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Abstract

The main prospect of this proposed work is to confer an algebraic theory for analyzing frac-
tional singular systems. A modern class of linear fractional singular delay systems with two orders
are proposed. The key notion used in the enlargement is the decomposition form for matrix reg-
ular pencils. As crucial issue, a procedure for computation of reachable set, and control input of
addressed system is acquainted. The considerations are illustrated by suitable examples.
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1 Introduction

Many social, physical, organic and engineering issues are defined with the aid of fractional differ-
ential equations. Literally, fractional differential equations are taken into consideration in the act of
an important tool to model nonlinear differential equations. Many researchers studied and developed
more important results on fractional differential equations and its real applications.

Singular systems are endow in many fields like social systems, economic systems, network analysis
and engineering systems (such as electrical circuit network, power system, aerospace engineering and
chemical processing).Singular systems are classified into descriptor systems, generalized steady-state
system, differential algebraic systems,etc. Moreover, In the studies of singular systems deals with
significant avenues such as geometric and algebraic. In 1989, L.Dai introduced techniques to solve
the singular problem via algebraic analysis and also main contribution of this work indicates the
mathematical approach of singular system from system point of view for more details see [4].

Controllability play on important role in engineering, physics and control theory. In last few
decades, many researchers works on this area [7, 16, 19, 20]. Since the series of works [4, 18]. In
particular L.Dai[4] works gives a valuable notes to study the singular dynamical system through
mathematical approach. Since the series of the paper [6, 9, 10, 17, 18] authors provides a techniques
to solve the fractional differential equations with singular co-efficient. Recently, Jinde Cao [18], con-
sidered a singular fractional differential equation with delay in control and also techniques are derived
for controllability.
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Let us consider the singular neutral fractional linear system with control delay is of the form,

E CDβ(CDαx(t)− g(t, x(t))) = Ax(t) +Bu(t) +Hu(t− τ), t ∈ J

u(t) = φ(t), −τ ≤ t ≤ 0

x(0) = x0

CDαx(t)|t=0 = p0 (1)

Where α+ β > 1, CDα is α order caputo derivative , CDβ is β order caputo derivative; x ∈ Rn is the
state variable; E is a singular real matrix defined on Rn×n, A is a non-singular real matrix defined on
Rn×n and B, H is a real matrix with n > m defined on Rn×m; φ(t) is an initial function defined on
[−τ, 0] and φ ∈ C([−τ, 0],Rn), where C([−τ, 0],Rn) denotes set of continuous functions from [−τ, 0]
into Rn, τ > 0; u(t) is a control function; J = [0, T ]; p0, x0 ∈ Rn and g : [0, T ] × Rn → Rn be a
continuous function.

The key intent of this performance is to express reachability and controllability of described sys-
tem (1) via algebraic way. According to the results in Yip and Sincovec work [17] and L. Dai [4], we
splitting system (1) within two subsystem by the first equivalent form (FE1) so-called slow and fast
subsystems. Which is more comfortable to discuss the reachable and controllable for proposed criteria
also, this work extended the facts in [4, 18] to the next level.

This manuscript is scheduled as pursues: the following section discussed about few well-known
basic results for further discussion. Section 3, describes our proposed model in detail and represented
structure of the admissible initial data of observed system. Next section analyzes the structure of the
solution of corresponding subsystems and reachability conditions are derived. In section 5, necessary
and sufficient conditions for controllability of systems given through theorems and lemma. In section
6, numerical illustrations are provided to get a close glimpse of how the state vector behaves with
time varied. Finally, we spent this paper with a conclusion.

2 Preliminaries:

This section recalls few well-known basic definitions, properties, theorems and lemma for proving
required results of following sections. For more information one can see [4],[8],[11] and [13].

Definition 2.1 [13]: The Euler gamma function Γ(z) on the half-plane Re(z)> 0 is defined by Euler
integral of second kind

Γ(z) =

∫ ∞

0

tz−1e−t dt, Re(z) > 0

For all z ∈ C (Re(z) > 0), the above integral is convergent.

Definition 2.2 [13]: The Caputo fractional derivative of order α ∈ C with n−1 < α ≤ n , n ∈ N for
a function f have continuous derivative upto order n such that fn is absolutely continuous is defined
as

(CDα
0+f)(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1fn(s) ds

Where the function fn(s) is dnf
dsn . In particular, if 0 < α ≤ 1, then the above equation becomes

(CDα
0+f)(t) =

1

Γ(1− α)

∫ t

0

f
′
(s)

(t− s)α
ds

For our convenience the Caputo fractional derivative CDα
0+ is written as CDα.
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Definition 2.3 [11]: The basic definition of the Laplace transformation of a function f(t) of a real
variable t ∈ R+ given by

L[f(t)] =

∫ ∞

0

e−stf(t) dt

= F (s)

Some important properties of Laplace transform:

• L[Iαf(t)] = s−αF (s), s ∈ C

• The convolution formula of functions f(t) and g(t) given on R+ is defined for x ∈ R+ as∫ t

0

f(t− s)g(s) ds = (f ∗ g)(t)

