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Abstract

In this paper, we deal with the equation

(an − 2)(bn − 2) = x2, 2 ≤ a < b, a, b, x, n ∈ N. (1)

We solve the equation (1) for (a, b) ∈ {(2, 10), (4, 100), (10, 58), (3, 45)} .
Moreover, we show that (an − 2)(bn − 2) = x2 has no solution n, x if 2|n
and gcd(a, b) = 1. We also give a conjecture which says that the equation
(2n − 2)((2Pk)n − 2) = x2 has only the solution (n, x) = (2, Qk), where
k > 3 is odd and Pk, Qk are Pell and Pell Lucas numbers, respectively. We
also conjecture that if the equation (an − 2)(bn − 2) = x2 has a solution
n, x, then n ≤ 6.
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MSC: 11D61, 11D31, 11B39

1 Introduction

Over the last decades, several authors have dealt with the equation

(an − 1)(bn − 1) = x2, x, n ∈ N, (2)

where a > 1 and b > 1 are different fixed integers. Firstly, Szalay [14] handled
the equation (2) for (a, b) = (2, 3), (2, 5), and (2, 2k). He showed that there is no
solution if (a, b) = (2, 3). Also he proved that there is only the solution n = 1
for (a, b) = (2, 5), and only the solution k = 2 and n = 3 for (a, b) = (2, 2k) with
k > 1. Then, in [4], the authors determined that the equation (2) has no solutions
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for (a, b) = (2, 6) and that has only the solutions (a, n, k) = (2, 3, 2), (3, 1, 5),
and (7, 1, 4) for (a, b) = (a, ak) with kn > 2. Last result was extended by Cohn
[1] to the case al = bk. He also proved that the equation (2) has no solutions if
4|n except for (a, b) = (13, 239), in which case n = 4. Later, in [7, 11, 17, 18],
the authors studied the equation (2) for the different values of a and b. Lastly,
in [6], Keskin proved that the equation (2) has no solutions for n > 4 with 2|n
if a and b have opposite parity. Keskin also proved that if gcd(a, b) = 1, 2||n,
and n > 4, then the equation (2) has no solutions.

Motivated by the above studies, in this study, we consider the equation (1).
By assuming the abc conjecture is true, in [8], Luca and Walsh gave the following
theorem:

Theorem 1 Let a, b, c, d, e be non-zero integers. Then the abc conjecture im-
plies that the equation

(axm + b)(cyn + d) = ez2

has only finitely many solutions (x, y, z,m, n) satisfying xyz 6= 0, daxm 6= bcyn
and min(m,n) ≥ 5.

This theorem implies that the equation (1) has only finitely many solu-
tions n, x if a and b are different fixed positive integers. For more infor-
mation on the abc conjecture, one can consult [13]. In this paper, we dis-
cuss on the solution of the equation (1) and solve this equation for (a, b) ∈
{(2, 10), (4, 100), (10, 58), (3, 45)} . Our method is elementary and use solutions
of Pell equations and properties of the first and second kind Lucas sequences.
In the last section, we give a conjecture which says that the equation (2n −
2)((2Pk)

n − 2) = x2 has only the solution (n, x) = (2, Qk), where k > 3 is odd
and Pk, Qk are Pell and Pell Lucas numbers, respectively. We also conjecture
that if the equation (an− 2)(bn− 2) = x2 has a solution n, x, then n ≤ 6, where
2 ≤ a < b.

2 Preliminaries

In this study, while solving the equation (1), the first and second kind of Lucas
sequence (Un(P,Q)) and (Vn(P,Q)) play an essential role. So, we need to recall
them.
Let P and Q be nonzero relatively prime integers such that P 2 + 4Q > 0.

Define

U0(P,Q) = 0, U1(P,Q) = 1, Un+1(P,Q) = PUn(P,Q)+QUn−1(P,Q) for n ≥ 1,

V0(P,Q) = 2, V1(P,Q) = P, Vn+1(P,Q) = PVn(P,Q)+QVn−1(P,Q) for n ≥ 1.

