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Abstract

In this paper a new so called Iterative laplace transform method is implemented
to investigate the solution of certain important population models of non-integer
order. The iterative procedure is combined effectively with Laplace transformation
to develop the suggested methodology. The Caputo operator is applied to express
non-integer derivative of fractional-order. the series form solution is obtained hav-
ing components of convergent behavior toward the exact solution. For justification
and verification of the present method some illustrative examples are discussed. The
closed contact is observed between the obtained and exact solutions. Moreover, the
suggested method has small volume of calculations and therefore it can be applied
to handle the solutions of various problems with fractional-order derivatives.
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1 INTRODUCTION

Fractional calculus(FC) is the subject dealing with derivative and integration of non-integer order.The concept of FC have been
started from 30tℎ September 1695, when a question was asked from Leibnitz about the half-order derivative of a function. In
19tℎ century Riemann and Liouville have properly defined the concept of fractional-order derivative and integration by using
operator. Later on this theory was further extended by other researchers to improve the mathematical models of different phys-
ical phenomena. Generally, derivatives and integration of integer-order have important physical and geometric interpretation.
However, fractional derivatives and integration doesn’t have fully acceptable physical and geometrical interpretation. Due to
large and up-growing involvement of FC it is accepted as the calculus of 21st century.
FC has attracted the researchers because of its numerous applications in various scientific fields, including, fluid mechanics,
engineering, electromagnetism, viscoelasticity and other areas of science [1-6]. Fractional differential equations (FDEs) are
accepted as the powerful tool to model the above mentioned physical phenomena as compare to differential equations of integer-
order. Therefore, it was considered an important task by the mathematician to solve these equations. In this connection, certain
important techniques have been used including fractional operational matrix method (FOMM) [7,8], fractional wavelet method
(FWM) [9-12], Homotopy analysis method (HAM) [13], Homotopy perturbation method (HPM) [14], Homotopy perturbation
transformmethod (HPTM) [15], Laplace Adomian decomposition method (LADM)[16], Fractional variational iteration method
(FVIM) [17]. The above mentioned techniques have the straight forward implementations to both linear and non-linear FDEs.
In the same context, Daftardar-Gejji and Jafari in 2006 have developed the iterative technique to solve non-linear functional
equations [18, 19]. Later on, Iterative technique is applied to solve non-integer differential equations (DEs) [20]. In recent
time, Jafari et al. have used Laplace transform together with iterative technique for the first time which is nowadays became
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an effective technique named as iterative Laplace transform method (ILTM) [21] ILTM is implemented to solve partial differ-
ential equations (PDEs) and Fokker–Plank problems [22]. Recently many other FPDEs have been solved by using ILTM such
as time-fractional Schrödinger equations [23], fractional Telegraph equations [24], fractional heat and wave-like equations [25]
and time-fractional fisher equation [26]. The main theme of the present research work is to use ILTM for obtaining the analytical
solution of non-integer Biological population model [27].

)� (�, �, �)
)��

=
)2 2(�, �, �)

)�2
+
)2 2(�, �, �)

)�2
+ g( (�, �, �)), � > 0, 0 < � ≤ 1 (1)

subject to the starting values:  (�, �, 0) = g0(�, �).
where the population density is represented by  (�, �, �) and the population rate is expressed by g( (�, �, �)). For � → 1,
Various properties such like Holder estimates for its solution are discussed in [28]. The three consecutive cases for g(u) are :
g( ) = c, for any constant c, reduces to Malthusian Law,
g( ) =  (d1 − d2 ), for positive constant d1 and d2 reduces to Verhulst Law,
g( ) = −d k, (d ≥ 0, 0 < k < 1), for positive d reduces to Porous Media

2 DEFINITIONS AND PREMINALARIES

In this part of the paper some important definitions related FC and Laplace transform have briefly discussed. These preliminaries
are important to continue and complete the present research work.

2.1 Definition
The fractional derivative in terms of Caputo operator is expressed as

D�
� (�, �) =

1
Γ(n − �)

�

∫
0

(� − � )n−�−1 (n)(�, �)d�, n − 1 < � ⩽ n, n ∈ N,

= J n−�� Dnu(�, �).