The Laplace transform of a convolution is given by

L[f(t) ∗ g(t)] = L[f(t)]L[g(t)]

= F (s)G(s)

• The inverse Laplace transform

L−1[F (s)G(s)] = L−1[F (s)] ∗ L−1[G(s)]

• Laplace transformation of Caputo derivative is given below

L[CDαf(t)](s) = sαF (s)−
n−1∑
k=0

fk(0+)sα−1−k

• Laplace transform of Mittag-Leffler function as,

L[Eα(±λzα)] =
sα−1

sα ± λ

• Inverse Laplace transform for R(s) >∥ A ∥ 1
2

L−1

[
sα−β

sαI −A

]
= tβ−1Eα,β(Atα), R(s) >∥ A ∥ 1

2

L−1

[
s−β

sαI −A

]
= tα+β−1Eα,β(Atα), R(s) >∥ A ∥ 1

2

Definition 2.4 [13]: A The Mittag-Leffler function is a complex function which depends on two
complex parameters α and β. It can be defined by,

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0

and z ∈ C, here C-complex plane. The generalized Mittag-Leffler function satisfies∫ ∞

0

e−ttβ−1Eα,β(zt
α) dt =

1

1− z
for |z| < 1

Some important properties of Mittag-Leffler function:
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• For β = 1

Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)

• For λ, z ∈ C

Eα(λz
α) =

∞∑
k=0

zαkλk

Γ(αk + 1)

• Caputo derivative of Mittag-Leffler functions as,

CDα[Eα(±λtα)] = ± λEα(±λtα)

Definition 2.5 [4]: For any given two matrices E,A ∈ Rn×n the pencil (E,A) is called regular if
there exist a constant scalar α ∈ C such that |λE +A| ̸= 0 or the polynomial |sE +A| ̸≡ 0.

Lemma 2.6 [4] : (E,A) is regular if and only if two non-singular matrices Q,P may be choosen
such that

QEP = diag(In1 ,M); QAP = diag(A1, In2)

where n1 + n2 = n, A1 ∈ Rn1×n1 , M ∈ Rn2×n2 is nilpotent matrix.

3 Linear Fractional Singular System:

This section describes our proposed model in particular and also establishes the corresponding sub-
systems using Weierstrass decomposition of matrix pencil principle based on the proficiencies in [4].

Assume that (E,A) is a regular pencil all over of this work. According to the result in [17], there
exists a two non-singular matrix P,Q ∈ Rn×n, t ∈ J such that

PEQQ−1 CDβ(CDαx(t)− g(t, x(t))) = PAQQ−1x(t) + PBu(t) + PHu(t− τ)

satisfying

PEQ =diag(In1 , M); PAQ = diag(A1, In2)

PB =

[
B1

B2

]
; PH =

[
H1

H2

]
; Q−1x(t) =

[
x1(t)
x2(t)

]
where x1 ∈ Rn1 and x2 ∈ Rn2 ; n1 +n2 = n; M is a nilpotent matrix with index µ > 0 ( that is a least
positive integer µ such that Mµ = 0, Mr ̸= 0, r ∈ {1, 2, ..., µ − 1}); A1 ∈ Rn1×n1 ; B1,H1 ∈ Rn1×m1

and B2,H2 ∈ Rn2×m2 . Then the equivalent canonical form of system (1) can be written as

CDβ(CDαx1(t)− g1(t, x(t))) = A1x1(t) +B1u(t) +H1u(t− τ)

M CDβ(CDαx2(t)− g2(t, x(t))) = x2(t) +B2u(t) +H2u(t− τ)

u(t) = φ(t), − τ ≤ t ≤ 0

x1(0) = x01; x2(0) = x02

CDαx(t)|t=0 = p0 (2)

where x01, x02 ∈ R. Let h = [(α + β)µ] + 1, here [(α + β)µ] is integral part of (α + β)µ. Where
Ch

p [[0,∞),Rm] be the collection of all h times differential piecewise continuous function defined on

[0,∞), Ch[[−τ, 0],Rm] denotes h times continuously differentiable function defined on [−τ, 0].
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The above equation (2) is known as first equivalent form(EF1) of the system (1), also we call the
first and second equation in (2) as slow and fast subsystem respectively. Now we obtain the admissible
initial state set I(φ) for observed system (2) with φ ∈ Ch([−τ, 0],Rm) as follows,

I(φ) :=
{
x ∈ Rn | x =

[
x1

x2

]
, x1 ∈ Rn1 ,

x2 =

µ−1∑
n=0

[B2(φ(0) +Mn CDn(α+β)φ(0)) +H2(φ(−τ) +Mn CDn(α+β)φ(−τ))]
}

(3)

Thus, the admissible initial set is denoted as

B :=
{
(x0, φ) | φ ∈ Ch([−τ, 0],Rm) and x0 ∈ I(φ)

}
(4)

Remark 3.1 : To construct the admissible initial set by using the results in [17], In the case of
slow subsystem every vector in vector space is an initial condition but its not true for descriptor
system. Then the initial conditions for described system is x1(0) = x01 and x2(0) =

∑µ−1
n=0[B2(φ(0)+

Mn CDn(α+β)φ(0)) +H2(φ(−τ) +Mn CDn(α+β)φ(−τ))]. Hence by [17] the result in (3) is true.