Sometimes, we write Un and Vn instead of Un(P,Q) and Vn(P,Q), respectively.
For (P,Q) = (2, 1), we have Pell and Pell-Lucas sequences (Pn) and (Qn). The
following identities concerning the sequences (Un) and (Vn) , which will be used
in the next section, are well known (see [12, 15, 16]).
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Let d = (m,n). Then
(Um, Un) = Ud (3)

and

(Vm, Vn) =

{
Vd if m/d and n/d are odd,

1 or 2 otherwise.
(4)

V2n = V
2
n − 2(−Q)n (5)

V3n = Vn(V
2
n − 3(−Q)n) (6)

Vn(P,−1) = Un+1(P,−1)− Un−1(P,−1). (7)

If P is even, then
Vn is even,

2|Un if and only if 2|n, (8)

and
Un(P,−1)− Un−1(P,−1) is odd. (9)

Let d be a positive integer which is not a perfect square andN be any nonzero
fixed integer. Then the equation x2 − dy2 = N is known as Pell equation. For
N = 1, the equation x2 − dy2 = 1 is known as classical Pell equation. We use
the notations (x, y), and x + y

√
d interchangeably to denote solutions of the

equation x2 − dy2 = N. Also, if x and y are both positive, we say that x+ y
√
d

is positive solution to the equation x2 − dy2 = N. The least positive integer
solution x1 + y1

√
d to the equation x2 − dy2 = N is called the fundamental

solution to this equation.
Now, consider the Pell equation

x2 − dy2 = 1. (10)

If x1 + y1
√
d is the fundamental solution of the equation (10), then all positive

integer solutions of this equation are given by

xn + yn
√
d =

(
x1 + y1

√
d
)n

(11)

with n ≥ 1. Using the identity (10) and definitions of the sequences Un(P,Q)
and Vn(P,Q), the following lemma can be proved (see also Lemma 13 in [6]).

Lemma 2 Let x1+y1
√
d be the fundamental solution of the equation x2−dy2 =

1. Then all positive integer solutions of the equation x2 − dy2 = 1 are given by

xn =
Vn(2x1,−1)

2
and yn = y1Un(2x1,−1)

with n ≥ 1.

By Theorem 110 given in [10], we can give the following lemma.
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Lemma 3 Let k1+t1
√
d be the fundamental solution of the equation u2−dv2 =

2 and let x1 + y1
√
d be the fundamental solution of the equation x2 − dy2 = 1.

Then all positive integer solutions of the equation u2 − dv2 = 2 are given by

Xn + Yn
√
d =

(
k1 + t1

√
d
)(
x1 + y1

√
d
)n

(12)

with n ≥ 1.

Let us denote v2(m) by the exponent of 2 in the factorization of the positive
integer m. Then we have

Lemma 4 (Lemma 2.1, [2])If P is even, then

v2(Vn(P,−1)) =
{
v2(P ) n ≡ 1(mod 2),
1 n ≡ 0(mod 2).

Lemma 5 (Theorem 2.2, [15])Let a be a positive integer which is not a perfect
square and let b be a positive integer. Let u1

√
a+v1

√
b be the minimal solution of

the equation ax2− by2 = 1 and P = 4au21−2. Then all positive integer solutions
of the equation ax2− by2 = 1 are given by (x, y) = (u1(Um+1−Um), v1(Um+1+
Um)) with n ≥ 0, where Um = Um(P,−1).

Lemma 6 (3.5.Corollary, [16])Let n ∈ N ∪ {0}, m, r ∈ Z and m be a nonzero
integer. Then

U2mn+r(P,−1) ≡ Ur(P,−1)(modUm(P,−1)). (13)

We have

3|Un(P,−1)⇐⇒
{

3|P and 2|n,
P ≡ 1(mod 3) and 3|n, (14)

and

5|Un(P,−1)⇐⇒

 P ≡ 0(mod 5) and 2|n,
P 2 ≡ 1(mod 5) and 3|n,

P 2 ≡ −1(mod 5) and 5|n,
(15)

for every natural number n.