(2)

Here

Dn = dn

d�n

2.2 Definition
The fractional integral in terms of Riemann-Liouvilee is expressed as

j�� (�, �) =
1
Γ(�)

�

∫
0

(� − � )�−1 (�, �)d�, � > 0 (n − 1 < � ⩽ n), n ∈ N, (3)

j�� represents the fractional integral operator

2.3 Definition
The Laplace transform is describe as

L[g(�)] = G(�) =

∞

∫
0

e−s�g(�)d�. (4)
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2.4 Definition
The Laplace transform of the fractional derivative D�

� (�, �) is defined as

L[D�
� (�, �)] = s

�L[ (�, �)] −
n−1
∑

k=0
 (k)(�, 0)s�−k−1, n − 1 < � ⩽ n, n ∈ N, (5)

2.5 Definition
The Mittag-Leffler function is expressed as

E�(z) =
∞
∑

q=0

zq

Γ(�q + 1)
, (� ∈ C,Re(�) > 0). (6)

3 THE BASIC CONCEPT OF ILTM

In this section, we will briefly discuss ILTM, to solve fractional-order nonlinear PDEs.

D�
� (�, �, �) + R (�, �, �) +N (�, �, �) = g(�, �, �), n − 1 < � ⩽ n, n ∈ N, (7)

 (k)(�, �, 0) = ℎk(�, �), k = 0, 1, 2, ..., n − 1, (8)

where D�
� (�, �, �) is the fractional Caputo operator of order �, n − 1 < � ⩽ n, denoted by Eq. (3), R and N are linear and

nonlinear operators. The g(�, �, �) is source function.
Using Laplace transform of Eq. (7) we get

L[D�
� (�, �, �)] + L[R (�, �, �) +N (�, �, �)] = L[g(�, �, �)]. (9)

Applying the property of laplace differentiation

L[ (�, �, �)] = 1
s�

m−1
∑

k=0
s�−1−k (k)(�, �, 0) + 1

s�
L[g(�, �, �)] − 1

s�
L[R (�, �, �) +N (�, �, �)]. (10)

By using inverse Laplace transform of Eq. (10), we obtain

 (�, �, �) = L−1
[

1
s�

(m−1
∑

k=0
s�−1−k k(�, �, 0) + L[g(�, �, �)]

)]

− L−1
[ 1
s�
L[R (�, �, �) +N (�, �, �)]

]

. (11)

From iterative technique,

 (�, �, �) =
∞
∑

i=0
 i(�, �, �). (12)

Since R is a linear operator

R

( ∞
∑

i=0
 i(�, �, �)

)

=
∞
∑

i=0
R
[

 i(�, �, �)
]

, (13)

and the non-linear operator N is splitted as

N

( ∞
∑

i=0
 i(�, �, �)

)

= N[ 0(�, �, �)] +
∞
∑

i=1

{

N

( i
∑

k=0
 k(�, �, �

)

−N

( i−1
∑

k=0
 k(�, �, �)

)}

. (14)

Putting equations (12-14) in equation (11), we obtain
∞
∑

i=0
 i(�, �, �) = L−1

[

1
s�

(m−1
∑

k=0
s�−1−k k(�, �, 0) + L[g(�, �, �)]

)]

− L−1
[ 1
s�
L

[ ∞
∑

i=0
R[ i(�, �, �)] +N[ 0(�, �, �)] +

∞
∑

i=1

{

N

( i
∑

k=0
 k(�, �, �

)

−N

( i−1
∑

k=0
 k(�, �, �)

)}]

.