4 State vector expression and state Rechability conditions:

In this section, we discussed about the state vector of the systems in (2) and the Rechability conditions
are given by the following theorems.

Theorem 4.1: For any initial condition (x0, φ) ∈ B and the control function u(t) ∈ Ch
p([0,∞),Rm),

the exact form of state vector for system (2) can be written us,

x1(t) = Eα+β,1(A1t
α+β)x01 − tαEα+β,1+α(A1t

α+β)g(0, x(0)) +

∫ t

0

(t− s)α−1Eα+β,α(A1(t− s)α+β)

×g1(s, x(s)) ds+

∫ t

0

Eα,α(A1(t− s)α+β)(B1u(t) +H1u(t− τ))

+

∫ 0

−h

Eα,α(A1(t− h− s)α+β)H1φ(s) ds (5)

x2(t) =

n2−1∑
k=1

Mk{Pk(t)x02 +Qk(t) +Rk(t)g(0, x(0)) + Sk(t)[B2φ(0) +H2φ(−τ)}

+

n2−1∑
k=1

Mk[B2
CDk(α+β)u(t) +H2

CDk(α+β)u(t− τ)] (6)

where Eα,β(.) is a Mittag-Leffler function. CDk(α+β)u(.) is the sequential fractional derivative.

Proof. Let us take first equation from (2) as,

CDβ(CDαx1(t)− g1(t, x(t))) = A1x(t) +B1u(t) +H1u(t− τ) (7)

Now employing Laplace transform of above equation (7), we have

X1(s)(s
α+β −A1) = sα+β−1x01 − sβL[g1(t, x(t))]− sβ−1g(0, x(0)) +B1U(s) +H1L[u(t− τ)]

X1(s) =
sα+β−1

(sα+β −A1)
x01 −

sβ

(sα+β −A1)
g(0, x(0))− sβ−1

(sα+β −A1)
L[g1(t, x(t))]

+
1

(sα+β −A1)
{B1U(s) +H1L[u(t− τ)]}
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Taking inverse Laplace transform of both sides of above equation, we get

x1(t) = L−1
[ sα+β−1

(sα+β −A1)

]
x01 − L−1

[ sβ

(sα+β −A1)

]
∗ L−1[L[g1(t, x(t))]]− L−1

[ sβ−1

(sα+β −A1)

]
×g(0, x(0)) +B1L−1[(sα+β −A1)

−1] ∗ L−1[U(s)]

+H1L−1[(sα+β −A1)
−1] ∗ L−1[L[u(t− τ)]] (8)

From definitions and properties in preliminaries of section 2, we define the following

L−1
[ sα+β−1

(sα+β −A1)

]
= Eα+β,1(A1t

α+β)

L−1
[ sβ

(sα+β −A1)

]
= tα−1Eα+β,α(A1(t− s)α+β)

L−1
[ sβ−1

(sα+β −A1)

]
= tαEα+β,1+α(A1t

α+β)

L−1[(sα+β −A1)
−1] = Eα,α(A1(t− h− s)α+β)

By applying the above results in (8) we have,

x1(t) = Eα+β,1(A1t
α+β)x01 − tαEα+β,1+α(A1t

α+β)g(0, x(0)) +

∫ t

0

(t− s)α−1

×Eα+β,α(A1(t− s)α+β)g1(s, x(s)) ds+

∫ t

0

Eα,α(A1(t− s)α+β)(B1u(t))

+H1u(t− τ)) ds+

∫ 0

−h

Eα,α(A1(t− h− s)α+β)H1φ(s) ds (9)

Moreover, let us consider the second equation in (2) and apply Laplace transform yields,

(Msα+β − I)X2(s) = Msα+β−1x02 +MsβL[g2(t, x(t))]−Msβ−1g2(0, x(0))

+B2U(s) +H2L[u(t− τ)]

X2(s) = Msα+β−1(Msα+β − I)−1x02 +Msβ(Msα+β − I)−1L[g2(t, x(t))]
×g2(0, x(0))−Msβ−1(Msα+β − I)−1 + (Msα+β − I)−1B2U(s)

+(Msα+β − I)−1H2L[u(t− τ)] (10)

Employing inverse Laplace transform of above equation, we get

x2(t) = L−1
[
Msα+β−1(Msα+β − I)−1

]
x02 + L−1

[
Msβ(Msα+β − I)−1

]
∗ L−1[L[g2(t, x(t))]]

−L−1
[
Msβ−1(Msα+β − I)−1

]
g2(0, x(0)) + L−1

[
(Msα+β − I)−1

]
∗B2L−1[U(s)]

+L−1
[
(Msα+β − I)−1

]
H2 ∗ L−1[L[u(t− τ)]] (11)

For our convenience we consider the following notations

L−1
[
Msα+β−1(Msα+β − I)−1

]
x02 =

n2−1∑
k=1

MkPk(t)x02

L−1
[
Msβ(Msα+β − I)−1L[g2(t, x(t))]