Lemma 7 Let P ≡ 1(mod a) and n ≥ 1. Then a|Un(P,−1) − Un−1(P,−1) if
and only if n ≡ 2,5(mod 6).

The above identities and Lemma 7 can be proved by using the identity (13).
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3 Main Theorems

From now on, we assume that the numbers a and b are fixed integers such that
2 ≤ a < b and n > 1.

Theorem 8 The equation (an − 2)(bn − 2) = x2 has no solution (n, x) in the
following cases:

i) if a and b have opposite parity,
ii) if a = 2tr and b = 2ls with t 6= l and r, s odd, and 2 | n,
iii) if a = 2tr and b = 2lr such that t and l have the same parity with t 6= l

and r is odd.
Proof. i) Without loss of generality, assume that a is even and b is odd. Say
a = 2tr with r odd and t ≥ 1. Then we have the equation

2(2nt−1rn − 1)(bn − 2) = x2.

It can be seen that the number v2
(
2(2nt−1rn − 1)(bn − 2)

)
is odd. This

contradicts the fact that the number v2
(
x2
)
is even.

ii) Let 2|n. Assume that a = 2tr and b = 2ls such that r and s are odd, and
t 6= l. Then we get

(2nt−1rn − 1)(2nl−1sn − 1) = (x/2)2 . (16)

Let d = gcd
(
2nt−1rn − 1, 2nl−1sn − 1

)
. Thus, from the equation (16), we obtain

2

(
2
nt−2
2 r

n
2

)2
− du2 = 1 and 2

(
2
nl−2
2 s

n
2

)2
− dv2 = 1

for some integers u and v with gcd(u, v) = 1. By Lemma 5, it follows that

2
nt−2
2 r

n
2 = u1(Uc+1 − Uc) and 2

nl−2
2 s

n
2 = u1(Uk+1 − Uk),

where u1
√
2+v1

√
d is the minimal solution of the equation 2x2−dy2 = 1. Since

Uc+1 − Uc and Uk+1 − Uk are odd by the identity (9), it can be seen that

v2 (u1) = v2

(
2
nt−2
2

)
= v2

(
2
nl−2
2

)
.

This shows that t = l, which contradicts the fact that t 6= l.
iii) If 2 | n, then the proof is obvious from ii). Now let 2 - n. Assume that

a = 2tr and b = 2lr such that t and l have the same parity with t 6= l. Then, we
get

(2nt−1rn − 1)(2nl−1rn − 1) = (x/2)2 .

Let n = 2k+1.We shall discuss separately the proof according to whether both
of t and l are even or odd.
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Let t and l be odd. In this case, we obtain the equation

r

(
2
nt−1
2 rk

)2
− du2 = 1 and r

(
2
nl−1
2 rk

)2
− dv2 = 1 (17)

for some integers u and v with gcd(u, v) = 1, where d = gcd
(
2nt−1rn − 1, 2nl−1rn − 1

)
.

If r is not a perfect square, then Lemma 5 and the identity (17) imply that

2
nt−1
2 rk = u1(Uc+1 − Uc) and 2

nl−1
2 rk = u1(Uk+1 − Uk), (18)

and if r = z2, then Lemma 2 and (17) imply that

2
nt−1
2 z2k+1 =

Vm1
(2x1,−1)
2

and 2
nl−1
2 z2k+1 =

Vm2
(2x1,−1)
2

, (19)

where u1
√
r + v1

√
d and x1 + y1

√
d are, respectively, the minimal solution of

the equations rx2 − dy2 = 1 and x2 − dy2 = 1. Since Uc+1 −Uc and Uk+1 −Uk
are odd by the identity (9), (18) gives us that

v2 (u1) = v2

(
2
nt−1
2

)
= v2

(
2
nl−1
2

)
.

