Teng et al., 2012). These studies showed that the uncertainty induced by GCMs is generally large and the most important one for dramatically influencing the model predictions (e.g., Bosshard et al., 2013; Déqué et al., 2007; Fowler and Ekstrom, 2009; Hattermann et al., 2018; Kay et al., 2009; Habets et al., 2013; Minville et al., 2008; Shen et al., 2018; Su et al., 2017; Prudhomme and Davies, 2009). 
[bookmark: OLE_LINK25]Recently, the accurate quantification of different uncertainty sources in hydrological models has been popularized through the advanced variance–based global sensitivity analysis method. This methodology has been widely used in different hydrological and climate models because of its advantage of model independence and capability of providing mathematically rigorous and accurate measurements for the importance of different model uncertainty sources (Chu–Agor et al. 2011; Saltelli, 2000; Song et al., 2015). For example, Vetter et al. (2017) has applied the variance–based method to quantify the importance of three different uncertainty sources (emission scenarios, climate models, and hydrological models) with a study domain of 12 river basins over 6 continents, which is a comprehensive study on a large spatial scale. However, the conventional variance–based global sensitivity analysis method ignores the dependence or deterministic relationships of different uncertainty sources and fails to consider combinations of model uncertain inputs based on their characteristics (Dai et al., 2017a, 2017b, 2019). 
To overcome these shortcomings, Dai et al. (2017a, b) has developed a more advanced hierarchical sensitivity analysis methodology which integrated the variance–based sensitivity analysis method with the hierarchical uncertainty framework, and this new methodology was capable of grouping different model uncertainty sources and considering the dependence relationships among these uncertain inputs. The new hierarchical sensitivity analysis was tested in a complex groundwater reactive transport model (Dai et al., 2017a) and has been proven to provide useful and solid information for modelers about the importance of uncertain model inputs. This study proposed a new variance–based sensitivity analysis framework in hydrologic climate model systems on the basis of Dai et al. (2017a, b). Particularly, for the first time, this new hierarchical sensitivity analysis framework has been improved and modified to be suitable for a climate hydrologic modeling system by considering all different sources of uncertainty.
By using the new hierarchical sensitivity analysis framework, this paper conducts a comprehensive and quantitative sensitivity analysis of the climate–influenced hydrological model implemented at the basin scale using continuous simulations of river flows. All possible uncertainty sources in a hydrological model system under climate change, including the alternative GGESs and GCMs, multiple hydrological models and variant parameters, are all considered in this research. Two hierarchical sensitivity analysis frameworks were implemented: the four–layer sensitivity analysis framework considering GGESs, GCMs, hydrological models and parameters, and the three–layer sensitivity analysis framework considering GGESs, GCMs and hydrological parameters. Two model outputs related to flooding were selected as the outputs of interest: river discharge and surface runoff. Four different sources of uncertainty: future alternative GGESs, multiple plausible GCMs, two different hydrological models, and variant hydrological model parameters are quantified. By providing a pilot example of uncertainty quantization in climate–influenced hydrological models, we aim to (1) identify the relative contribution of the uncertainty sources to the model outputs and (2) test the spatio–temporal variations of general sources of uncertainty in hydrological predictions in the context of climate change. The framework used in this study is mathematically rigorous and general, and can be applied to a wide range of hydrologic and environmental models that consider climate change, which improves our understanding of how climate influences the hydrological system.
2 Methodology
We start with a brief introduction of our hydrological climate model system and the implemented hierarchical framework for uncertainty quantification in Section 2.1. The multiple alternative GCMs, GGESs, and two different hydrological models with their uncertainty parameters used in this study are described in the following Sections 2.2 and 2.3. Then, the new sensitivity index system and the estimation processes are described in the last Sections 2.4 and 2.5.
2.1 The Model System and Hierarchical Framework of Uncertainty Quantification
In this research, we have built a complex model system to predict the behavior of a hydrological system (e.g., discharge and surface runoff) considering climate change uncertainty. In this model system, the hydrological models were integrated with GGESs and GCMs to capture the impacts of climate change on the hydrological system. The model system thus includes four uncertainty sources: multiple alternative GGESs and plausible GCMs, two hydrological models: variable infiltration capacity (VIC) model and Xinanjiang model, and variant model parameters. Based on the work of Dai et al. (2015, 2017a), we have developed a new hierarchical framework for the uncertainty sources in this research, as shown in Figure 1. This hierarchical framework arranged the four uncertainty factors following the deterministic relationships among parameters, models, and scenarios: parameters depend on models and models depend on scenarios.
This hierarchical framework is flexible and can be simplified without the hydrological model uncertainty layer. This simplification is based on the fact that only the VIC model can provide surface runoff distribution for the model domain (the Xinanjiang model is a lumped watershed hydrological model and provides only a single prediction value for the entire domain); therefore, we can ignore model uncertainty for the surface runoff output.
2.2 GCMs and GGESs
GGESs provide plausible descriptions of how the world might evolve during the 21st century with respect to a range of variables, such as technological change, socioeconomic change, energy and land use, and emissions of greenhouse gases and air pollutants (Vuuren et al., 2011). GCMs driven by a time series of GGESs are considered as the most essential and feasible tools for projections of future climate change and have been widely applied to evaluate the hydrological impacts of climate change (Kay et al., 2009; Habets et al., 2013; Xu et al., 2013; Alfieri et al., 2015; Wu et al., 2014, 2015). In this study, the GCM simulations were obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. The CMIP5 climate change projections are driven by a time series of emissions and concentrations from the representative concentration pathways (RCPs), consistent with a high energy–intensive scenario RCP8.5, a midrange mitigation emission scenario RCP4.5, and a low energy–intensive scenario RCP2.6 (IPCC, 2013). The high–resolution (0.25°×0.25°) downscaling multi–model ensemble averages of 13 CMIP5 GCMs for the baseline 1970–2000 and future period 2020–2050 with 3 different GGESs (i.e., RCP2.6, RCP4.5 and RCP8.5) were used at the time of this analysis (as shown in Table 1). For the baseline 1970–2000 and future period 2020–2050 under each GGES, a total of 50 simulation samples of daily temperature and precipitation were generated based on the following statistical downscaling process (Wu et al., 2014): (1) The GCM outputs (i.e., temperature and precipitation) were interpolated to the sites of the study basin using the bilinear interpolation method; (2) On the basis of the observed monthly temperature and precipitation at multiple sites, generalized additive model was fitted to generate local–scale simulated sequences of the baseline and future climate change scenarios for each GCM; (3) Local–scale simulated sequences from the selected GCMs were weighted averaged using Bayesian model averaging method; (4) The monthly weighted averaged climate simulations were temporally disaggregated into daily weather forcings based on the stochastic weather generation method. Each GGES consists of 50 simulated samples of daily temperature and precipitation; (5) The 50 simulated samples of daily temperature and precipitation were finally interpolated to a high–resolution grid (0.25°× 0.25°) of the study basin using the bilinear interpolation method.
[bookmark: _Hlk531265470]2.3 Hydrological Models and Uncertain Parameters
The model uncertainty of this research consists of two different hydrological models: the variable infiltration capacity (VIC) model and Xinanjiang model. These two widely used but totally distinct models have some similar outputs and are suitable for comparison.
[bookmark: _Hlk531265865]2.3.1 VIC Model
The VIC model is a semidistributed, grid–based, hydrological model that was developed by the University of Washington and Princeton University. The model can simulate the physical exchange of water and energy among the atmosphere, soil and vegetation in a surface vegetation–atmospheric transfer scheme (Liang et al., 1994; Lohmann et al., 1998). In this study, version 4.1.2d of the VIC model (available at www.hydro.washington.edu/Lettenmaier/Models/VIC/index.shtml) was run to simulate the water balance over 50 grid points (0.25°× 0.25°) of the study catchment. The Dag Lohmann model (Nijssen et al., 1997) was used for transporting the grid cell surface runoff and baseflow simulated by the VIC model within each grid cell to the outlet of that grid cell and then into the river system. 
There are seven uncertain hydrological parameters in the VIC model: the infiltration curve shape parameter B; the soil depth of layers 1 (d1), 2 (d2), and 3 (d3); and the three base flow–related parameters Dm, DS, and WS. In this study, we chose the parameters d2 and B, since they are commonly considered as the most sensitive parameters (Demaria et al., 2007). B represents the relative area ratio of the average water content of the grid to the maximum water content of the grid. Larger B values indicate greater inhomogeneity of the spatial distribution of moisture content and more surface runoff. Meanwhile, changes in d2 can significantly increase the evaporation loss and decrease the seasonal peak discharge. The ranges of parameters were chosen based on the minimum and maximum parameter values in the Global Land Data Assimilation Systems (GLDAS) data set for China. In this research, 20 samples were generated following Latin hypercube sampling (LHS) method for these uncertain parameters. We assumed that uncertain parameters follow uniform or normal distributions (Table 2).
2.3.2 Xinanjiang Model
The Xinanjiang model, which is a conceptual rainfall–runoff model developed by Zhao et al. (1980), has been widely used in many regions of the world (Lin et al., 2014; Liu et al., 2009; Yao et al., 2014). In the model, actual evapotranspiration is computed from potential evapotranspiration while the soil storage deficit is represented in three layers, i.e., upper, lower and deep soil layers. The total runoff of the basin is divided into surface runoff, interflow and groundwater runoff using a free water capacity distribution curve and is estimated using a soil moisture storage capacity distribution curve based on the concept of runoff formation on repletion of storage. The surface runoff is routed by the lag–and–route method, while interflow and groundwater are routed through linear reservoirs representing interflow and groundwater storage, respectively (Zhao., 1992; Zhao and Liu., 1995). The determination of the sensitive parameters was adopted to the results of a local sensitivity analysis. We observed the change in the outputs of discharge and runoff by disturbing all parameters. The sensitive parameters in the Xinanjiang model mainly include the evapotranspiration coefficient (KC), areal mean free water capacity of the surface soil layer (SM) and the recession constant of surface water storage (CS) (Table 2). KC controls the total water balance, which is important for water calculations. SM plays a decisive role in the amount of surface runoff, which reflects the ability of surface soil to store water and determines the proportion of surface runoff and groundwater. CS reflects the geomorphology of the river network and determines the final flow process. The ranges of parameters were chosen based on the work of Ren et al. (1989), Wang & Zhao (1989) and Zhao et al. (1992). In this research, 20 samples were generated following LHS method for these uncertain parameters. We assumed that uncertain parameters follow uniform or normal distributions.
2.4 Sensitivity Indices for the Hierarchical Sensitivity Analysis Framework