]
=

n2−1∑
k=1

MkQk(t)

L−1
[
Msβ−1(Msα+β − I)−1

]
g2(0, x(0)) =

n2−1∑
k=1

MkRk(t)g2(0, x(0))
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where

Pk(t) = L−1
[
s(α+β)n−1; t

]
Qk(t) = L−1

[
sn(α+β)−αL(g2(t, x(t))); t

]
Rk(t) = L−1

[
sn(α+β)−α−1; t

]
The following facts are used to prove the theorem:
Fact 1:

B2(Msα+β − I)−1U(s)) = B2(Msα+β − I)−1

∫ ∞

0

e−stu(t) dt

= B2

n2−1∑
k=0

Mksk(α+β)[
u(0)

s
+ 1/sL(u′(t))]

= B2

{ n2−1∑
k=0

Mksk(α+β)−1u(0) +

n2−1∑
k=0

Mksk(α+β)−1Lu′(t)
}

Apply inverse Laplace transform, we get

L−1
[
B2(Msα+β − I)−1U(s))

]
= B2

{ n2−1∑
k=0

Mk t−k(α+β)

Γ(1− k(α+ β))
u(0)

+

n2−1∑
k=0

Mk

∫ ∞

0

t−k(α+β)

Γ(1− k(α+ β))
u′(s) ds

}
= B2

n2−1∑
k=0

Mk t−k(α+β)

Γ(1− k(α+ β))
u(0) +

n2−1∑
k=0

Mk CDk(α+β)u(t)

= B2

n2−1∑
k=0

MkSk(t)u(0) +

n2−1∑
k=0

Mk CDk(α+β)u(t)

where Sk(t) =
t−k(α+β)

Γ(1− k(α+ β))

Fact 2:

H2(Msα+β − I)−1L(u(t− τ)) = H2(Msα+β − I)−1

∫ ∞

0

e−stu(t− τ) dt

= H2(Msα+β − I)−1
[
e−sτ

∫ ∞

0

e−shu(h) dh+

∫ 0

−τ

e−shφ(h) dh
]

= H2(Msα+β − I)−1
[φ(−τ)

s
+

∫ ∞

0

e−stu′(t− τ) dt
]

Apply inverse Laplace transform, we get

L−1
[
H2(Msα+β − I)−1L(u(t− τ))

]
= H2

{ n2−1∑
k=0

Mk

∫ ∞

0

t−k(α+β)

Γ(1− k(α+ β))
u′(s− τ) ds

+

n2−1∑
k=0

Mk t−k(α+β)

Γ(1− k(α+ β))
φ(−τ)

}
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= H2

n2−1∑
k=0

Mk t−k(α+β)

Γ(1− k(α+ β))
φ(−τ)

+

n2−1∑
k=0

Mk CDk(α+β)u(t− τ)

= H2

n2−1∑
k=0

MkTk(t)φ(−τ) +

n2−1∑
k=0

Mk CDk(α+β)u(t− τ)

where Sk(t) =
t−k(α+β)

Γ(1− k(α+ β))

Using the above results and facts equation (11) yields,

x2(t) =

n2−1∑
k=1

Mk CDk(α+β)u(t) +

n2−1∑
k=1

Mk CDk(α+β)u(t− τ) +

n2−1∑
k=1

Mk

×{Pk(t)x02 +Qk(t) +Rk(t)g(0, x(0)) + Sk(t)[B2φ(0) +H2φ(−τ))}

Thus the equations (5) and (6) holds. Hence the theorem.

Remark 4.2 : The existence and uniqueness of system (2) is drawn from the result in [17]. When-
ever (A,E) is regular matrix then the system corresponding to (A,E) is solvable. So, by this result
system (2) has a unique solution.

Given matrices A1 ∈ Rn1×n1 , B1, H1 ∈ Rn1×m1 . For any polynomial f(s) ̸= 0, we define W (f, t) :
Rn1 → Rn1 such that

W (f, t) =

∫ t−τ

0

f(s){Eα,α[A1(t− s)α+β ]B1B
∗
1Eα,α[A

∗
1(t− s)α+β ] + Eα,α[A1(t− τ − s)α+β ]H1H

∗
1

×Eα,α[A
∗
1(t− τ − s)α+β ]}f(s) ds+

∫ t

t−τ

f(s)Eα,α[A1(t− s)α+β ]B1B
∗
1

×Eα,α[A
∗
1(t− s)α+β ]f(s) ds (12)

where * denotes the matrix transpose.
Some notations are introduced for solving the following lemma as, the range of f denote Im(f), that is

Im(f) = {y | f(x) = y, ∀x ∈ Rn}

Here ⟨A|B,H⟩ denote as,

⟨A|B,H⟩ = Im(B) + Im(AB) + ...+ Im(An−1B) + Im(H) + Im(AH) + ...+ Im(An−1H)

Then the space ⟨A|B,H⟩ is spanned by the column vectors

[B,AB, ...An−1B,H,AH, ...An−1H]