(15)
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Using equation (15), we defined the following iterative formula

 0(�, �, �) = L−1
[

1
s�

(m−1
∑

k=0
s�−1−k k(�, �, 0) + 1

s�
L(g(�, �, �))

)]

(16)

 1(�, �, �) = −L−1
[ 1
s�
L[R[ 0(�, �, �)] +N[ 0(�, �, �)]

]

, (17)

 m+1(�, �, �) = −L−1
[

1
s�
L

[

R( m(�, �, �)) −

{

N

( m
∑

k=0
 k(�, �, �)

)

−N

(m−1
∑

k=0
 k(�, �, �)

)}]]

,

m ≥ 1

(18)

The approximate m-term solution of equation (7) and (8) in form of series as

 (�, �, �) ≅  0(�, �, �) +  1(�, �, �) +  2(�, �, �) + .....,+ m(�, �, �), m = 1, 2, ..., (19)

4 IMPLEMENTATION OF ILTM

In this section, ILTM is applied to determine the exact solution of some special cases of Eq. (1). It has been shown that the
ILTM is an accurate and appropriate analytical technique to solve non-linear FPDEs.

4.1 Example
The Biological population model with time non-integer derivative is express as

)� 
)��

= )2

)�2
( 2) + )2

)�2
( 2) + ℎ −1(1 − r ),

0 < � ≤ 1, �, � ∈ ℜ, � > 0,
(20)

with starting values

 (�, �, 0) =
√

ℎr
4
�2 + ℎr

4
�2 + � + 5, (21)

The Laplace transform to Eq. (20) is expressed as

s�L[ (�, �, �)] −
m−1
∑

k=0
 (k)(�, �, 0)s�−k−1 = L( )

2

)�2
( 2) + )2

)�2
( 2) + ℎ −1(1 − r )),

s�L[ (�, �, �)] =  (0)(�, �, 0)s
�

s
+ L( )

2

)�2
( 2) + )2

)�2
( 2) + ℎ −1(1 − r )),

(22)

L[ (�, �, �)] = 1
s

√

ℎr
4
�2 + ℎr

4
�2 + � + 5 + 1

s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) + ℎ −1(1 − r ))

]

. (23)

Using inverse Laplace transform of Eq. (23),

 (�, �, �) =
√

ℎr
4
�2 + ℎr

4
�2 + � + 5 + L−1

[

1
s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) + ℎ −1(1 − r ))

]]

. (24)

Using iterative technique describe in Eqs (12-14), we obtain the following solution components of example 4.1

 0(�, �, �) =
√

ℎr
4
�2 + ℎr

4
�2 + � + 5.

 1(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 20 ) +

)2

)�2
( 20 ) + ℎ 

−1
0 (1 − r 0))

]]

.
(25)

= ℎ((ℎr
4
�2 + ℎr

4
�2 + � + 5)−

1
2 ) ��

Γ(� + 1)
, (26)
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FIGURE 1 The solution plot of example 1, (a)Exact solution and (b) ILTM solution at � = 1.

 2(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 21 ) +

)2

)�2
( 21 ) + ℎ 

−1
1 (1 − r 1))

]]

.

= −2ℎ2((ℎr
4
�2 + ℎr

4
�2 + � + 5)−

3
2 ) �2�

Γ(2� + 1)

(27)

 3(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 22 ) +

)2

)�2
( 22 ) + ℎ 

−1
2 (1 − r 2))

]]

. (28)

= 3ℎ3((ℎr
4
�2 + ℎr

4
�2 + � + 5)−

5
2 ) �3�

Γ(3� + 1)
(29)

The series form of analytical solution is given as

 (�, �, �) =  0(�, �, �) +  1(�, �, �) +  2(�, �, �) +  3(�, �, �)+, ...,

= (ℎr
4
�2 + ℎr

4
�2 + � + 5)

1
2 + ℎ((ℎr

4
�2 + ℎr

4
�2 + � + 5)−

1
2 ) t�

Γ(� + 1)

− 2ℎ2((ℎr
4
�2 + ℎr

4
�2 + � + 5)−

3
2 ) �2�

Γ(2� + 1)
+ 3ℎ3((ℎr

4
�2 + ℎr

4
�2

+ � + 5)−
5
2 ) �3�

Γ(3� + 1)
+, ...,

(30)

 (�, �, �) =  0 +
ℎ��

 0

∞
∑

n=0

n + 1
Γ((n + 1)� + 1)

(−ℎ�
�

 20
)n. (31)

