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Abstract. In this paper, we considered a one-dimensional problem for a half-space in generalized 
thermoelastic for two models; Lord-Shulman (L-S) and the dualphase-lag (DPL) theories. The 
surface of the half-space is assumed to be traction free and subjected to the effects of a heat source 
varying exponentially with time at the boundary. The homotopy perturbation method is applied to 
obtain the approximate solution of thermoelastic interactions with boundary condition. The 
numerical results obtained are displayed graphically to show the influences of the new 
parameters.The effects of the heat source varying with time and zero traction force are studied on 
displacement, temperature and stress.  
 
Keywords: Generalized thermoelastic, homotopy perturbation method, Lord-Shulman, dual phase-
lag. 
 
1. Introduction 

Lord and Shulman [1] investigated ageneralized dynamical theory ofthermo-elasticity. Green and 
Lindsay [2] proposed a theory of generalized thermo-elasticity with two relaxation time parameters 
and modified both theenergy equation and constitutive equations. Chandrasekharaiah [3] discussed 
one-dimensional wave propagation in the linear theory of thermoelasticity with energy dissipation. 
Dhaliwal and Singh [4] studied dynamic coupled thermo-elasticity. Hetnarski and Ignaczak [5] 
developed other thermoelasticity theories. Roychoudhuri [6] discussed one-dimensional 
thermoelastic waves in elastic half-space with dual-phase-lag effects. Abouelregal [7] studied 
Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. Aboueregal and 
Abo-Dahab [8] used dual-phase-model on magneto-thermoelasticity infinite non homogeneous 
solid having a spherical cavity. Mukhopadhyay et al. [9]showed the representation of solutions for 
the theory of generalized thermo-elasticity with three phase lags. Chandrasekharaiah and Srinath 
[10] illustrated one dimensional wave in a thermoelastic half-space without energy dissipation. 
Chandrasekharaiah [11] studied the hyperbolic theories of thermoelasticity for example extended 
thermoelasticity and the temperature-rate dependent thermoelasticity. Yadav and Kumar [12] used 
homotopy analysis approach to thermoelastic interactions under the boundary condition: heat source 



2 
 

varying exponentially with time and zero stress. Rashidi, and Pour [13] investigated analytic 
approximate solutions for unsteady boundary layer flow and heat transfer due to a stretching sheet 
by homotopy analysis method. Kuppalapalle [14] studied homotopy analysis method for a magneto 
hydrodynamic viscoelastic fluid flow and heat transfer in a channel with a stretching wall. Abd-Alla 
et al. [15] studied harmonic wave generation in nonlinear thermoelasticity. Mohyud-Din and Noor 
[16] and [17] used homotopy perturbation method for solving fourth-order boundary value 
problems to partial differential equations. He [18] and [19] investigatedapproximate solution of 
nonlinear differential equations with convolution product nonlinearities. Liao  [20] used on the 
homotopy analysis method for nonlinear problems. . Roul [21] used the numerical solution of 
singular two-point boundary value problems: A domain decomposition homotopy perturbation 
approach. 
 

In this paper, we used homotopy perturbation method to obtain the approximate solution of 
thermoelastic interactions with boundary condition under two models of thermoelasticity; Lord-
Shulman (L-S) and the dual phase-lag (DPL) theories. The results clear the quality of the proposed 
method. 
 
2. Introduction to the basic idea of homotopy Perturbation Method  
 
Weconsider general equation of type  

  0L u  ,                                                                                                 (1) 
Where L is an integral or differential operator. We choose a convex homotopy 

       , 1H u p p F u pL u                                                                 (2) 

 F u  functional operator with known solution 0u ,which can be easily obtained. It is clear that 

 , 0H u p  .                                                                                            (3) 

From which we have    ,0H u F u and    ,1H u L u .This shows that  ,H u p continuously traces 

an implicitly defined curve from a starting point  0 ,0H u to a solution  ,1H u . The embedding 

parameter increases monotonically from zero to unity as the problem   0F u   continuously 

deforms the original problem   0L u  . Theembedding parameter can be considered as an 

expanding parameter. The HPM uses the homotopy parameter  0,1p  as an expanding parameter 

to obtain 

                                      
2
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0

i
i

i
u p u u pu p u





                                                                    (4) 