The core of variance–based sensitivity analysis framework is the variance decomposition of model outputs (Saltelli et al., 1998, 1999, 2010; Saltelli and Sobol’, 1995). For a model with the form of , where  is a model output and is a set of uncertain model inputs, the total variance can be decomposed as:

,                     (1)




In this equation, the first term on the right–hand side is the partial variance contributed by, the second term represents the partial variance caused by the model inputs except. The first–order sensitivity index thus is defined as: . This index measures the percentage of output uncertainty contributed by  and estimates its relative importance compared to other uncertain inputs. This variance decomposition technique has been recursively applied by Dai and Ye (2015) and Dai et al. (2017a) to a three–layer hierarchical uncertainty framework considering three groups of uncertain inputs: scenario, model, and parameters. Following the same methodology, we derived a new sensitivity index system considering the hierarchical framework in this research.
For the uncertainty framework shown in Figure 1a, the total variance in the model outputs can be decomposed based on the greenhouse gas emission scenarios as:

,                   (2)



where ES is the set of multiple alternative greenhouse gas emission scenarios, GC is the set of multiple global climate models, HM is the set of multiple hydrological models, and is the parameter set for all the models with being the parameters for a given model HMk, ~ES represents uncertainty sources excluding ES, which are GC, HM, PA. The subscripts  refer to the change in GCM samples, hydrological model and parameter combinations under certain fixed GGESs. The first and second terms on the right–hand side of Eq. (2) represent the partial variances contributed by multiple alternative GGESs and other uncertainty sources, respectively.

The partial variance caused by other uncertainty sources, can be further decomposed based on multiple plausible GCMs as:

  ,         (3)


where the first partial variance term on the right–hand side of this equation represents the uncertainty contributed by multiple plausible climate models. The subscripts  and  refer to the change of climate models under one emission scenario and the change of hydrological models and parameters under one climate model and emission scenario respectively. The second term represents the within–climate model partial variance which is caused by the hydrological models and parameters.

[bookmark: _Hlk518763096]Following the same procedure, the partial variance can be further decomposed based on multiple hydrological models as:

 ,              (4)


where the first term on the right–hand side of Eq. (4) represents the partial variance contributed by multiple plausible hydrological models. The subscripts  and  refer to the change of hydrological models under one climate model and one emission scenario and the change of hydrological model parameters under one hydrological model, one climate model and one emission scenario respectively. The second term represents the within–hydrological model partial variance which is caused by the hydrological model parameters. Therefore, the total variance in the model outputs can be decomposed as:

,        (5)
where V(PA), V(HM), V(GC), and V(ES) in Eq. (5), represent the variances contributed from four sources of input uncertainty: parametric uncertainty, hydrological model uncertainty, GCM uncertainty, and GGES uncertainty. Following the definition of the first–order sensitivity index, the new set of sensitivity indices for our hierarchical framework can be defined as: 

,            (6)
For the three–layer hierarchical uncertainty quantification framework, the total variance can be decomposed following the same process as:

,        (7)
The new set of sensitivity indices can be defined as: 

.                     (8) 
2.5 Calculation of Sensitivity Indices by Latin Hypercube Sampling 
A conventional approach to the variance estimation in Eqs. (6) and (8) is the Monte Carlo (MC) method. However, conventional MC sampling is computationally expensive, especially for the high dimensional models used in this research. To reduce the unaffordable computational cost, more efficient Latin hypercube sampling (LHS) method was used to generate the random parameter samples in this research (Helton and Davis., 2003; McKay et al., 1979). This method divides the ranges of the m model parameters into n disjointed intervals with equal probability 1/n from which one value is sampled randomly in each interval.
Assuming that we have k alternative greenhouse gas emission scenarios, l plausible global climate models under each emission scenario, j plausible hydrological models under each global climate model and n LHS generated parameter sets, the partial variance caused by parametric uncertainty can be estimated as:

,  (9)








where  is the weight of model  under global climate model  and greenhouse gas emission scenario satisfying, and is the weight of the global climate models satisfying, and  is the weight of the greenhouse gas emission scenario satisfying. Similarly, the partial variances of the hydrological models, global climate models and greenhouse gas emission scenarios can be calculated as:

,(10)

,           (11)

.(12)
Based on Eqs. (9)–(12), the sensitivity indices defined in Eq. (6) and Eq. (8) (three–layer hierarchical framework) can be evaluated.
[bookmark: _Hlk5032001][bookmark: _Hlk5032049][bookmark: _Hlk5032023]3 Study Area and Data Sets
[bookmark: _Hlk5032067][bookmark: OLE_LINK1]3.1 Study Area
The study area is located in the upstream area of the Beijiang River, which is the second largest tributary of the Pearl River, southern China, and accounts for 73% of the Beijiang River basin with a drainage area of 34097 km2. The area consists of four major rivers: the Wujiang River, the Zhenjiang River, the Wengjiang River, and the Lianjiang River (Figure 2). The Hengshi hydrological station is the discharge station in the study basin (Figure 2). The study basin is located in the tropical and subtropical climate zones, with the flood season (April–September) precipitation accounting for approximately 70–80% of the annual precipitation. Due to the sufficient precipitation, high humidity and climate warming, the study catchment has often experienced extreme floods (e.g., June and August 1994, June 1998, June 2005, and July 2006) in the past few decades and will likely encounter more severe flooding in the next few decades (Wu et al., 2014; 2015).
3.2 Data Sets
The DEM data with a spatial resolution of 90 m was provided by the International Scientific and Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences (http://datamirror.csdb.cn). The global 1–km land cover classification dataset was obtained from the University of Maryland (Hansen et al., 2000). The classification of soil texture (at a resolution of 1 km) based on the Harmonized World Soil Database (HWSD) was provided by the Food and Agriculture Organization of the United Nations and the International Institute for Applied Systems Analysis. Daily precipitation data from 24 rainfall stations and daily discharge data from the Hengshi hydrological station (Figure 2) were provided by the Hydrology Bureau of Guangdong Province, China. Daily maximum and minimum temperature data from 4 meteorological stations were provided by Meteorological Data Sharing Service System, National Meteorological Information Center, China Meteorological Administration (http://cdc.cma.gov.cn/home.do). The data sets from all the stations spanned the period from 1970 to 2000.
4 Results 
[bookmark: _Hlk28039053][bookmark: OLE_LINK16]In this section, we first evaluated the simulation results of the model system and then conducted the sensitivity analysis for the two most important model outputs: discharge at the basin outlet and surface runoff at the grid points (0.25° × 0.25°) of the study basin. Because the Xinanjiang model is a conceptional hydrological system, it provides only one output for the entire domain; therefore, the distribution of surface runoff was estimated using only the VIC model.
4.1 Hydrological Simulations and Predictions
We first evaluated the hydrological model simulation by dividing the recorded data series into two subperiods: 1970–1990 for model calibration and 1991–2000 for model validation. The efficacy of the model simulation was evaluated using the Nash–Sutcliffe efficiency (NSE) coefficient and relative error (RE). The performance statistics for the simulation results are summarized in Table 3. The simulated discharges generally match well with the observations, especially at the monthly timescales (see Figure S1 in Supplemental Material). For the VIC model, the NSE is greater than 0.82 at both daily and monthly timescales, and the RE is less than 8.72%, suggesting that the VIC model performs relatively well in the study basin. For the Xinanjiang model, the NSEs of the daily and monthly simulations are larger than 0.70 and 0.83, respectively, while the RE is less than 3.6% at both daily and monthly timescales. This result suggests that the Xinanjiang model is able to reasonably reproduce the basin water balance and hence can be applied to investigate the hydrological impacts of future climate change.