Lemma 4.3 Given matrices A1 ∈ Rn1×n1 , B1, H1 ∈ Rn1×m1 , then

ImW (f, t) = ⟨A1|B1, H1⟩ (13)
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Proof. The equation (13) holds if and only if

kerW (f, t) =

n1−1∩
i=0

kerB∗
1(A

∗
1)

i
n1−1∩
i=0

kerH∗
1 (A

∗
1)

i

suppose take x ∈ kerW (f, t) then
x∗W (f, t)x = 0 (14)

Insert (12) in (14), we get∫ t−τ

0

x∗f(s){Eα,α(A1(t− s)α+β)B1B
∗
1Eα,α(A

∗
1(t− s)α+β) + Eα,α(A1(t− τ − s)α+β)H1H

∗
1

×Eα,α(A
∗
1(t− τ − s)α+β)}f(s)x ds

∫ t

t−τ

x∗f(s)Eα,α[A1(t− s)α+β ]B1B
∗
1

×Eα,α[A
∗
1(t− s)α+β ]f(s)x ds = 0 (15)

Put ∥x∥2 = (x∗x)1/2 in equation (15), then∫ t−τ

0

∥∥∥{B∗
1Eα,α[A

∗
1(t− s)α+β ] +H∗

1Eα,α[A
∗
1(t− τ − s)α+β ]

}
f(s)x

∥∥∥2
2

+

∫ t

t−τ

∥∥∥B∗
1Eα,α(A

∗
1(t− s)α+β)f(s)x

∥∥∥2
2
= 0 (16)

since ∥x∥2 = 0 ⇔ x = 0. From the above equation (16) we have the following results

B∗
1Eα,α(A

∗
1(t− s)α+β)f(s)x = 0, for s ∈ [t− τ, t] (17){

B∗
1Eα,α[A

∗
1(t− s)α+β ] +H∗

1Eα,α[A
∗
1(t− τ − s)α+β ]

}
f(s)x = 0, for s ∈ [0, t− τ ] (18)

since the non-zero polynomial f(s) has finite number of zeroes on s ∈ [0, t− τ ] and s ∈ [t− τ, t], then
for t− τ ≤ s ≤ t equation (17) becomes

B∗
1Eα,α(A

∗
1(t− s)α+β)x = 0 (19)

For s ∈ [0, t− τ ] equation (18) becomes{
B∗

1Eα,α[A
∗
1(t− s)α+β ] +H∗

1Eα,α[A
∗
1(t− τ − s)α+β ]

}
x = 0 (20)

For 0 ≤ s ≤ t− τ , taking caputo derivative simultaneously along with (19) as follows,

B∗
1Eα,α(A

∗
1(t− s)α+β)(A∗

1)
ix = 0, i = 1, 2, ...n1 − 1 (21)

stick t = s on equation (21) yields

B∗
1(A

∗
1)

ix = 0, i = 1, 2, ...n1 − 1

Therefore, which implies that x ∈ kerB∗
1(A

∗
1)

i, i = 1, 2, ...n1 − 1
From the Cayley-Hamilton theorem

Eα,α(A
∗
1(t− s)α+β) =

∞∑
l=0

(t− s)(α+β)l

Γ(lα+ α)
(A∗

1)
l

=

n1−1∑
l=0

ηl(t− s)(A∗
1)

l (22)
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For s ∈ [0, t− τ ] insert (22) in (19) we get,

n1−1∑
l=0

B∗
1ηl(t− s)(A∗

1)
lx = 0 (23)

For s ∈ [0, t− τ ] put (23) into (20) we get,

H∗
1Eα,α[A

∗
1(t− τ − s)α+β ]x = 0 (24)

Continuously taking the Caputo fractional derivative on equation (24) and stick s = t− τ

H∗
1 (A

∗
1)

ix = 0, i = 1, 2, ...n1 − 1 (25)

which implies that x ∈ kerH∗
1 (A

∗
1)

i, i = 1, 2, ...n1 − 1. Hence,

KerW (f, t) ⊆
n1−1∩
i=0

kerB∗
1(A

∗
1)

i
n1−1∩
i=0

kerH∗
1 (A

∗
1)

i (26)

On the other hand, let us take x ∈
n1−1∩
i=0

kerB∗
1(A

∗
1)

i
n1−1∩
i=0

kerH∗
1 (A

∗
1)

i with x ̸= 0. Thus, x ∈

kerB∗
1(A

∗
1)

i and x ∈ kerH∗
1 (A

∗
1)

i, for i = 1, 2, ...n1 − 1, that is

B∗
1(A

∗
1)

ix = H∗
1 (A

∗
1)

ix = 0 (27)

For s ∈ [t− τ, t] from equation (17), we get

n1−1∑
l=0

B∗
1ηl(t− s)(A∗

1)
lx = 0, i = 1, 2, ...n1 − 1

For s ∈ [0, t− τ ], apply the same argument in equation (18) yields

n1−1∑
l=0

B∗
1ηl(t− s)(A∗

1)
lx+

n1−1∑
l=0

H∗
1ηl(t− τ − s)(A∗

1)
lx = 0, i = 1, 2, ...n1 − 1

Hence x ∈ KerW (f, t).
Therefore, we get

n1−1∩
i=0

kerB∗
1(A

∗
1)

i
n1−1∩
i=0

kerH∗
1 (A

∗
1)

i ⊆ KerW (f, t) (28)

From the results in the equations (26) and (28) we conclude that

kerW (f, t) =

n1−1∩
i=0

kerB∗
1(A

∗
1)

i
n1−1∩
i=0

kerH∗
1 (A

∗
1)

i (29)

Hence the theorem.