The exact result is given by

 (�, �, �) =
√

ℎr
4
�2 + ℎr

4
�2 + � + 2ℎ� + 5. (32)

4.2 Example
The Biological population model with time non-integer derivative is express as

)� 
)��

= )2

)�2
( 2) + )2

)�2
( 2) + ℎ , (33)

with initial condition
 (�, �, 0) =

√

��, (34)
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FIGURE 2 The Absolute Error for Example 1 at � = 1

The Laplace transform to Eq. (33) is expressed as

s�L[ (�, �, �)] −
m−1
∑

k=0
 (k)(�, �, 0)s�−k−1 = L( )

2

)�2
( 2) + )2

)�2
( 2) + ℎ ),

s�L[ (�, �, �)] =  (0)(�, �, 0)s
�

s
+ L( )

2

)�2
( 2) + )2

)�2
( 2) + ℎ ),

(35)

L[ (�, �, �)] = 1
s
√

�� + 1
s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) + ℎ )

]

. (36)

Using inverse Laplace transform of equation (36)

 (�, �, �) =
√

�� + L−1
[

1
s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) + ℎ )

]]

. (37)

Using iterative technique describe in Eqs (12-14), we obtain the following solution components of example 4.2

 0(�, �, �) =
√

��,

 1(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 20 ) +

)2

)�2
( 20 ) + ℎ 0))

]]

.
(38)

= ℎ
√

�� ��

Γ(� + 1)
(39)

 2(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 21 ) +

)2

)�2
( 21 ) + ℎ 1)

]]

.

= ℎ2
√

�� �2�

Γ(2� + 1)

(40)

 3(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 22 ) +

)2

)�2
( 22 ) + ℎ 2)

]]

. (41)

= ℎ3
√

�� �3�

Γ3� + 1
(42)
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FIGURE 3 Solution graph of example 2, (a) Exact and (b) ILTM at � = 1.

FIGURE 4 The Absolute Error for Example 2 at � = 1

The series form of analytical solution is given as

 (�, �, �) =  0(�, �, �) +  1(�, �, �) +  2(�, �, �) +  3(�, �, �)+, ...,

=
√

�� + ℎ
√

�� ��

Γ(� + 1)
+ ℎ2

√

�� �2�

Γ(2� + 1)
+ ℎ3

√

�� �3�

Γ(3� + 1)
+, ...,

(43)

 (�, �, �) =
√

��
∞
∑

k=0

(ℎ��)k

Γ(k� + 1)
, (44)

The exact solution is given by
 (�, �, �) =

√

��E�(ℎ��), (45)
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where E�(ℎ��) is the Mittag-Leffler fuction defined as

E�(z) =
∞
∑

k=0

zk

Γ(�k + 1)
. (46)

As �→ 1 we have

 (�, �, �) =
√

��
∞
∑

k=0

(ℎ�)k

k!
=
√

��eℎ� , (47)

4.3 Example
The Biological population model with time non-integer derivative is express as

)� 
)��

= )2

)�2
( 2) + )2

)�2
( 2) +  , (48)

with initial condition
 (�, �, 0) =

√

sin� sinh �, (49)

The Laplace transform to Eq. (48) is expressed as

s�L[ (�, �, �)] −
m−1
∑

k=0
 (k)(�, �, 0)s�−k−1 = L( )

2

)�2
( 2) + )2

)�2
( 2) +  ),

s�L[ (�, �, �)] =  (0)(�, �, 0)s
�

s
+ L( )

2

)�2
( 2) + )2

)�2
( 2) +  ),

(50)

L[ (�, �, �)] = 1
s
√

�� + 1
s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) +  )

]

. (51)

Using inverse Laplace transform of Eq. (51),we obtain

 (�, �, �) =
√

�� + L−1
[

1
s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) +  )

]]

. (52)

Using iterative technique describe in Eqs (12-14), we obtain the following solution components of example 4.3

 0(�, �, �) =
√

sin� sinh �,

 1(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 20 ) +

)2

)�2
( 20 ) +  0))

]]

.
(53)

=
√

sin� sinh � ��

Γ(� + 1)
(54)

 2(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 21 ) +

)2

)�2
( 21 ) +  1)

]]

.