[bookmark: OLE_LINK14][bookmark: OLE_LINK15][bookmark: OLE_LINK17][bookmark: OLE_LINK27][bookmark: OLE_LINK28][bookmark: OLE_LINK48][bookmark: OLE_LINK49]Based on the evaluation of the hydrological simulations, we predicted the future river discharge at the Hengshi hydrological station based on the 50 statistical downscaling ensembles of the 13 GCMs under three different GGESs. The VIC model was run on 20 sets of the parameters d2 and B, while the Xinanjiang model was run on 20 sets of parameters KC, CS, and SM. As a result, a total of 1,000 (5020) simulation samples were generated for the VIC and Xinanjiang models under each GGES. The total number of simulations used in this study thus is 6,000 (321000). The annual hydrographic comparisons of the observed discharge and that simulated by the two hydrological models using 50 GCM samples in the baseline period 1970–2000 as well as the future period 2020–2050 are shown in Figure 3a and 3b. Figure 3c–f illustrate the annual hydrographs by averaging hydrological projections from the GGESs, GCMs, hydrological models and parameters, respectively, for the baseline period 1970–2000 and the future period 2020–2050. For example, the hydrographs grouped by each GCM include 3 GGESs, 2 hydrological models and 20 hydrological parameter sets (i.e., a total of 120 hydrographs). As shown, in the baseline period (1970–2000), the simulations of the two hydrological models forced by 50 GCMs samples generally agree well with the observations (a little underestimation in May–June and overestimation in July–September, Figure 3a). In addition, the GCMs samples driven by Xinanjiang model somewhat overestimates the discharge predictions in July–February (Figure 3b). In the future period (2020–2050), the projections of mean annual discharge vary significantly among different simulation samples driven by different GGESs, different GCMs, and different parameter combinations. The results predict small increases in discharge during late autumn and early winter (November–February) and obvious decreases in spring and summer (March–September) (Figure 3a and 3b). The uncertainty of GGESs is generally limited during the 12 months due to the small differences among different GGESs (Figure 3c). The hydrological models show relatively low uncertainty range in predicting discharges during summer, but for other months the uncertainty range is relatively large and cannot be ignored (Figure 3e). The GCMs and hydrological parameters both show considerable uncertainty ranges (Figure 3d and f), suggesting a large uncertainty involved in the projections of hydrological regimes. Consequently, it is necessary to quantify the contribution of uncertainty from individual sources to enhance the projection credibility. 
4.2 Sensitivity Analysis for River Discharge at Annual and Monthly Scales
[bookmark: OLE_LINK46][bookmark: OLE_LINK47][bookmark: OLE_LINK23]The sensitivity indices of discharge predictions at the Hengshi hydrological station considering all four uncertainty sources were first estimated by using the four–layer hierarchical framework (Eq. (6)) and summarily evaluated at the annual and monthly timescales. The variability of mean annual discharge by averaging hydrological projections from the GGESs, GCMs, hydrological models and parameters is shown in Figure 4, which represents the general effects of individual uncertainty source. The variations of GCMs, hydrological model and parameters are generally large, whereas the fluctuation of GGESs is relatively low. Figure 5 displays the annual times series (2020–2050) of sensitivity indices of GGESs, GCMs, hydrological models and parameters to the discharge projections. As shown, the contributions of GCMs and hydrological parameters (GGESs) to the uncertainty vary gently (strongly) at the annual scale. The results demonstrate that the hydrological parameters and GCMs are the first and second largest uncertainty sources, respectively, with the uncertainty contribution up to 47%, implying the large predictive uncertainty caused by different GCMs as well as hydrological parameters (Figure 5b and d). The sensitivity indices of GCMs tend to firstly increase then decrease during the projection period. Compared with the GCMs and hydrological parameters, the GGESs are the least important source of uncertainty for the discharge predictions with the mean value of 4.1% (Figure 5a). This is well supported by Figure 3c, which indicates that the simulations show very limited differences among the three different GGESs. Hydrological models are the third largest uncertainties, with the contribution no more than 30% (Figure 5c). The sensitivity indices of mean annual discharge from individual uncertainty source (Figure 5a–d) is consistent with the total variance (Figure 5e).
[bookmark: OLE_LINK50]For the monthly discharge, the averaging hydrographs are shown in Figure 6. For example, the dispersion of GGESs in January to May is larger than in other months (Figure 6a), and the dispersion of GCMs in May to August is larger than in other months (Figure 6b). Figure 7 displays the intra–annual variability of the sensitivity indices of discharge projections. The results show that the sensitivity indices of GCMs tend to increase from January to June and decrease from June to December (Figure 7b), whereas the opposite trend patterns are identified for the sensitivity indices of hydrological model and parameters (Figure 7c and d). GCMs contribute the largest uncertainty during summer season (78.88%) and show decreased uncertainty during winter season (62.80%). The largest uncertainty of GCMs in summer is probably due to the high variability of rainfall in this reason. The contribution of hydrological models and hydrological parameters to the uncertainty is lower in spring and summer than in autumn and winter. The contribution of GGESs to discharge uncertainty firstly increase from January to March and decrease from April to December (Figure 5a), with the large contribution during winter (4.36%) and spring seasons (4.64%), and the limited contribution during summer (2.74%) and autumn seasons (2.12%). The corresponding total variance is shown in Figure 7e, demonstrating that the variance tends to increase from January to May and decrease from June to December. The distinct characteristics of the total variance in dry season and rainy season are interesting.
4.3 Sensitivity Analysis for Annual Peak Discharge
The annual peak discharge, which represents the annual maximum value of annual discharge, was chosen as an output of interest for the sensitivity analysis. The variability of annual peak discharge by averaging hydrological projections from the GGESs, GCMs, hydrological models and parameters is shown in Figure 8. The dispersion of annual peak discharge from the four uncertainty sources is comparatively large. The sensitivity indices for the predictions of annual peak discharge at the Hengshi hydrological station were estimated and the results are displayed in Figure 9. It can be seen that GCMs and hydrological parameters account for the two largest portions of uncertainties in the discharge predictions, with the average contributions of 31.57% and 50.2%, respectively (Figure 9b and d). The sensitivity indices of hydrological parameters are in the range of 36.0%–57.1% during the projection period, which are higher than that of annual average discharge (33.34%–47.76% in Figure 5), suggesting larger influence of hydrological parameters on the extreme hydrological events. Compared with the hydrological parameters, the uncertainty from the hydrological model structures tends to be smaller and accounts for 10.8%–23.1% of the total uncertainty. The GGESs are still the least important source of uncertainty for the annual peak discharge predictions, accounting for 0.01%–3.78% of the total uncertainty, which are also smaller than the uncertainty in annual average projections. The variability of the total variance of annual peak discharge is shown in Figure 9e, and the dispersion of individual source is generally large.
4.4 Sensitivity Analysis for Surface Runoff Under the VIC Model
In this section, we conducted the sensitivity analysis for the surface runoff predictions using the three–layer hierarchical framework (i.e., GGES, GCMs, and the VIC model parameters). The Xinanjiang model was not implemented because it cannot provide the spatial distribution of surface runoff. Therefore, the model uncertainty does not exist in this segment of the research. The sensitivity indices for the annual and monthly surface runoff and annual peak surface runoff were calculated at each grid point over the study domain using Eq. (8).
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]4.4.1 Sensitivity Analysis for Surface Runoff at Annual and Monthly Scales
Figure 10 displays the annual time series (2021–2050) of the sensitivity indices of three uncertainty sources (GGESs, GCMs and VIC model parameters) to the annual average runoff projections. The first impression of Figure 10 is that the variation of sensitivity indices of GCMs and model parameters is relatively even, while the sensitivity indices of GGESs show a large variability during the study period. The hydrological parameters and GCMs are the main contributor of uncertainty in the surface runoff projections, accounting for 48.15% and 46.53% of the total uncertainty, respectively, which is similar to that for the discharge projection uncertainty. The GGESs are still the least important source of uncertainty (0.32%–29.68%), and the sensitivity indices tend to show a decreasing trend over the study period. The variability of total variance of annual runoff depth is shown in Figure 10d, the fluctuation of hydrological parameters is relatively low, whereas the fluctuation of GGESs and GCMs is strong.
[bookmark: OLE_LINK29][bookmark: OLE_LINK30]Figure 11 shows the intra–annual variability of sensitivity indices of three uncertainty sources to runoff projections. Results demonstrate that the sensitivity indices caused by GCMs increase from January to June and decrease from July to December, with the largest uncertainty in June (86.6%) and lowest uncertainty in January (74.3%). In contrast, the opposite trend patterns are identified for the sensitivity indices of VIC model parameters. The largest contribution of the VIC model parameters to the runoff uncertainty is 25.0% in January, while the smallest contribution is 12.75% in June. The uncertainty due to GGESs contributes higher (lower) uncertainty in winter and spring (summer and autumn). The total variance shows the strong intra–annual variability, which is similar to that of discharge based on the four–layer hierarchical framework (Figure 7e).