Thus, we get t = l, which contradicts the fact that t 6= l. On the other hand,
since Vm1

(2x1,−1)/2 and Vm2
(2x1,−1)/2 are even by (19), it is obvious that

v2(Vm1
), v2(Vm2

) ≥ 2. Therefore, we see that

v2 (2x1) = v2

(
2
nt−1
2 z2k+1

)
= v2

(
2
nl−1
2 z2k+1

)

by Lemma 4. From here, we get
nt− 1
2

=
nl − 1
2

, i.e., t = l, which contradicts

the fact that t 6= l.
In case both t and l are even, the proof is similar and we omit the proof.
From Theorems 8, we can conclude the following result.

Corollary 9 Let a be even, b = 2ka with k ≥ 1 and let v2(a) and v2(b) have
the same parity. Then the equation (an−2)(bn−2) = x2 has no solution (n, x).

By simple congruence modulo 3 arguments, one can prove the following two
corollaries.

Corollary 10 Let 3 - a and 3 | b. If 2 | n, then the equation (an−2)(bn−2) = x2
has no solution (n, x).

Corollary 11 If a ≡ 1(mod 3) and 3 | b, then the equation (an−2)(bn−2) = x2
has no solution (n, x).

If a+ b
√
d is a solution of the equation x2 − dy2 = 2, then (a+ b

√
d)2/2 =(

a2 + db2
)
/2 + ab

√
d is a solution of the equation x2 − dy2 = 1.

The proof of the following lemma can be found in Lemma 1 [5].
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Lemma 12 Let d > 2. If k1+ t1
√
d is the fundamental solution of the equation

u2 − dv2 = 2, then
(
k21 + dt

2
1

)
/2 + k1t1

√
d is the fundamental solution of the

equation x2 − dy2 = 1.

Theorem 13 Let d > 2. Let x1 + y1
√
d and k1 + t1

√
d be the fundamental

solutions of the equations x2 − dy2 = 1 and u2 − dv2 = 2, respectively. Then
(x1, y1) = (k

2
1 − 1, k1t1) and all solutions of the equation u2− dv2 = 2 are given

by
(Xn, Yn) = (k1 (Un+1 − Un) , t1 (Un+1 + Un))

with n ≥ 1, where Un = Un(2x1,−1).

Proof. Since k1+t1
√
d is the fundamental solutions of the equation u2−dv2 =

2, then x1 + y1
√
d =

(
k21 + dt

2
1

)
/2 + k1t1

√
d is the fundamental solution of the

equation x2 − dy2 = 1 by Lemma 12. It is immediately seen that (x1, y1) =
(k21 − 1, k1t1). By the identity (12), all positive solutions of the equation u2 −
dv2 = 2 are given by Xn + Yn

√
d =

(
k1 + t1

√
d
)(
x1 + y1

√
d
)n
. Therefore

Xn + Yn
√
d =

(
k1 + t1

√
d
)(
xn + yn

√
d
)
. It follows that

Xn + Yn
√
d =

(
k21 + y1

√
d

k1

)(
x1 + y1

√
d
)n

=

(
x1 + 1 + y1

√
d

k1

)(
x1 + y1

√
d
)n

=
1

k1

[(
x1 + y1

√
d
)n+1

+
(
x1 + y1

√
d
)n]

.

Thus
Xn =

xn+1 + xn
k1

and Yn =
yn+1 + yn

k1

Since (xn, yn) is a solution of the equation x2 − dy2 = 1, we have

(xn, yn) = (Vn(2x1,−1)/2, y1Un(2x1,−1))

by Lemma 2. Using the identity (7), we get

Xn =
1

2k1
(Vn+1 + Vn) =

1

2k1
(Un+2 − Un + Un+1 − Un−1)

=
1

2k1
(2x1Un+1 − Un − Un + Un+1 + Un+1 − 2x1Un)

=
1

2k1
[(2x1 + 2)Un+1 − (2x1 + 2)Un]

=
1

2k1

[
2k21Un+1 − 2k21Un

]
= k1 (Un+1 − Un)
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and

Yn =
1

k1
(y1Un+1 + y1Un) =

y1
k1
(Un+1 + Un) = t1 (Un+1 + Un) .