=
√

sin� sinh � �2�

Γ(2� + 1)

(55)

 3(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 22 ) +

)2

)�2
( 22 ) +  2)

]]

. (56)

=
√

sin� sinh � �3�

Γ(3� + 1)
(57)

The series form of analytical solution is given as

 (�, �, �) =  0(�, �, �) +  1(�, �, �) +  2(�, �, �) +  3(�, �, �)+, ...,

=
√

sin� sinh � +
√

sin� sinh � ��

Γ� + 1
+
√

sin� sinh � �2�

Γ2� + 1
+
√

sin� sinh �

�3�

Γ3� + 1
+, ...,

(58)
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FIGURE 5 The solution plot of example 3, (a)Exact solution and (b) ILTM solution at � = 1.

FIGURE 6 Solution graph at various fractional order � for example 4.3

 (�, �, �) =
√

sin� sinh �
∞
∑

k=0

�k�

Γ(�k + 1)
, (59)

The exact result is given by
 (�, �, �) =

√

sin� sinh �E�(ℎ��), (60)

As �→ 1 we have

 (�, �, �) =
√

sin� sinh �
∞
∑

k=0

(�)k

k!
=
√

sin� sinh �e� , (61)

4.4 Example
The Biological population model with time non-integer derivative is express as

)� 
)��

= )2

)�2
( 2) + )2

)�2
( 2) +  (1 − r ), (62)
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with initial condition
 (�, �, 0) = exp

1
2

√

r
2
(�+�), (63)

The Laplace transform to Eq. (62) is expressed as

s�L[ (�, �, �)] −
m−1
∑

k=0
 (k)(�, �, 0)s�−k−1 = L( )

2

)�2
( 2) + )2

)�2
( 2) +  (1 − r )),

s�L[ (�, �, �)] =  (0)(�, �, 0)s
�

s
+ L( )

2

)�2
( 2) + )2

)�2
( 2) +  (1 − r )),

(64)

L[ (�, �, �)] = 1
s
exp

1
2

√

r
2
(�+�) + 1

s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) +  (1 − r ))

]

. (65)

Using inverse Laplace transform of Eq. (65),

 (�, �, �) = exp
1
2

√

r
2
(�+�) +L−1

[

1
s�

[

L( )
2

)�2
( 2) + )2

)�2
( 2) +  (1 − r ))

]]

. (66)

Using iterative technique describe in Eqs (12-14), we obtain the following solution components of example 4.4

 0(�, �, �) = exp
1
2

√

r
2
(�+�),

 1(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 20 ) +

)2

)�2
( 20 ) +  0(1 − r 0)))

]]

.
(67)

= exp
1
2

√

r
2
(�+�) ��

Γ(� + 1)
(68)

 2(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 21 ) +

)2

)�2
( 21 ) +  1(1 − r 1))

]]

.

= exp
1
2

√

r
2
(�+�) �2�

Γ(2� + 1)

(69)

 3(�, �, �) = L−1
[

1
s�

[

L( )
2

)�2
( 22 ) +

)2

)�2
( 22 ) +  2(1 − r 2))

]]

. (70)

= exp
1
2

√

r
2
(�+�) �3�

Γ(3� + 1)
(71)

The series form of analytical solution is given as

 (�, �, �) =  0(�, �, �) +  1(�, �, �) +  2(�, �, �) +  3(�, �, �)+, ...,

= exp
1
2

√

r
2
(�+�) +exp

1
2

√

r
2
(�+�) t�

Γ(� + 1)
+ exp

1
2

√

r
2
(�+�) �2�

Γ(2� + 1)
+

exp
1
2

√

r
2
(�+�) �3�

Γ(3� + 1)
+, ...,

(72)

 (�, �, �) = exp
1
2

√

r
2
(�+�)

∞
∑

k=0

�k�

Γ(�k + 1)
, (73)

The exact result is given by

 (�, �, �) = exp
1
2

√

r
2
(�+�) E�(ℎ��), (74)

As �→ 1 we have

 (�, �, �) = exp
1
2

√

r
2
(�+�)

∞
∑

k=0

(�)k

k!
(75)

= exp
1
2

√

r
2
(�+�)+� , (76)
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FIGURE 7 The solution plot of example 4, (a)Exact solution and (b) ILTM solution at � = 1.