Definition 4.4 : Any vector v ∈ Rn in n-dimensional vector space is said to be reachable, there
exists an admissible initial data (x0, φ, g(0, x(0))) ∈ B, admissible control input u(t) ∈ Ch

p ([0,∞),Rm)
and tw > 0 such that the solution of system (1) or (2) satisfies x(tw, x0, φ, g(0, x(0))) = v

Let R(x0, φ, g(0, x(0))) be the reachable set from any initial data (x0, φ,
g(0, x(0))) ∈ B, then we have

R(x0, φ, g(0, x(0)) =
{
v ∈ Rn | (x0, φ, g(0, x(0)) ∈ B, u(t) ∈ Ch

p ([0,∞),Rm),

tw > 0, x(tw, x0, φ, g(0, x(0))) = v
}

(30)

Fixing the reachable set from the initial state x0 = 0, g(0, x(0)) = 0 and φ ≡ 0, t ∈ [−τ, 0], we derive
the following theorem for reachable set.
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Theorem 4.5 : For the system (2) the reachable set R(0, 0, 0) with zero initial state (x0 = 0,
g(0, x(0)) = 0 and φ ≡ 0) can be represented as

R(0, 0, 0) = ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩

where ⊕- direct sum of vector space.

Proof. Let v =

[
v1(t)
v2(t)

]
∈ R(0, 0, 0). From equations (9), (12) and (30) there exists tw > 0 and

u(t) ∈ Ch
p ([0,∞),Rm) such that

v1 =

∫ tw

0

Eα,α(A1(t− s)α+β)B1u(s) ds+

∫ tw−τ

0

Eα,α(A1(t− τ − s)α+β)H1u(t) ds

By using the Cayley-Hamilton theorem for above equation yields

v1 =

n1−1∑
k=0

∫ tw

0

ηk(tw − s)Ak
1B1u(s) ds+

n1−1∑
k=0

∫ tw−τ

0

ηk(tw − τ − s)Ak
1H1u(s) ds

which implies v1 ∈ ⟨A1 | B1,H1⟩, similarly from (12) and (22), we have

v2 =

n2−1∑
k=0

Mk[B2
CDk(α+β)u(tw) +H2

CDk(α+β)u(tw − τ)]

which implies v2 ∈ ⟨M | B2,H2⟩. Hence,

R(0, 0, 0) ⊆ ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩

Conversly, suppose that v =

[
v1(t)
v2(t)

]
∈ ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩. Here v1 ∈ ⟨A1 | B1,H1⟩, v2 ∈

⟨M | B2, H2⟩ with v1 ̸= 0, v2 ̸= 0.
For initial condition x1(0) = 0; φ(t) ≡ 0 for all t ∈ [−τ, 0]; g1(t, x(t)) ≡ 0 for all t ∈ [0, t] and take
u(s) = u1(s) + u2(s), then from equations (9) and (12) as,

x1(t) =

∫ t−τ

0

Eα,α(A1(t− s)α+β)B1[u1(s) + u2(s)] ds+

∫ t−τ

0

Eα,α(A1(t− τ − s)α+β)

×H1[u1(s) + u2(s)] ds+

∫ t

t−τ

Eα,α(A1(t− s)α+β)B1[u1(s) + u2(s)] ds (31)

x2(t) =

n2−1∑
k=0

Mk{B2
CDk(α+β)[u1(s) + u2(s)] +H2

CDk(α+β)[u1(s− τ) + u2(s− τ)]} (32)

By using method in [4], we choose u1 = f(s)y(s) to satisfy∫ tw

0

Eα,α(A1(tw − s)α+β)B1f(s)g(s) ds+

∫ tw−τ

0

Eα,α(A1(tw − τ − s)α+β)H1f(s− τ)g(s− τ) ds

= v1 −
∫ tw

0

Eα,α(A1(tw − s)α+β)B1u2 ds+

∫ tw−τ

0

Eα,α(A1(tw − τ − s)α+β)H1u2(s− τ) ds

≡ v̂1 (33)

CDk(α+β)u1(t) = CDk(α+β)u1(t− τ) = 0, for k = 0, 1, 2, ...n1 − 1. Thus u1(s) does not affect x2(t)
at s = t and s = t− τ . Here v̂1 ∈ ⟨A1|B1, H1⟩ from lemma (4.3), there exist a z ∈ Rn such that

W (f, t)z = v̂1

11



Now, to prove the equation (33) holds. Let us consider

y(s) =

{
f(s)

[
B∗

1Eα,α(A
∗
1(t− s)α+β)