Now, we can give the following result.

Corollary 14 Let gcd(a, b) = 1. Then the equation (an − 2)(bn − 2) = x2 has
no solutions if 2|n.

Proof. Assume that gcd(a, b) = 1 and 2|n. Let n = 2m. Then

(am)
2 − du2 = 2 and (bm)2 − dv2 = 2, (20)

for some integers u and v with gcd(u, v) = 1, where d = (an−2, bn−2). If d = 1,
then we get (am)2 − u2 = 2, a contradiction. Therefore d > 2. Assume that
(x1, y1) and (k1, t1) are the fundamental solutions of the equations x2−dy2 = 1
and u2 − dv2 = 2, respectively. Then by Theorem 13, we get

am = k1(Ur − Ur−1), u = t1(Ur + Ur−1)

and
bm = k1(Us − Us−1), v = t1(Us + Us−1).

Since gcd(a, b) = 1, we get gcd(am, bm) = 1. From the above equations it
follows that (k1, t1) = (1, 1) since gcd(am, bm) = gcd(u, v) = 1. This implies
that d = −1, which is impossible.

Using Mathematica, we verified for all 2 ≤ a < b ≤ 300 and n in the
range 2 ≤ n ≤ 1000 that the equation (an − 2)(bn − 2) = x2 has only solutions
(a, b, n, x) = (2, 10, 2, 14), (2, 10, 6, 7874), (2, 58, 2, 82), (3, 45, 2, 119), (4, 100, 3, 7874),
(10, 58, 2, 574), (5, 235, 2, 1127), (4, 116, 3, 434). We will solve the equation (an−
2)(bn − 2) = x2 for (a, b) = (2, 10), (3, 45), (4, 100), (10, 58).

The proofs of the following two lemmas can be done by induction on m.

Lemma 15 Let m ≥ 4. Then 5m > 22m+1 − 3.

Lemma 16 Let m ≥ 2. Then 2 · 34m−3 > 5m + 1.

From Lemma 15, we can give the following corollary.

Corollary 17 Let m and z be positive integers. If (z + 1)(2z − 1)2 = 102m,
then m = 1, z = 3 or m = 3, z = 63.

Theorem 18 The equation (2n − 2)(10n − 2) = x2 has only the solutions
(n, x) = (2, 14), (6, 6874).

Proof. It is obvious that (n, x) = (2, 14) is a solution. Let n > 2. Firstly,
assume that n is even, say n = 2m. Then

(2m)
2 − 2du2 = 2 and (10m)2 − 2dv2 = 2
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for some integers u and v with gcd(u, v) = 1, where 2d = gcd(2n − 2, 10n − 2).
Since m > 1, it can be seen that 2d > 2. Hence, by Theorem 13, it follows that

2m = k1(Ur − Ur−1), u = t1(Ur + Ur−1)

and
10m = k1(Us − Us−1), v = t1(Us + Us−1),

where Ut = Ut(2x1,−1) and (x1, y1) and (k1, t1) are the fundamental solutions
of the equations x2−2dy2 = 1 and u2−2dv2 = 2, respectively. Since Ur+Ur−1
is odd by the identity (9) and gcd(u, v) = 1, it follows that k1 = 2m, r = 1, and
t1 = 1, which implies that u = 1. Thus (2m)

2 − 2d = 2, i.e., d = 2n−1 − 1. By
Lemma 12, x1 + y1

√
2d = (2m +

√
2d)2/2 = 2n − 1 + 2m

√
2d. This shows that

x1 = 2
n−1 and y1 = 2m. On the other hand, since (10m)2−2dv2 = 2, it follows

that

(10m + v
√
2d)2 = 102m + 2dv2 + 10m2v

√
2d

= 10n − 1 + 10mv
√
2d.