FIGURE 8 Solution graph at various fractional order � for example 4.4

5 RESULTS AND DISCUSSION

In this researchwork, ILTM is implemented to solve some important Biological models of non-integer order. The results obtained
by the proposed method are explain with the help of its graphical representation. Figure 1 has shown the solution-graphs of
exact and ILTM for example 4.1 at � = 1. It is verified that ILTM solution is closely related with the exact solution. In Figure
2, the error analysis of ILTM for example 4.1 is discussed. It is observed that the proposed method has sufficient degree of
accuracy. Similarly, in figure 3, the solution-plot of exact and ILTM solution is displayed for example 4.2. These solution-graphs
are very closed to each other and confirmed the validity of the suggested method. Moreover, the higher degree of accuracy is
achieved as represented by Figure 4. In Figure 5, the exact and ILTM solutions for example 4.3 are compared. The solution-
graphs for both exact and ILTM are identical and support the reliability of the suggested method. In Figure 6, the solution
for example 4.3 at different fractional-orders are calculated. It is investigated that the solutions at different fractional-orders
are converges to the solution of integer-order solution as fractional-orders approaches to an integer-order. In Figure7 the same
graphical representation have beenmade for the exact and ILTM solution of example 4.4. Figure 7 provide the graphical layout of
the solution of example 4 at different fractional-order. The convergence phenomena of the solutions at different fractional-order
can be seen in Figure 8.
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6 CONCLUSION

The present research article is related to the solution of fractional-order Biological population models by using a sophisticated
analytical technique. The present method is implemented for both fractional and integer-order models. The solution graphs for
ILTMand exact solutions of the problems are plotted. it is investigated that the ILTM solutions are in closed contact with the exact
solution of the problems even by taking two or three components of the proposed method. The ILTM solutions of the problems
at different Fractional-orders are also shown with the help of their graphical representation. The convergence phenomena of
the solutions of fractional-order problems toward integer-order solution is observed. This behavior of the obtained solution has
confirmed the efficiency of the suggested scheme. Due to an effective and straight forward implementation, the suggestedmethod
can be modified for the solution of other FPDEs arises in applied sciences.

References

1. Sabatier, J.A.T.M.J., Agrawal, O.P. and Machado, J.T., 2007. Advances in fractional calculus (Vol. 4, No. 9). Dordrecht:
Springer.

2. Baleanu, D., Diethelm, K., Scalas, E. and Trujillo, J.J., 2012. Fractional calculus, vol. 3 of series on complexity.
Nonlinearity and Chaos, World Scientific, Singapore.

3. Liu, Y. and Xin, B., 2011. Numerical solutions of a fractional predator-prey system. Advances in Difference Equations,
2011(1), p.190475.

4. Ma, J. and Liu, Y., 2010. Exact solutions for a generalized nonlinear fractional Fokker–Planck equation. Nonlinear
Analysis: Real World Applications, 11(1), pp.515-521.

5. Baskin, E. and Iomin, A., 2013. Electro-chemical manifestation of nanoplasmonics in fractal media. Open Physics, 11(6),
pp.676-684.

6. Engheta, N., 1996. On fractional calculus and fractional multipoles in electromagnetism. IEEE Transactions on Antennas
and Propagation, 44(4), pp.554-566.

7. Li, Y. and Sun, N., 2011. Numerical solution of fractional differential equations using the generalized block pulse
operational matrix. Computers Mathematics with Applications, 62(3), pp.1046-1054.

8. Saadatmandi, A. and Dehghan, M., 2010. A new operational matrix for solving fractional-order differential equations.
Computers mathematics with applications, 59(3), pp.1326-1336.

9. ur Rehman, M. and Khan, R.A., 2011. The Legendre wavelet method for solving fractional differential equations.
Communications in Nonlinear Science and Numerical Simulation, 16(11), pp.4163-4173.