]
z; t− τ ≤ s ≤ t

f(s)[B∗
1Eα,α

[
A∗

1(t− s)α+β
]
+H∗

1Eα,α

[
A∗

1(t− τ − s)α+β
]
z; 0 ≤ s ≤ t− τ

then∫ t−τ

0

f(s){Eα,α[A1(t− s)α+β ]B1B
∗
1Eα,α[A

∗
1(t− s)α+β ] + Eα,α[A1(t− τ − s)α+β ]H1H

∗
1

×Eα,α[A
∗
1(t− τ − s)α+β ]}f(s)z ds+

∫ t

t−τ

f(s)Eα,α[A1(t− s)α+β ]B1B
∗
1Eα,α[A

∗
1(t− s)α+β ]f(s)z ds

= W (f, t)z = v̂1 (34)

Therefore, the equation (33) is true. On the other hand, for v2 ∈ ⟨M |B2,H2⟩, there exists ak, bk such
that

v2 =

n2−1∑
k=0

MkB2ak +

n2−1∑
k=0

MkH2bk (35)

Then there exists a function h(s) such that CDk(α+β)h(0) = 0; CDk(α+β)h(s) = ak and
CDk(α+β)h(s− τ) = bk. Let

u2(s) =

{
h(s) ; 0 ≤ s ≤ t

0 ;−τ ≤ s ≤ 0

Therefore,

x2(t) =

n2−1∑
k=0

Mk{B2
CDk(α+β)u2(s) +H2

CDk(α+β)u2(s− τ)} (36)

and all initial conditions are zero. From equations (33) and (36) that v ∈ R(0, 0, 0). Hence the
theorem.

5 Controllability criteria

The following theorems and definitions establishes the controllability results for our determined system.

Definition 5.1 : System (1) or (2) is said to be controllable if for any tw > 0, one can reach any
admissible initial data (x0, φ, g(0, x(0)) ∈ B, any v ∈ Rn, there exist u ∈ Ch

p ([0,∞),Rm) such that
x(tw) = v.

Theorem 5.2 : Canonical form of (2) is controllable if and only if

rank[B1, A1B1, A
2
1B1, ..., A

n1−1
1 B1,H1, A1H1, ..., A

n1−1
1 H1] = n1 and (37)

rank[B2,MB2,M
2B2, ...,M

n2−1B2,H2,MH2, ...,M
n2−1H2] = n2 (38)

Proof. We first prove necessary part of this theorem. If the system (2) is controllable. For any

w =

[
w1

w2

]
∈ Rn, initial state x0 = 0 and the initial function φ(t) ≡ 0, ∃ tw > 0 and control

u(t) ∈ Ch
p ([0,∞),Rm) such that w1, w2 can be written as w1 ∈ ⟨A1|B1,H1⟩ and w2 ∈ ⟨M |B2, H2⟩

(ie)
w ∈ ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩
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is true ∀ w ∈ Rn

⇒ Rn ⊆ ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩

We know that
Rn ⊇ ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩

Therefore, we have

Rn = ⟨A1|B1,H1⟩ ⊕ ⟨M |B2,H2⟩ (39)

Hence ⟨A1|B1,H1⟩ = Rn1 and ⟨M |B2,H2⟩ = Rn2 . Since ⟨A1|B1,H1⟩ is generated by column vectors
[B1, A1B1, A

2
1B1, ..., A

n1−1
1 B1,H1, A1H1, ..., A

n2−1
1 H1] such that

rank[B1, A1B1, A
2
1B1, ..., A

n1−1
1 B1,H1, A1H1, ..., A

n1−1
1 H1] = n1

similarly,
rank[B2,MB2,M

2B2, ...,M
n2−1B2,H2,MH2, ...,M

n2−1H2] = n2

Thus the results (37) and (38) is true.
Conversely, if results in (37) and (38) is true. We have to prove (1) is controllable. For any v ∈ Rn

with any initial state x0 and initial control function φ(t). Let us consider,

m1 = v1 − Eα+β,1(A1t
α+β)x01 + tαEα+β,1+α(A1t

α+β)g(0, x(0))−
∫ t

0

(t− s)α−1

×Eα+β,α(A1(t− s)α+β)g1(s, x(s)) ds−
∫ t

0

Eα,α(A1(t− s)α+β)

×B1φ(0) ds−
∫ t−τ

0

Eα,α(A1(t− τ − s)α+β)H1φ(0) ds

−
∫ 0

−τ

Eα,α(A1(t− h− s)α+β)H1φ(s) ds (40)

m2 = v2 −
n2−1∑
k=1

Mk{Pk(t)x02 +Qk(t) +Rk(t)g(0, x(0)) + Sk(t)[B2φ(0)

+H2φ(−τ))} −B2φ(0)−H2φ(0) (41)

For m =

[
m1

m2

]
∈ Rn = ⟨A1|B1, H1⟩ ⊕ ⟨M |B2,H2⟩ and we have m ∈ R(0, 0, 0), then there exists a

control û(s) such that

m1 =

∫ t

0

Eα,α(A1(t− s)α+β)B1û(s) ds

+

∫ t−τ

0

Eα,α(A1(t− τ − s)α+β)H1û(s) ds (42)

m2 =

n2−1∑
k=0

Mk[B2
CDk(α+β)û(s) +H2

CDk(α+β)û(s− τ)] (43)