It can be easily seen that 10n − 1 + 10mv
√
2d is a solution of the equation

x2 − 2dy2 = 1. Thus we have

10n − 1 = Vk(2x1,−1)/2 and 10mv = y1Uk(2x1,−1) = 2mUk
for some positive integer k by Lemma 2. This implies that 5|Uk. Now assume
that 4|n. Then U2 = P = 2x1 = 2n+1 − 2 ≡ 0(mod 5) and this implies that k is
even since 5|Uk. Taking k = 2c, we get 2 ·10n−2 = V2c = V 2c −2 by the identity
(5), i.e., 2 · 10n = V 2c . This is impossible. Hence 2||n. Then P ≡ 1(mod 5).
Since Uk = U6q+r ≡ Ur(modU3) by the identity (13) and 5|U3, it follows that
k = 3t. This implies that 2 · 10n − 2 = V3t = V 3t − 3Vt by the identity (6).
Taking Vt = 2z, then, from the last equality, we get (z+1)(2z−1)2 = 102m. By
Corollary 17, it follows that m = 1 or m = 3. Since n > 2, we get n = 2m = 6.

Secondly, assume that n is odd. If n = 4k + 3, then x2 = (2n − 2)(10n −
2) ≡ −2(mod 5), a contradiction. If n = 4k + 1, then we have the equation

(24k − 1)(24k54k+1 − 1) =
(x
2

)2
. This implies that(

2k
)4 − du2 = 1 and 5 (10k)4 − dv2 = 1

for some integers u and v with gcd(u, v) = 1, where d = gcd(24k−1, 24k54k+1−1).
From the equation

(
2k
)4−du2 = 1, we can write that 22k−1 = ra2, 22k+1 = sb2

for some integers a, b, r, s, where rs = d. The equation 5
(
10k
)4−dv2 = 1 implies

that 5
(
102k

)2 ≡ 1(mod r) and 5 (102k)2 ≡ 1(mod s). Thus (r
5

)
=
(s
5

)
= 1.

If k is even, then sb2 ≡ 2(mod 5), which implies that
(s
5

)
= −1. This is a

contradiction. If k is odd, then ra2 ≡ 3(mod 5). This shows that
(r
5

)
=

(
3

5

)
=

−1, which is a contradiction. This completes the proof.
From Theorem 18, we immediately deduce the following corollary.
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Corollary 19 The equation (4n − 2)(100n − 2) = x2 has only the solution
(n, x) = (3, 7874).

Theorem 20 The equation (10n − 2)(58n − 2) = x2 has only the solution
(n, x) = (2, 574).

Proof. Clearly, (n, x) = (2, 574) is a solution. If 4|n or n ≡ 1(mod 4), then
it can be seen that x2 ≡ 2 or 3(mod 5), which is impossible. Assume that
n ≡ 3(mod 4). Then n is form of 12q+3 or 12q+7, or 12q+11. If n = 12q+3,
then we get x2 ≡ 3(mod 7), a contradiction. If n = 12q + 11, then it is seen
that x2 ≡ 6(mod 7), which is impossible. Let n = 12q + 7. Then we get n ≡
7, 19, 31, 43, or 55(mod 60). If n ≡ 31(mod 60), then we get x2 ≡ 8(mod 11), a
contradiction. Let n ≡ 7, 19, 43, or 55(mod 60). Similarly, when we investigate
the equation (10n − 2)(58n − 2) = x2 according to modulo 31, we can see that
it has no solutions.
Now assume that n ≡ 2(mod 4). Say n = 2m with m odd. Then we get

(22m−152m − 1)(22m−1292m − 1) = (x/2)2. Thus

2
(
2m−15m

)2 − du2 = 1 and 2 (2m−129m)2 − dv2 = 1
for some integers u and v with gcd(u, v) = 1, where d = gcd(22m−152m −
1, 22m−1292m − 1). By Lemma 5, we obtain

