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In this paper, the Dirichlet and Neumann boundary value problems for the steady-
state Stokes system of partial differential equations for a compressible viscous fluid
with variable viscosity coefficient is considered in two-dimensional bounded domain.
Using an appropriate parametrix, this problem is reduced to a system of direct
segregated boundary-domain integral equations (BDIEs). The BDIEs in the two-
dimensional case have special properties in comparison with the three dimension
because of the logarithmic term in the parametrix for the associated partial differ-
ential equations. Consequently, we need to set conditions on the function spaces or
on the domain to ensure the invertibility of corresponding parametrix-based hydro-
daynamic single layer and hypersingular potentials and hence the unique solvability
of BDIEs. Equivalence of the BDIE systems to the Dirichlet and Neumann BVPs
and the invertibility of the corresponding boundary-domain integral operators in
appropriate Sobolev spaces are shown.
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1 INTRODUCTION

The Stokes equations of partial differential equation(PDE) is derived from the linearised steady-state Navier-Stokes equations.
The study of the Stokes equations is useful in itself; it also gives us an opportunity to introduce several tools necessary for a
treatment of the full Navier-Stokes equations, see, e.g.,1 Chapter I, which is a well-known model for laminar viscous fluid flows.
In addition to its importance in applications, this system of PDEs has attracted the attention of numerical analysts.
Boundary integral equations and the hydrodynamic potential theory for the Stokes equations with constant viscosity have been

extensively studied by numerous authors, e.g.,2,3,4,5,6,7. Boundary-domain integral equation systems for the incompressible and
compressible Stokes system with variable viscosity in three dimensional space have been investigated in8,9, but BDIE systems
in 2D, following a similar approach as in10,11 have not yet been studied. In the case of constant viscosity, fundamental solutions
for both velocity and pressure are available in analytical form. However, such fundamental solutions are not available for PDEs
with variable viscocity. Therefore, the parametrix (Levi function), see, e.g.,8,9 is used in order to derive and investigate the BDIE
systems for the corresponding variable-coefficient boundary value problems(BVPs). In12,10,11, authors derived and investigated

†BDIE Systems for Dirichlet and Neumann Stokes equations in 2D
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BDIE systems for BVP with variable-coefficient scallar elliptic PDE defined on a bounded domain whereas in8,9, reduced mixed
BVP with variable coefficient for Stokes problem defined on a bounded domain to BDIE systems for their further analysis. In
this paper, we shall derive and investigate BDIE systems to the Dirichlet and Neumann BVPs for compressible Stokes equations
with variable viscosity coefficient in two-dimensional bounded domain in appropriate Sobolev-Slobodetski (Bessel potential)
spaces.

2 PRELIMINARIES

Let Ω = Ω+ be an open bounded and simply-connected two-dimensional region of ℝ2 and let Ω− = ℝ2 ⧵Ω+. The boundary )Ω
be closed and infinitely smooth curve.
Let v be the velocity vector field, p the pressure scalar field and � ∈ ∞(Ω) be the variable kinematic viscosity of the fluid

such that �(x) > c > 0. For compressible fluid the stress tensor operator, �ij , for an arbitrary couple (p, v) is defined as

�ij(p, v)(x) ∶= −�
j
i p + �(x)

(

)vi
)xj

+
)vj
)xi

− ��ji div v(x)
)

,

and the Stokes operator is defined as

j(p, v)(x) ∶=
)
)xi

�ij(p, v)(x)

= )
)xi

(

�(x)
(

)vi
)xj

+
)vj
)xi

− ��ji div v(x)
))

−
)p
)xj

, j, i ∈ {1, 2},
(1)

where � = 1 or � = 2
3
and �ji is Kronecker symbol. Here and henceforth we assume the Einstein summation in repeated indices

from 1 to 2. We denote the Stokes operator as A = {j}2j=1 and Å ∶= A|�=1. We will also use the following notation for
derivative operators: )j = )xj ∶=

)
)xj

with j = 1, 2; ∇ ∶=
(

)1, )2
)

.
We consider the Stokes PDE, which for sufficiently smooth (p, v) has the following form,

A(p, v)(x) = f(x), div v = g(x), x ∈ Ω, (2)

where (p, v) is an unknown function and f and g is a given function in Ω.
In what followsHs(Ω) = Hs

2(Ω),H
s()Ω) are the Bessel potential spaces, where s is a real number (see, e.g.,13,14). We recall

thatHs coincide with the Sobolev-Slobodetski spacesW s
2 for any non-negative s. We denote by H̃s(Ω) the subspace ofHs(ℝ2),

H̃s(Ω) = {g ∶ g ∈ Hs(ℝ2), supp(g) ⊂ Ω}; similarly, H̃s(S1) = {g ∶ g ∈ Hs()Ω), supp(g) ⊂ S1}, L2∗(Ω) = L2(Ω)∕ℝ =
{q ∈ L2(Ω) ∶ ∫Ω q dx = 0}. We will also use the notations Hs(Ω) = [Hs(Ω)]2, L2(Ω) =

[

L2(Ω)
]2, D(Ω) = [D(Ω)]2 for

two-dimensional vector space. We will also make use of the following space (see, e.g.,15,12,9).