If 1p  , then equation (4) corresponds to (2) and becomes the approximate solution of the form 

1 0
lim ip i

u u u





                                                                                               (5) 

It is well know that the series (5) is convergent for most of the cases and also the rate of 
convergence is dependent on  L u . 
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3. Formulation of the problem and the basic equations 
 
Equation of motion 

2

, 2
i

ij j
u
t

 





                                                                                                   (6) 

Heat conduction equation 

 
2

, 021 ii EC e
t t t

    

                
                                                         (7) 

The constitutive equations are given by 
 02ij ij kk ij ije e                                                                             (8) 

We consider a homogeneous isotropic and thermoelastic half-space which fills the region subjected 
to a heat source varying exponentially with time on the boundary plane and the surface x  0 is 
assume to be traction free. The governing equation will be written in the context of two models; 
Lord-Shulman (L-S) and the dual phase-lag (DPL) theories. The displacement component is of the 
form  ,0,0 0i y zu u u u    

From equations (6-8) we obtain 

 
2 2

2 22u u
t x x

     
  

  
                                                                             (9) 

 
2 2

02 21 EC e
t x t t

    

                  
                                                      (10) 

   02xx
u
x

   
   


                                                                          (11) 

Where 
ue
x





 

We define the following non-dimensional variables 
2 2 2

1 1 1 1 1

2
1

0

, , , , ,
2, , ,

2
E xx

xx

x c x u c u t c t c c
C c

      
     
   

         

     
 

 

By using non-dimensional variables in to equations (9)-(11) we obtain 
2 2

12 2

u ua
x x t

  
 

  
                                                                                           (12) 

2 2 2 3

22 2 21 u ua
t x t t t x t x

  
  

                        
                                      (13) 

1xx
u a
x

 
 


                                                                                               (14) 



4 
 

where  0
1 2,

2 E

a a
C

 
  


 


 

4. Solution using the homotopy perturbation method: 

From (12) and (14), we get 
2 2 2

12 2 2
xx xx a
x t t
    

 
                                                                                     

(15) 

From (13) and (14), we get 

   
22 2 3

22 2 2 21 1 xx xxa
x t t t x t t

    
    

     
              

                    (16) 

Where 1 2a a   
We assume that the boundary conditions as  

   ,0 , ,0 0t
xxt e t                                                                       (17) 

According to the homotopy perturbation, we construct the following homotopy 
2 2 2

12 2 2 0xx xxp a
x t t
     

       
                                                                  (18) 

   
22 2 3

22 2 2 21 1 0xx xxp a
x t t t x t t

        

      
                  

(19) 

Where  0,1p  is an embedding parameter, we use it to expand the solution in the following form: 

  0 1 2 2, ...xx xx xx xxx t p p                                                                        (20) 

  1 2 2 3 3, ...x t p p p                                                                        (21) 

The approximate solution can be obtained by setting 1p in equation (20) and (21). Substituting

 , xx x t and  , x t from equations (20), (21) to (18), (19) respectively, we can obtain series of 

linear equations. Here we write only the first few linear equations: 
2 0

0
2: 0xxp

x





                                                                                                   (22) 

2 0
0

2: 0p
x





                                                                                                     (23) 

2 1 2 0 2 0
1

12 2 2: xx xxp a
x t t
    

 
  

                                                                            (24) 

   
0 2 02 1 0 2 0 3 0

1
2 22 2 2 2: 1 1 xx xxp a a

x t t t x t t
        

    
      

      
          (25) 

2 2 2 1 2 1
2

12 2 2: xx xxp a
x t t
    

 
                                                                                

(26) 
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   
1 2 12 2 1 2 1 3 1

2
2 22 2 2 2: 1 1 xx xxp a a

x t t t x t t
        

    
      

      
          (27) 

The solution of equations (22) and (23) can be calculated by using the boundary conditions (17): 
       0 0, ,0 0, , ,0 t

xx xxx t t x t t e                                       (28) 