2m−15m = u1(Ur − Ur−1), u = v1(Ur + Ur−1)

and
2m−129m = u1(Us − Us−1), v = v1(Us + Us−1),

where Uc = Uc(P,−1) with P = 8u21−2, and (u1, v1) is the fundamental solution
of the equation 2x2 − dy2 = 1. Since Ur + Ur−1 and Us + Us−1 are odd by
the identity (9) and gcd(u, v) = 1, it follows that u1 = 2m−1, v1 = 1, Ur −
Ur−1 = 5

m and Us − Us−1 = 29m. Thus 2
(
2m−1

)2 − d = 1, i.e., d = 2n−1 − 1.
Since 2m−1

√
2 +
√
d is the fundamental solution of the equation 2x2 − dy2 = 1,(

2m−1
√
2 +
√
d
)2
= 2n−1+2m

√
2d is the fundamental solution of the equation

x2 − 2dy2 = 1. On the other hand, it is seen that
(
2m−15m

√
2 + u

√
d
)2

=

10n−1+10mu
√
2d, and this is a solution of the equation x2−2dy2 = 1. Hence,

by Lemma 2, we get 10n − 1 = Vk(2x1,−1)/2 and 10mu = y1Uk(2x1,−1) for
some natural number k, where x1 + y1

√
2d = 2n − 1 + 2m

√
d. From this, it is

clear that Vk(2x1,−1) = 2 · 10n − 2 and Uk(2x1,−1) = 5mu. Therefore 5|Uk.
Since 2x1 = 2n+1 − 2 ≡ 1(mod 5), it follows that 3|k by the identity (15) . Let
k = 3t. Then we get 2 · 10n − 2 = V3t = V 3t − 3Vt by the identity (6). Taking
Vt = 2z, then from the last equality we get (z+1)(2z−1)2 = 102m. By Corollary
17, it follows that m = 1 or m = 3. Therefore n = 2 or n = 6. But n = 6 is
impossible and so n = 2. This completes the proof.

Theorem 21 The equation (3n−2)(45n−2) = x2 has only the solution (n, x) =
(2, 119).
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Proof. Clearly, (n, x) = (2, 574) is a solution. If 4|n or n ≡ 1(mod 4), then
it can be seen that x2 ≡ 2 or 3(mod 5), which is impossible. Assume that
n ≡ 3(mod 4). Then n ≡ 3, 7, 11(mod 12). In these cases, using modulo 13, it
can be seen that the equation (3n − 2)(45n − 2) = x2 is impossible.
Now assume that n ≡ 2(mod 4). Say n = 2m with m odd. Then we get

(3m)
2 − du2 = 2 and (45m)2 − dv2 = 2

for some integers u and v with gcd(u, v) = 1, where d = gcd(3n − 2, 45n − 2).
By Theorem 13, we obtain

3m = k1(Ur − Ur−1), u = t1(Ur + Ur−1) (21)

and
45m = k1(Us − Us−1), v = t1(Us + Us−1), (22)

where Uc = Uc(P,−1) with P = 2x1 = 2k21 − 2, y1 = k1t1, (x1, y1) is the fun-
damental solution of the equation x2 − dy2 = 1, and (k1, t1) is the fundamental
solution of the equation x2−dy2 = 2. So k1 > 1 and this implies that 3|k1 by the
identity (21). Then P = 2k21 − 2 ≡ 1(mod 3). Assume that 3|Ur − Ur−1. Then
it is seen that r ≡ 2, 5(mod 6) by Lemma 7. Since 5 - k1 by the identity (21),
it follows that P = 2k21 − 2 ≡ 0, 1(mod 5). Assume that P ≡ 1(mod 5). Then
5|Ur −Ur−1 by Lemma 7 since r ≡ 2, 5(mod 6). This is impossible by (21). Let
P ≡ 0(mod 5). Then it can be seen that 5 - Us−Us−1 by the identity (15). This
is impossible by the identity (22) since 5 - k1. We conclude that 3 - Ur − Ur−1
and therefore k1 = 3m and r = 0 by (21). Thus x1 = k21 − 1 = 3n − 1. Besides,
it is clear that u = t1 = 1 since gcd(u, v) = 1 and r = 0. This implies that
y1 = k1t1 = 3