Hs,0(Ω;A) ∶= {(p, v) ∈ Hs−1(Ω) ×Hs(Ω) ∶ A(p, v) ∈ L2(Ω)}

endowed with the norm
‖(p, v)‖2

Hs,0(Ω;A)
∶= ‖p‖2Hs−1(Ω)+ ∥ v ∥2Hs(Ω) + ∥ A(p, v) ∥2

L2(Ω)
.

Let us define a space

H1,0
∗ (Ω;A) ∶= {(p, v) ∈ L2∗(Ω) ×H1(Ω) ∶ A(p, v) ∈ L2(Ω)}

endowed with the norm
‖(p, v)‖2

H1,0
∗ (Ω;A)

∶= ‖p‖2L2∗(Ω)+ ∥ v ∥2
H1(Ω)

+ ∥ A(p, v) ∥2
L2(Ω)

.

We define also the space H1
(Ω) = H1(Ω)∕ = {v ∈ H1(Ω) ∶ ∫Ω v ⋅ wdx = 0, for all w ∈ }, where

 = {a + b(−x2, x1)T ; a, b are constant vector and scalar respectively} is the space of rigid body motions and  =

span
{(

1
0

)

,
(

0
1

)

,
(

−x2
x1

)}

= span{wk}3k=1. Define the H1,0
 (Ω;A), the subspace of H1

(Ω) as;

H1,0
 (Ω;A) ∶= {(p, v) ∈ L2(Ω) ×H1

(Ω) ∶ A(p, v) ∈ L2(Ω)}

endowed with the norm
‖(p, v)‖2

H1,0
 (Ω;A)

∶= ‖p‖2L2(Ω)+ ∥ v ∥2
H1

(Ω)
+ ∥ A(p, v) ∥2

L2(Ω)
.
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The operator A acting on (p, v) is well defined in the weak sense provided �(x) ∈ L∞(Ω) as

⟨A(p, v),u⟩Ω ∶= −((p, v),u), ∀u ∈ H̃
1
(Ω),

where the form  ∶
[

L2(Ω) ×H1(Ω)
]

× H̃
1
(Ω) ←→ ℝ is defined as

 ((p, v),u) ∶= ∫
Ω

E ((p, v),u) (x) dx,

and the function E ((p, v),u) given by

E((p, v),u)(x) ∶=�(x)
2

(

)ui(x)
)xj

+
)uj(x)
)xi

)(

)vi(x)
)xj

+
)vj(x)
)xi

)

− ��(x) div v(x) div u(x) − p(x) div u(x).

For sufficiently smooth functions (p, v) ∈ Hs−1(Ω±) × Hs(Ω±) with s > 3∕2, we can define the classical traction operators,
Tc± = {T c±j }2j=1 on the boundary )Ω as

T c±j (p, v)(x) ∶=
[


±�ij(p, v)(x)
]

ni(x), (3)

where ni(x) denote components of the unit outward normal vector n(x) to the boundary )Ω of the domain and 
± is the trace
operator from inside and outside Ω, see, e.g.,8,9.
Traction operator (3) can be continuously extended to the canonical traction operator T± ∶ H1,0(Ω±;A)→ H− 1

2 ()Ω) defined
in the weak form similar as in8,9,

⟨T±(p, v),w⟩)Ω ∶= ±∫
Ω±

[

A(p, v)(
−1w) + E((p, v), 
−1w)
]

dx, (p, v) ∈ H1,0(Ω±;A),∀w ∈ H
1
2 ()Ω).

Here the operator 
−1 ∶ H
1
2 ()Ω) → H1(ℝ2) denotes a continuous right inverse of the trace operator 
+ ∶ H1(ℝ2) → H

1
2 ()Ω).

In addition, for (p, v) ∈ H1,0
∗ (Ω;A) the traction operator T± are also defined.