Now, let us take u(s) = û(s) + φ(0). From equations (40),(41),(42) and (43) as follows

13



v1 = Eα+β,1(A1t
α+β)x01 − tαEα+β,1+α(A1t

α+β)g(0, x(0)) +

∫ t

0

(t− s)α−1

×Eα+β,α(A1(t− s)α+β)g1(s, x(s)) ds+

∫ t

0

Eα,α(A1(t− s)α+β)

×(B1u(t)) +H1u(t− τ)) ds+

∫ 0

−τ

Eα,α(A1(t− h− s)α+β)H1φ(s) ds

v2(t) =

n2−1∑
k=1

Mk{Pk(t)x02 +Qk(t) +Rk(t)g(0, x(0)) + Sk(t)[B2φ(0)

+H2φ(−τ))}+
n2−1∑
k=1

Mk CDk(α+β)u(t) +

n2−1∑
k=1

Mk CDk(α+β)u(t− τ)

Therefore by the definition (5.1), our system (2) is controllable. Hence the theorem.

Theorem 5.3 : The Canonical form of equations (2) is controllable if and only if rank[sI −
A1, B1,H1] = n1, ∀s ∈ C, s is finite and rank[M,B2,H2] = n2.

Proof. According to Cayley-Hamilton theorem

Eα,α(A1(t− s)α+β) =

∞∑
l=0

(t− s)(α+β)l

Γ(lα+ α)
(A1)

l

=

n1−1∑
l=0

ηl(t− s)(A1)
l (44)

Let

χ = Eα+β,1(A1w
α+β)x01 +

∫ w

0

(w − s)α−1Eα+β,α(A1(w − s)α+β)g1(s, x(s)) ds

+

∫ 0

−h

Eα,α(A1(w − τ − s)α+β)− wαEα+β,1+α(A1w
α+β)g(0, x(0))H1u(s) ds (45)

The following results from equations (9) ,(44) and (45) as,

x1(w)− χ =

n1−1∑
k=0

∫ w

0

ηk(w − s)Ak
1B1u(s) ds+

n1−1∑
k=0

∫ w−τ

0

ηk(w − τ − s)Ak
1H1u(s) ds (46)

For any x01 ∈ Rn and x(w) ∈ Rn the necessary and sufficient condition to have a control input u(t)
satisfies (46) is that

rank[B1|A1B1|...|An1−1
1 B1|H1|...|An1−1

1 H1] = n1

On the other hand, apply similar arguments we get

rank[B2|MB2|...|Mn2−1B2|H2|...|Mn2−1H2] = n2

Hence the proof.

Corollary 5.4 : System (1) is controllable if and only if rank[sE − A,B,C] = n, ∀s ∈ C is finite
and rank[E,B,C] = n.
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6 Examples

Example 6.1 : Let us consider the linear fractional singular system0 1 0
1 0 1
0 3 0

CD4/5(CD2/5x(t)− tx2(t))

=

1 1 0
0 0 1
2 3 −1

x(t) +

1 0
1 −1
0 2

u(t) +

0 0
0 −3
1 2

u(t− 3π

2
) (47)

For t ∈ [0, 2] and u(t) = 0; −3π
2 < t ≤ 0 and the inital conditions are x1(0) = 0; x2(0) = 0;

CDαx(t)|t=0 = 0
According to the results in theorem (5.4) to show that the system (47) is controllable. Let us take

α = 4
5 ; β = 2

5 ; E =

0 1 0
1 0 1
0 3 0

 ; A =

1 1 0
0 0 1
2 3 −1

 ; B =

1 0
1 −1
0 2

 ;

and H =

0 0
0 −3
1 2


If we take λ = 2 then

λE +A = 2

0 1 0
1 0 1
0 3 0

+

1 1 0
0 0 1
2 3 −1

 =

1 3 0
2 0 3
2 9 −1

 = −3 ̸= 0

Therefore we conclude from definition (5.1) is that (E,A) is regular pencil. By using elementary
operation in matrix, we get that results as follows

rank[sE −A,B,C] = rank

1 0 0 ∗ ∗ ∗
0 0 −1 ∗ ∗ ∗
0 1 2 ∗ ∗ ∗

 = 3

rank[E,B,C] = rank

1 0 1 ∗ ∗ ∗
0 1 0 ∗ ∗ ∗
0 0 1 ∗ ∗ ∗

 = 3

Therefore from the theorem (5.4), system (47) is controllable. Hence the proof.

7 Conclusion

The first contribution of this work is to introduced class of equations of fractional singular systems
with two orders. The second contribution of this paper is to establish the rechability and control-
lability analysis of our considered model. Necessary and sufficient conditions for reachability and
controllability of addressed systems are exposed The proposed model allows us to analyze the behav-
ior of the subsystems given in section 3. This extended can be easily adopted to real world problems
whereas the variance of dynamical systems.
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