From equations (24) and (25) we can find: 

 
2 0 2 0

1
12 20 0 0 0

,
x x x xxx

xx x t dxdx a dxdx
t t
 

 
 

      

2
1

1 2!
t

xx
xa e  

  
                                                                                               

(29) 

     
2 00 2 0

1
22 20 0 0 0 0 0

3 0

20 0

, 1 1
x x x x x x xx

x x

x t dxdx dxdx a dxdx
t t t

dxdx
t x

     



 
    

  



 

     

 

     
2

1 , 1 1
2!

txx t e    
    

 
                                                                      (30) 

Similarly, 

   
4

2
1, 1

4!
t

xx
xx t a e     

      
 

                                                                (31) 

           
4 2

2 22 , 1 1 1 1 1
4! 2!

t tx xx t e e         


                   
      (32) 

           

  

6
2 2 23 2

1

4

1

, 1 1 2 1 2 1
6!

1 1
4!

t
xx

t

xx t a e

xa e

         

  






               
 

      
 

        (33) 

 

       

       

   

        

2 2

6
2 23

1 2 1 2

4
2 2

1 1 1 1

, 1 1 1 1
6!

1 1

1 1 1 1
4!

t

t

xx t e

a a a a

x e

     

       

      

      




 

          
                

             
 

       
 

                                                            (34) 

Consequently, we have the following solution in a series form 

   
2 4 63

1 2 3
0

, ,
2! 4! 6!

i t
xx xx

i

x x xx t x t m m m e  



 
    

 


                           
(35) 
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   
2 4 63

1 2 3
0

, , 1
2! 4! 6!

i t

i

x x xx t x t n n n e  



 
     

 
                                (36) 

From equation (12), we find that 

     
2 4 6

1 1 1 1 1 2 2 1 3 32! 4! 6!
tu x x xa a n m a n m a n m e

x
 

         
                  (37) 

By integrating equation (35) with respect to x, we get 

       
3 5 7

1 1 1 1 1 2 2 1 3 3,
1! 3! 5! 7!

tx x x xu x t a a n m a n m a n m e  
       
             

(38) 

Where  
     

       
1 1 2 1 1

2 2 22
3 1

, 1 1 1 ,

1 1 2 1 2 1 ,

     

        

            
           

m a m a a

m a
 

      1 1 1 1 1 ,         n          2 2 2 2
2 1 1 1 1 1 ,                 n

           
 

3 3 32 3
3

2

[ 1 3 1 2 1 3 1 4 1 1

2 1 ],

          

    

            

   

n
 

5. Numerical results and discussion 

We choose the copper material for purposes of numerical evaluations. The physical data which 
given as 

10 2 10 1 2 3

5 1 3
0

7.76 10 , 3.86 10 . , 8954 ,
1.78 10 , 8886.73 , 383.1, 293

  

 

   

  

    

     
t E

Nm Kg m S kgm
k sm C T k

 

Figs. (1) and (4): illustrate variation of displacementu  at 0.2t under L-S and DPL theories. It 
noticed that the distribution ofu is increase with increase space variable x to (L-S) theory, but the 
distribution ofu is decrease with increase space variable x to (DPL) theory. 
Figs. (2) and (5): display the variation of temperature  at 0.2t under L-S and DPL theories. The 
distribution of temperature  decreases gradually and finally gets zero value after travelling a 
distance. We notice that effect of LS DPL in all interval of variable x . 
Figs. (3) and (6): explain variation of stress xx  at 0.2t under L-S and DPL theories. The 
distribution of stress xx is increase with increase space variable x to (L-S) theory, but the 
distribution ofu is decrease with increase space variable x to (DPL) theory. 
 
6.Conclusion 

According to the above results, we can conclude that: 

1.We found that, the parameters and  have significant effects on all the fields. 
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2.The comparison of different theories of thermoelasticity; Lord and Shulman (LS) theory and 

Chandrasekharaiah and Tzou (DPL) theory is very clear. 

3.All the physical quantities satisfy the boundary conditions. 

4.Homotopy perturbation method used to derive displacement, temperature and stress. 
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