m and d = 3n − 2. On the other hand, since 45m + v
√
d is a solu-

tion of the equation x2 − dy2 = 2, then
(
45m + v

√
d
)2
/2 = 45n − 1 + 45mv

√
d

is a solution of the equation x2 − dy2 = 1. In this case, 45n − 1 = Vk(P,−1)/2
and 45mv = y1Uk(P,−1) = 3mUk(P,−1) by Lemma 2. From this, it is clear
that Vk(P,−1) = 2 · 452m − 2 and Uk(P,−1) = 3m5mv. Therefore 3|Uk. Since
P ≡ 1(mod 3), it follows that 3|k by the identity (14). Let k = 3t. Then we get
2 · 452m− 2 = V3t = V 3t − 3Vt by the identity (6). Taking Vt = 2z, from the last
equality, we get (z + 1)(2z − 1)2 = w2 with w = 45m. Then z + 1 = ( w

2z−1 )
2.

Let a = w
2z−1 . Then z + 1 = a2 and w = a(2z − 1) = a(2a2 − 3). It can be

seen that gcd(a, 2a2 − 3) = 3 since 3|a(2a2 − 3). Then a = 3b and 2a2 − 3 = 3c
for some integers b and c with gcd(b, c) = 1. Then 9bc = 45m = 32m5m and
therefore bc = 32m−25m. Since a = 3b and 2a2 − 3 = 3c, we get c = 6b2 − 1
and therefore b(6b2 − 1) = 32m−25m. Then b = 32m−2 and 6b2 − 1 = 5m. Thus
2 ·34m−3 = 5m+1. This is only possible for m = 1 by Lemma 16. Consequently,
n = 2 and x = 119.

4 Concluding Remark

Using a program with Mathematica, we verified for all 2 ≤ a < b ≤ 300 and n in
the range 2 ≤ n ≤ 1000 that the equation (an−2)(bn−2) = x2 has solutions only

11



when n ≤ 6. Also, this program have showed in the range 2 ≤ n ≤ 1000 that
for the pairs (a, b) = (5, 235), (4, 116), (2, 58), the equation (an−2)(bn−2) = x2
has only solutions (n, x) = (2, 1127), (3, 434), (2, 82), respectively. We have not
handled to find all integer solutions of the equations (5n−2)(235n−2) = x2 and
(4n−2)(116n−2) = x2 yet. But we think that the equation (5n−2)(235n−2) =
x2 has only the solution (n, x) = (2, 1127) and the equation (4n−2)(116n−2) =
x2 has only the solution (n, x) = (3, 434). Besides, we have handled to determine
all integer solutions of the equation (2n−2)(58n−2) = x2 but we were not able
to solve this problem. So, we think the following conjectures are true.

Conjecture 22 The only solutions of the equation (2n − 2)(58n − 2) = x2 is
(n, x) = (2, 82).

Conjecture 23 Let 2 ≤ a < b. If the equation (an − 2)(bn − 2) = x2 has a
solution (n, x), then n ≤ 6.

A computer search with Mathematica showed that in the ranges 2 ≤ n ≤
1000 and 3 < k ≤ 100, the equation (2n− 2)((2Pk)n− 2) = x2 has no solutions.
This situation enables us to give the following conjectures.

Conjecture 24 Let k > 3 be odd. Then the equation (2n−2)((2Pk)n−2) = x2
has only the solution (n, x) = (2, Qk).

When k = 3, Pk = P3 = 5, the above equation becomes (2n−2)((10n−2) =
x2, which has only the solutions (n, x) = (2, 14), (6, 7874) by Theorem 18.
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