[bookmark: OLE_LINK21][bookmark: OLE_LINK22]The sensitivity indices for surface runoff depth predictions were calculated for all the grid cells over the study catchment and were evaluated at the seasonal scales (i.e., spring, summer, autumn and winter). Figure 12 displays the spatial distributions of the sensitivity indices of GCMs, GGESs, and VIC model parameters. As shown, the main impression is that the sensitivity indices of surface runoff projections are uneven at both spatial and temporal scales. The GCMs and GGESs still show the most and least important uncertainty contributions to the runoff depth predictions, respectively. Particularly, the contribution of GCMs is in the range of 76%–92% and tends to be larger during spring and summer than autumn and winter for most of the study areas, probably due to larger rainfall in spring and summer. The contribution of GGESs is generally large in spring and winter (0.28%–0.67%, especially for eastern and southern regions) and tends to be smaller in summer and autumn (0.18%–0.56%, especially for western regions). The uncertainty caused by the hydrologic parameter is larger in the northwest and northeast regions at all seasonal scales. Particularly for the central regions, the uncertainty contribution from the hydrologic parameters is comparatively lower in spring and summer (13%–16%) and higher in autumn and winter (19%–21%).
4.4.2 Sensitivity Analysis for Annual Peak Surface Runoff
The sensitivity indices of the GCMs, GGESs, and VIC model parameters for annual peak runoff predictions were estimated and the results are displayed in Figure 13. As seen, the most important source of uncertainty is GCM, followed by the hydrological model parameters and GGESs. The contribution of uncertainty from GCMs is in the range of 63%–84.4%, which is significantly larger than that of annual runoff (Figure 10). The uncertainty caused by hydrological parameters and GGESs are in 14.03%–36.73% and 0.14%–5.88%, respectively, and tends to show a large variation over the study period. The total variance of annual peak runoff is shown in Figure 13d with the phenomenon of the slight fluctuations of hydrological parameters and the strong fluctuations of GCMs.
The spatial distribution of sensitivity indices for the annual peak runoff depth based on the three–layer hierarchical framework is presented in Figure 14. Similar to the sensitivity analysis results of annual surface runoff predictions (Figure 12), the spatial heterogeneity shows little effect on the importance of the uncertainty sources. The most important source of uncertainty over the study basin is GCM (80%–90%), followed by the hydrological model parameters (8%–18%). In contrast, the GGESs contribute the least uncertainty (0.2%–4%) to the annual peak runoff predictions. At the spatial scale, the uncertainty due to the hydrological parameter is larger in the western and northeast regions (>18%) than in the southern regions (<12%) at all seasonal scales. However, the uncertainty caused by GCMs is comparatively lower in the western and northeast regions (<86%) at all seasonal scales. 
5 Discussion
[bookmark: OLE_LINK33]In this study, we developed an advanced hierarchical sensitivity analysis framework for quantifying the relative contribution of the uncertainty sources to the hydrological projections at both temporal and spatial scales. The four–layer hierarchical framework considering four uncertainty sources (i.e., GGES, GCMs, hydrological models, and model parameters) and the three–layer hierarchical framework considering three uncertainty sources (i.e., GGES, GCMs, and hydrological model parameters) were comprehensively tested in a humid subtropical basin in southern China. Compared with the qualitative comparison method (Chen et al., 2011b, 2013; Dobler et al., 2012) and the ANOVA method (Aryal et al., 2019; Bosshard et al., 2013; Vetter et al., 2015, 2017), the framework presented in this study is capable of grouping different model uncertainty sources and considering the dependence relationships among uncertainty inputs as well as the spatio–temporal variations of uncertainty sources. More importantly, this framework can theoretically be applied to the quantitative analysis of n (n ≥ 2) kinds of uncertain sources in the context of climate change impact studies. 
[bookmark: OLE_LINK37][bookmark: OLE_LINK26][bookmark: OLE_LINK38][bookmark: OLE_LINK34][bookmark: OLE_LINK35][bookmark: OLE_LINK40][bookmark: OLE_LINK41]The results highlighted strong temporal and spatial variability of general sources of uncertainty in hydrological predictions, and indicated that GCM structure is one of the largest uncertainty sources, consistent with the previous findings by the CMIP3 and CMIP5 models (Bosshard et al., 2013; Chen et al., 2011b; Déqué et al., 2007; Hattermann et al., 2018; Kay et al., 2009; Prudhomme and Davies, 2009; Su et al., 2017; Wilby and Harris, 2006). In addition, we notice that the contribution of hydrological parameters to uncertainty is also significant and can be larger than that of GCMs at the interannual scale (more than 50%, Figures 5 and 7). This suggests that the influences of the hydrological parameters on the hydrological projections should be considered, especially for the long–time projections. Interestingly, the importance of uncertainty caused by hydrological model parameters was comparably low reported by Chen et al. (2011b) due to the small difference between parameter sets based on 10 times of calibration results. In contrast, the 20 parameter sets were considered in this study to randomly sample within a bounded sensitive parameter space, resulting in comparably large uncertainty of hydrological parameters, especially for the output of annual peak discharge (Figure 9). As expected, the GGESs is the smallest contributor of hydrological projections, but the uncertainty of GGESs tends to show large variability over the projection periods (e.g., Figure 13), a consistent finding with the projections of extreme precipitation events (Wada et al., 2013; Xu et al., 2019). The contribution of GGESs to uncertainty varies significantly in different river basins (Kay et al., 2009; Vetter et al., 2017). Kay et al. (2009) compared the effect of different sources of uncertainty on flood frequency in two catchments of England, which found that uncertainty due to emissions is very low for one catchment, but more important for another catchment. And Vetter et al. (2017) compared the contributions of multiple sources of uncertainty (emission scenarios, GCMs, and hydrological models) in five basins and conducted the conclusion about the large differences of the uncertainty caused by emission scenarios between basins. We also found that the sensitivity indices for discharge and surface runoff on monthly scale tend to be periodical (Figure 7 and Figure 11). The uncertainty caused by GCMs tends to be higher in summer than in winter, whereas the uncertainty due to GGESs, hydrological model and parameters is higher in winter than in summer. In terms of future work, the intra–annual variability of various uncertainty sources as well as their dependence relationships in hydrological projections needs to be further explored to better explain this phenomenon. 
It should be noted that the results shown are subject to a few limitations. First, only one downscaling technique was applied in this study. It is widely accepted that the uncertainty caused by multi–downscaling methods is potentially large (Bosshard et al., 2013). Second, the sensitive hydrological model parameters were only randomly sampling, although the effects of insensitive parameters to model outputs are minimal. Third, the number of parametric samples may be insufficient, although the use of the LHS method can effectively reduce the number of samples. Therefore, more sources of uncertainty (e.g., downscaling technique), abundant model parameters and sufficient samples of simulations need to be considered within the hierarchical sensitivity analysis framework to better understand the spatio–temporal variations of general sources of uncertainty in hydrological predictions.
6 Conclusions
[bookmark: OLE_LINK32]This study presents an advanced hierarchical sensitivity analysis for a climate–influenced hydrological model system to quantify different sources of uncertainty in the hydrological impacts of future climate change. A multilayer hierarchical uncertainty quantification framework was developed to integrate with the variance–based sensitivity analysis method to estimate the relative importance of the uncertainty sources considered. The Latin hypercube sampling strategy was applied to calculate the sensitivity indices defined for this hierarchical sensitivity analysis. Variant uncertainty sources, including three different GGESs, thirteen plausible GCMs, two hydrological models and twenty sets of uncertain parameters, were quantified at the catchment scale. The spatio–temporal variability of the uncertainties considered in hydrological (annual discharge and annual peak discharge) predictions was comparatively analyzed using the four– (three–) layer hierarchical framework.
The sensitivity analysis results indicated that the GCMs and hydrological parameters are generally the main contributors of uncertainty in the discharge projections at the interannual scale. The uncertainty of GGESs is the smallest contributor of hydrological projections at the interannual scale, but the uncertainty of GGESs shows large variability over the projection periods. At the intra–annual scale, GCMs contribute the largest uncertainty of the discharge predictions particularly during summer season. In contrast, the uncertainty due to GGESs, hydrological model and parameters is generally limited, with the larger contributions in winter than in summer. At the spatial scale, a large spatial variation was identified in the sensitivity indices, suggesting that a single result for certain locations or one time point hardly capture the overall sensitivity information for a complex problem. Nevertheless, the spatial heterogeneity of the sensitivity indices does not affect the rank of the relative importance for uncertainty sources. The proposed framework is mathematically rigorous and general and can be applied to a wide range of climate–influenced models with more or different sources of uncertainty. The sensitivity results can provide key information for the knowledge of the spatio–temporal variations of various uncertainty sources in hydrological projections under future climate impacts. 
Acknowledgments
[bookmark: _Hlk3307102][bookmark: _GoBack][bookmark: _Hlk3457225]This research was supported by funding from the National Natural Science Foundation of China (Grant No. 41807182, 51879108, 51741903) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030310653).
Data availability statement
[bookmark: OLE_LINK72]The daily precipitation and discharge data were 564 provided by the Hydrology Bureau of Guangdong Province, China: http://swj.gd.gov.cn/. Daily 565 maximum and minimum temperature data were obtained from the Meteorological Data Sharing 566 Service System, National Meteorological Information Center, China Meteorological 567 Administration (http://cdc.cma.gov.cn/home.do).