10. Yuanlu, L.I., 2010. Solving a nonlinear fractional differential equation using Chebyshev wavelets. Communications in
Nonlinear Science and Numerical Simulation, 15(9), pp.2284-2292.

11. Wu, J.L., 2009. A wavelet operational method for solving fractional partial differential equations numerically. Applied
Mathematics and Computation, 214(1), pp.31-40.

12. Lepik, Ü., 2009. Solving fractional integral equations by the Haar wavelet method. AppliedMathematics and Computation,
214(2), pp.468-478.

13. Khan, N.A., Khan, N.U., Ara, A. and Jamil, M., 2012. Approximate analytical solutions of fractional reaction-diffusion
equations. Journal of King Saud University-Science, 24(2), pp.111-118.

14. ZHANG, X. and Juan, L.I.U., 2014. An Analytic Study on Time-Fractional Fisher Equation using Homotopy Perturbation
Method. Walailak Journal of Science and Technology (WJST), 11(11), pp.975-985.

15. Khan, Y. and Wu, Q., 2011. Homotopy perturbation transform method for nonlinear equations using He’s polynomials.
Computers Mathematics with Applications, 61(8), pp.1963-1967.



13

16. Sweilam, N.H., Khader, M.M. and Al-Bar, R.F., 2007. Numerical studies for a multi-order fractional differential equation.
Physics Letters A, 371(1-2), pp.26-33.

17. Das, S., 2009. Analytical solution of a fractional diffusion equation by variational iteration method. Computers Mathe-
matics with Applications, 57(3), pp.483-487.

18. Daftardar-Gejji, V. and Jafari, H., 2006. An iterative method for solving nonlinear functional equations. Journal of
Mathematical Analysis and Applications, 316(2), pp.753-763.

19. Jafari, H., 2006. Iterative Methods for solving system of fractional differential equations (Doctoral dissertation, Ph. D.
Thesis, Pune University, Pune City, India).

20. Bhalekar, S. and Daftardar-Gejji, V., 2010. Solving evolution equations using a new iterative method. Numerical Methods
for Partial Differential Equations: An International Journal, 26(4), pp.906-916.

21. Jafari, H., Nazari, M., Baleanu, D. and Khalique, C.M., 2013. A new approach for solving a system of fractional partial
differential equations. Computers Mathematics with Applications, 66(5), pp.838-843.

22. Yan, L., 2013. Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method. In
Abstract and applied analysis (Vol. 2013). Hindawi.

23. Sharma, S.C. and Bairwa, R.K., 2015. Closed Form Solution for the Time-Fractional Schrödinger Equation via Laplace
Transform. rn, 55, p.7.

24. Sharma, S.C. and Bairwa, R.K., 2015. A reliable treatment of iterative laplace transform method for fractional telegraph
equations. Annals of Pure and Applied Mathematics, 9(1), pp.81-89.

25. Sharma, S.C. and Bairwa, R.K., 2015. Iterative Laplace transform method for solving fractional heat and wave-like
equations. Research Journal of Mathematical and Statistical Sciences ISSN, 2320, p.6047.

26. Bairwa, R.K., ANALYTICAL SOLUTION OF THE TIME-FRACTIONAL FISHER EQUATION BY USING ITERA-
TIVE LAPLACE TRANSFORM METHOD.

27. El-Sayed, A.M.A., Rida, S.Z. and Arafa, A.A.M., 2009. Exact solutions of fractional-order biological population model.
Communications in Theoretical Physics, 52(6), p.992.

28. Lu, Y.G., 2000. Hölder estimates of solutions of biological population equations. Applied Mathematics Letters, 13(6),
pp.123-126.


	An analytical investigation of fractional-order Biological model using an innovative technique
	Abstract
	Introduction
	 Definitions and Preminalaries
	Definition
	Definition
	Definition
	Definition
	Definition

	The Basic concept of ILTM
	Implementation of ILTM
	Example
	Example
	Example
	Example

	Results and discussion
	Conclusion
	References