References
Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., and Yang, H. (2009), Assessing the impact of climate change on water resources in Iran, Water Resources Research, 45, W10434, https://doi.org/10.1029/2008WR007615.
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G. (2015), Global warming increases the frequency of river floods in Europe, Hydrology and Earth System Sciences, 19(5), 2247–2260, https://doi.org/10.5194/hess–19–2247–2015.
Arnell, N. W. (1999), Climate change and global water resources, Global environmental change, 9, S31–S49.
Arnell, N. W. (2004), Climate change and global water resources: SRES emissions and socio–economic scenarios, Global environmental change, 14(1), 31–52.
Aryal, A., Shrestha S., and Babel M. S. (2019), Quantifying the sources of uncertainty in an ensemble of hydrological climate–impact projections, Theoretical and Applied Climatology, 135, 193–209, https://doi.org/10.1007/s00704–017–2359–3.
[bookmark: OLE_LINK12]Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M., and Schär, C. (2013), Quantifying uncertainty sources in an ensemble of hydrological climate‐impact projections, Water Resources Research, 49, 1523–1536, https://doi.org/10.1029/2011WR011533.
Chen, J., Brissette, F. P., and Leconte, R. (2011a), Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, Journal of Hydrology, 401, 190–202, https://doi.org/10.1016/j.jhydrol.2011.02.020.
Chen, J., Brissette, F. P., Poulin, A., and Leconte, R. (2011b), Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed, Water Resources Research, 47, W12509, https://doi.org/10.1029/2011WR010602.
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M. (2013), Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins, Journal of Hydrology, 479, 200–214, https://doi.org/10.1016/j.jhydrol.2012.11.062.
[bookmark: OLE_LINK18]Chen, J., Brissette, F. P., Liu, P., and Xia, J. (2017), Using raw regional climate model outputs for quantifying climate change impacts on hydrology, Hydrological Processes, 31(24), 4398–4413, https://doi.org/10.1002/hyp.11368.
Chu–Agor, M.L., Muñoz–Carpena, R., Kiker, G., Emanuelsson, A., Linkov, I. (2011), Exploring sea level rise vulnerability of coastal habitats through global sensitivity and uncertainty analysis, Environmental Modelling & Software, 26 (5), 593–604, https://doi.org/10.1016/j.envsoft.2010.12.003.
Dai, H., Chen X., Ye M., Song X., and Zachara J. M. (2017a), A geostatistics–informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling, Water Resources Research, 53, 4327–4343, https://doi.org/10.1002/2016WR019756.
Dai, H., Ye M., Walker A. P., and Chen X. (2017b), A new process sensitivity index to identify important system processes under process model and parametric uncertainty, Water Resources Research, 53, 3476–3490, https://doi.org/10.1002/2016WR019715.
[bookmark: _ENREF_10]Dai, H., and Ye M. (2015), Variance–based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation, Journal of Hydrology, 528, 286–300, https://doi.org/10.1016/j.jhydrol.2015.06034.
Dai, H., Chen X., Ye M., Song X., Hammond G., Hu B., and Zachara J. M. (2019), Using Bayesian Networks for Sensitivity Analysis of Complex Biogeochemical Models, Water Resources Research, https://doi.org/10.1029/2018WR023589.
Deepashree Raje, Mujumdar P.P. (2010), Hydrologic drought prediction under climate change: Uncertainty modeling with Dempster–Shafer and Bayesian approaches, Advances in Water Resources, 33, 1176–1186, https://doi.org/10.1016/j.advwatres.2010.08.001.
Demaria, E. M., Nijssen, B., and Wagener, T. (2007), Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model, Journal of Geophysical Research, 112, D11113, https://doi.org/10.1029/2006JD007534.
[bookmark: _Hlk3822813]Déqué, M. (2007), Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values, Global and Planetary Change, 57, 16–26, https://doi.org/10.1016/j.gloplacha.2006.11.030.
Dobler, C., Hagemann, S., Wilby, R. L., Stotter, J. (2012), Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed, Hydrology and Earth System Sciences, 16, 4343–4360, https://doi.org/10.5194/hess–16–4343–2012.
Fowler, H. J., Ekström, M., Blenkinsop, S., and Smith, A. P. (2007), Estimating change in extreme European precipitation using a multimodel ensemble, Journal of Geophysical Research, 112, D18104, https://doi.org/10.1029/2007JD008619.
Gädeke, A., Hölzel, H., Koch, H., Pohle, I., and Grünewald, U. (2014), Analysis of uncertainties in the hydrological response of a model‐based climate change impact assessment in a subcatchment of the Spree River, Germany, Hydrological Processes, 28, 3978–3998, https://doi.org/10.1002/hyp.9933.
Giuntoli, I., Vidal, Jean–Philippe., Prudhomme, Christel. and Hannah, David. (2015), Future hydrological extremes: The uncertainty from multiple global climate and global hydrological models, Earth System Dynamics. 6. 10.5194/esd–6–267–2015.
Habets, F., Boé, J., Déqué, M., Ducharne, A., Gascoin, S., Hachour, A., ... and Thiéry, D. (2013), Impact of climate change on the hydrogeology of two basins in northern France, Climatic Change, 121(4), 771–785, https://doi.org/10.1007/s10584–013–0934–x.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R. (2000), Global land cover classification at 1km spatial resolution using a classification tree approach, International Journal of Remote Sensing, 21, 1331–1364, https://doi.org/10.1080/014311600210209.
Hattermann, F. F., Vetter T., Breuer L., Su B., Daggupati P., Donnelly C., Fekete B., Flörke F., Gosling S. N., Hoffmann P., Liersch S., Masaki Y., Motovilov Y., Müller C., Samaniego L., Stacke T., Wada Y., Yang T., and Krysnaova V. (2018), Sources of uncertainty in hydrological climate impact assessment: a cross–scale study, Environmental Research Letters, 13, 015006, https://doi.org/10.1088/1748–9326/aa9938.
Helton, J. C., and Davis F. J. (2003), Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliability Engineering & System Safety, 81, 23–69, https://doi.org/10.1016/S0951–8320(03)00058–9.
Hoegh–Guldberg, O., and Bruno, J. F. (2010), The impact of climate change on the world’s marine ecosystems, Science, 328(5985), 1523–1528, https://doi.org/10.1126/science.1189930.
IPCC. (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, and M. Manning, Cambridge University Press, Cambridge, p. 1–996.
IPCC. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker TF, Qin D, Plattner G–K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press: Cambridge, UK.
Jha, M. K., and Gassman P. W. (2014), Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models, Hydrological Processes, 28, 2772–2781, https://doi.org/10.1002/hyp.9836.
Jiang, T., Chen Y. Q., Xu C. Y., Chen X. H., Chen X., and Singh V. P. (2007), Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China, Journal of Hydrology, 336(3–4), 316–333, https://doi.org/ 10.1016/j.jhydrol.2007.01.010.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., ... and Dolman, A. J. (2010), Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467(7318), 951, https://doi.org/10.1038/nature09396.
Kay, A. L., Davies, H. N., Bell, V. A., and Jones, R. G. (2009), Comparison of uncertainty sources for climate change impacts: flood frequency in England, Climatic change, 92(1–2), 41–63, https://doi.org/10.1007/s10584–008–9471–4.
Liang, X., Lettenmaier D. P., Wood E. F., and Burges S. J. (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99, 14415–14428, https://doi.org/10.1029/94JD00483.
Lin, K., Lv F., Chen L., Singh V. P., Zhang Q., and Chen X. (2014), Xinanjiang model combined with Curve Number to simulate the effect of land use change on environmental flow, Journal of Hydrology, 519, 3142–3152, https://doi.org/ 10.1016/j.jhydrol.2014.10.049.
Liu, J., Chen X., Zhang J., and Flury M. (2009), Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting, Hydrological Processes, 23, 1337–1348, https://doi.org/10.1002/hyp.7255.
Liu, L., Fischer, T., Jiang, T., and Luo, Y. (2013), Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China, Quaternary international, 304, 51–61, https://doi.org/10.1016/j.quaint.2013.02.039.
Lohmann, D., Raschke E., Nijssen B., and Lettenmaier D. P. (1998), Regional scale hydrology: I. Formulation of the VIC–2L model coupled to a routing model, Hydrological Sciences Journal, 43, 131–141, https://doi.org/10.1080/02626669809492107.
Lu, W., Wang W., Shao Q., Yu Z., Hao Z., Xing W., Yong B., and Li J. (2018), Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model, Hydrological Processes., 32, 2096–2117, https://doi.org/ 10.1002/hyp.13145.
Matthews, J.H., Quesne, T.L. (2009), Adapting Water Management: A Primer on Coping with Climate Change. WWF Water Security Series 3, WWF–UK, Godalming.
Maurer, E. P., and Duffy, P. B. (2005), Uncertainty in projections of streamflow changes due to climate change in California, Geophysical Research Letters, 32, L03704, https://doi.org/10.1029/2004GL021462.
McKay MD, Beckman, R.J., Conover, W.J. (1979), A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21(2), 239–45, https://doi.org/10.1080/00401706.1979.10489755.
Minville, M., Brissette, F., and Leconte, R. (2008), Uncertainty of the impact of climate change on the hydrology of a nordic watershed, Journal of hydrology, 358(1–2), 70–83, https://doi.org/10.1016/j.jhydrol.2008.05.033.
Najafi, M. R., Moradkhani, H., and Jung, I. W. (2011), Assessing the uncertainties of hydrologic model selection in climate change impact studies, Hydrological Processes, 25, 2814–2826. https://doi.org/10.1002/hyp.8043.
Neuman, S.P. (2003), Maximum likelihood Bayesian averaging of alternative conceptual–mathematical models, Stochastic Environmental Research and Risk Assessment, 17 (5), 291–305, https://doi.org/10.1007/s00477–003–0151–7.
Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E. F. (1997), Streamflow simulation for continental‐scale river basins, Water Resources Research, 33(4), 711– 724, https://doi.org/10.1029/96WR03517.
Nóbrega, M. T., Collischonn W., Tucci C. E. M., and Paz A. R. (2011), Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil, Hydrology and Earth System Sciences, 15, 585– 595, https://doi.org/10.5194/hess–15–585–2011.
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., ... and Friedlingstein, P. (2010), The impacts of climate change on water resources and agriculture in China, Nature, 467(7311), 43, https://doi.org/10.1038/nature09364.
[bookmark: _Hlk3752662]Preston, B. L. (2002), Aquatic ecosystems and global climate change, Limnology and Oceanography Bulletin, 11, 22–22, https://doi.org/10.1002/lob.200211122.
Prudhomme, C., and Davies H. (2009), Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate, Climatic Change, 93,197–222, https://doi.org/10.1007/s10584–008–9461–6.
Refsgaard J. C., Jeroen P. van der Sluijs, Anker Lajer Højberg, Peter A. Vanrolleghem (2007), Uncertainty in the environmental modelling process – A framework and guidance, Environmental Modelling & Software, 22, 1543–1556, https://doi.org/10.1016/j.envsoft.2007.02.004.
Ren, Q. W., Chen Y. B., Shu X. J. (2010), Global sensitivity analysis of Xinanjiang model parameters based on Extend FAST method (in Chinese), Acta Scientiarum Naturalium Universitatis Sunyatseni, 49, 127–134. 
Rubin, Y., Chen X., Murakami H., and Hahn M. (2010), A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields, Water Resources Research, 46, W10523, https://doi.org/10.1029/2009WR008799.
Saltelli, A., and Sobol’ I.M. (1995), Sensitivity analysis for nonlinear mathematical models: numerical experience, Institute for Mathematical Modelling, 7(11), 16–28.
[bookmark: OLE_LINK2]Saltelli, A., Tarantola, S., Chan, P. S. (1999), A quantitative model independent method for global sensitivity analysis of model output, Technometrics, 41, 39–56, https://doi.org/10.2307/1270993.
[bookmark: OLE_LINK3]Saltelli, A., Tarantola, S., Chad, K. (1998), Presenting results from model based studies to decision makers: can sensitivity analysis be a defogging agent? Risk Analysis, 18, 799–803, https://doi.org/10.1111/j.1539–6924.1998.tb01122.x.
Saltelli, A., (2000), What is sensitivity analysis? In: Saltelli, A., Chan, K., Scott, M. (Eds.), Sensitivity analysis. Wiley, Chichester, pp. 3–14.
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S. (2010), Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, 181 (2), 259–270, https://doi.org/10.1016/j.cpc.2009.09.018. 
[bookmark: OLE_LINK4]Satish Bastola, Conor Murphy, and John Sweeney (2011), The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments, Advances in Water Resources, 34, 562–576, https://doi.org/10.1016/j.advwatres.2011.01.008.
Shen, M., Chen, J., Zhuan, M., Chen, H., Xu, C. Y., and Xiong, L. (2018), Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology, Journal of Hydrology, 556, 10–24, https://doi.org/10.1016/j.jhydrol.2017.11.004.
Song, X., J. Zhang, C. Zhan, Y. Xuan, M. Ye, and C. Xu (2015), Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications, Journal of Hydrology, 523, 739–757, https://doi.org/10.1016/j.jhydrol.2015.02.013.
[bookmark: OLE_LINK13]Stephens C.M., F.M. Johnson, and L.A. Marshall (2018), Implications of future climate change for event–based hydrologic models, Advances in Water Resources, 119, 95–110, https://doi.org/10.1016/j.advwatres.2018.07.004.
Su, B., Huang J., Zeng X., Gao C., and Jiang T. (2016), Impacts of climate change on streamflow in the upper Yangtze River basin, Climatic Change, 141, 533–546, https://doi.org/10.1007/s10584–016–1852–5.
Tartakovsky, D. M. (2013), Assessment and management of risk in subsurface hydrology: A review and perspective, Advances in Water Resources, 51, 247–260, https://doi.org/10.1016/j.advwater.2012.04.007.
Teng, J., Vaze J., Chiew F.H., Wang B., and Perraud J. (2012), Estimating the Relative Uncertainties Sourced from GCMs and Hydrological Models in Modeling Climate Change Impact on Runoff, Journal of Hydrometeorology, 13, 122–139, https://doi.org/10.1175/JHM–D–11–058.1.
Teutschbein, C., Wetterhall F., and Seibert J. (2011), Evaluation of different downscaling techniques for hydrological climate–change impact studies at the catchment scale, Climate Dynamics, 37(9–10), 2087–2105, https://doi.org/10.1007/s00382–010–0979–8.
Thompson, J. R., Green, A. J., Kingston, D. G., and Gosling, S. N. (2013), Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models, Journal of Hydrology, 486, 1–30, https://doi.org/10.1016/j.jhydrol.2013.01.029.
Vuuren, D. P. V., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., and Hibbard, K., et al. (2011), The representative concentration pathways: an overview, Climatic Change, 109(1–2), 5–31, https://doi.org/10.1007/s10584–011–0148–z.
Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V. and Hattermann, F. (2015), Multi–model climate impact assessment and intercomparison for three large–scale river basins on three continents, Earth System Dynamics, 6, 17–43, https://doi.org/10.5194/esd–6–17–2015.
Vetter, T., Reinhardt, J., Flörke, M. et al., (2017), Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large–scale river basins, Climatic Change, 141, 419–433, https://doi.org/10.1007/s10584–016–1794–y.
[bookmark: OLE_LINK39]Vidal, J. P., Hingray, B., Magand, C., Sauquet E., and Ducharne, Agnès. (2016), Hierarchy of climate and hydrological uncertainties in transient low–flow projections, Hydrology and Earth System Sciences, 20, 3651–3672, https://doi.org/10.5194/hess–20–3651–2016.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000), Global water resources: vulnerability from climate change and population growth, Science, 289(5477), 284–288, https://doi.org/10.1126/science.289.5477.284.
Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., & Haddeland, I., et al. (2013), Multimodel projections and uncertainties of irrigation water demand under climate change, Geophysical Research Letters, 40(17), 4626–4632.
Wang, P. L., Zhao, R. J. (1989), Examination of parameters of Xinanjiang model (3 components) (in Chinese), Journal of Hohai university, 17,16–21.
Wilby R. L. (2005), Uncertainty in water resource model parameters used for climate change impact assessment, Hydrological Processes, 19(16), 3201–3219, https://doi.org/10.1002/hyp.5819.
Wilby, R. L., and Harris, I. (2006), A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK, Water Resources Research, 42, W02419, https://doi.org/10.1029/2005WR004065.
Wu, C., Huang, G., Yu, H., Chen, Z., and Ma, J. (2014), Impact of Climate Change on Reservoir Flood Control in the Upstream Area of the Beijiang River Basin, South China, Journal of Hydrometeorology, 15, 2203–2218, https://doi.org/10.1175/JHM–D–13–0181.1.
Wu, C. H., Huang, G. R.  and Yu, H. J. (2015), Prediction of extreme floods based on CMIP5 climate models: a case study in the Beijiang River basin, South China, Hydrology and Earth System Sciences, 19, 1385–1399, https://doi.org/10.5194/hess–19–1385–2015.
Xu, Kai., Xu, Bingbo., Ju, Jiali., Wu, Chuanhao., Dai, Heng., Hu, Bill., (2019), Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China, Atmospheric Research, 226. 10.1016/j.atmosres.2019.04.018.
Xu, Y. P., Zhang, X., Ran, Q., and Tian, Y. (2013), Impact of climate change on hydrology of upper reaches of Qiantang River Basin, East China, Journal of Hydrology, 483, 51–60, https://doi.org/10.1016/j.jhydro1.2013.01.004.
Xu, Y. P., Pan, S., Fu, G., Tian, Y., and Zhang, X. (2014), Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, East China, Journal of Geophysical Research–Atmospheres, 118, 2174–2192, https://doi.org/10.1002/2013JD021245.
Yao, C., Zhang, K., Yu, Z., Li, Z., and Li, Q. (2014), Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph, Journal of Hydrology, 517, 1035–1048, https://doi.org/10.1016/j.jhydrol.2014.06.037.
Zhang, H., Huang, G. H., Wang, D., and Zhang, X. (2011), Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands, Journal of Hydrology, 396, 94–103, https://doi.org/10.1016/j.jhydrol.2010.10.037.
Zhao, R.J. (1992), The Xinanjiang model applied in China. Journal of Hydrology, 135, 371–381.
Zhao, R.J., Liu, X.R. (1995), The Xinanjiang Model. In: Singh, V. (Ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, Colorado, 215–232.
Zhao, R., Zhuang, Y., Fang, L., Liu, X., Zhang, Q. (1980), The Xinanjiang Model. IAHS. 129, 351–356.


Table List
[bookmark: OLE_LINK63]Table 1. Basic information on the selected 13 CMIP5 models

[bookmark: OLE_LINK64]Table 2. Sensitive parameter used for two models

[bookmark: OLE_LINK65]Table 3. Model evaluation of discharge simulation at the Hengshi hydrological station



Figure list
[bookmark: OLE_LINK31]Figure 1. The four–layer hierarchical uncertainty quantification framework with the GCMs, GGES, hydrological models and parameters. ES, GC, HM and PA represent the set of multiple greenhouse gas emission scenarios, multiple global climate models, multiple hydrological models, and the parameters for a given model, respectively. By neglecting the hydrological model uncertainty, this framework can be reduced to the three–layer hierarchical uncertainty quantification framework, which only considers ES, GC, and PA.

[bookmark: OLE_LINK43]Figure 2. Map showing the location of the study basin and hydrometeorological stations.
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