Furthermore, if (p, v) ∈ H1,0(Ω;A) and u ∈ H1(Ω), the following first Green identity holds, (see, e.g.,15,12,16,8 and9),

⟨T+(p, v), 
+u⟩)Ω ∶= ∫
Ω

[A(p, v)u + E((p, v),u)(x)] dx. (4)

Equation (4) is also defined for (p, v) ∈ H1,0
∗ (Ω;A) and u ∈ H1(Ω). Applying the identity (4) to the pairs (p, v) ∈ H1,0(Ω;A)

and (q,u) ∈ H1,0(Ω;A) with exchanged roles and subtracting the one from the other, we arrive at the second Green identity,
(see, e.g.,14,16,8,9 ),

∫
Ω

[

j(p, v)uj −j(q,u)vj + q div v − p div u
]

dx = ∫
)Ω

[

Tj(p, v)uj − Tj(q,u)vj
]

dSx. (5)

Equation (5) is also defined for (p, v) ∈ H1,0
∗ (Ω;A) and (q,u) ∈ H1,0

∗ (Ω;A).

3 PARAMETRIX AND PARAMETRIX-BASED HYDRODYNAMIC POTENTIALS

3.1 Parametrix and Remainder
The operatorA becomes the constant-coefficient Stokes operator Å when � = 1. The fundamental solution defined by the pair
of distributions (q̊k, ůk), where ůkj represent components of the incompressible velocity fundamental solution and q̊k represent
the components of the pressure fundamental solution, (see, e.g.,3,2,4,5). So for r0 > 0, ůkj and q̊

k will have the form:

ůkj (x, y) =
1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

q̊k(x, y) =
−(xk − yk)
2�|x − y|2

with (q̊k, ůk) satisfying the relations

)
)xk

q̊k(x, y) =
2
∑

i=1

)2

)x2k

(

− 1
2�

log |x − y|
)

= −�(x − y) (6)



4 Mulugeta A. Dagnaw ET AL

̊j(x; q̊k, ů
k)(x, y) =

2
∑

i=1

)2ůkj
)x2i

−
)q̊k

)xj
= �kj �(x − y), div xůk(x, y) = 0 (7)

Let us denote ̊�ij(p, v) ∶= �ij(p, v)|�=1. Then in particular case, for � = 1 and the fundamental solution (q̊k, ůk)k=1,2 of the
operator Å, the stress tensor ̊�ij(q̊k, ů

k)(x − y) is

̊�ij(x; q̊k, ů
k)(x − y) = 1

�
(xi − yi)(xj − yj)(xk − yk)

|x − y|4
.

Indeed,

̊�ij(x; q̊k, ů
k)(x − y) = − q̊k�ij +

(

)ůki
)xj

+
)ůkj
)xi

)

=
xk − yk
2�|x − y|2

�ij +
[

)
)xi

(

1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

))

+ )
)xj

(

1
4�

(

�ki log
|x − y|
r0

−
(xi − yi)(xk − yk)

|x − y|2

))]

.

Since ̊�ij(x; q̊k, ů
k)(x − y) = 1

�
(xi − yi)(xj − yj)(xk − yk)

|x − y|4
the boundary traction becomes

T̊ cj (x; q̊
k, ůk)(x, y) ∶= ̊�ij(q̊k, ůk)(x − y)ni(x) =

1
�
(xi − yi)(xj − yj)(xk − yk)

|x − y|4
ni(x).

Let us define a pair of functions (qk,uk)k=1,2 similar as in8,9,

ukj (x, y) =
1
�(y)

ůj
k(x, y) = 1

4��(y)

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

, (8)

qk(x, y) = �(x)
�(y)

q̊k(x, y) = �(x)
�(y)

yk − xk
2�|x − y|2

, j, k ∈ {1, 2}. (9)

Then

�ij(x; qk,uk)(x − y) = − �ji q
k + �(x)

(

)uki
)xj

+
)ukj
)xi

− ��ji div u
k(x)

)

= − �ji
�(x)
�(y)

q̊k + �(x)
⎛

⎜

⎜

⎝

)( 1
�(y) ů

k
i )

)xj
+
)( 1

�(y) ů
k
j )

)xi
− ��ji div (

1
�(y)

ůk(x))
⎞

⎟

⎟

⎠

=
�(x)
�(y)

(

−�ji q̊
k +

(

)ůki
)xj

+
)ůkj
)xi

− ��ji div ůk(x)
))

=
�(x)
�(y)

̊�ij(q̊k, ů
k)(x − y).

Thus,

�ij(x; qk,uk)(x − y) = �(x)
�(y)

̊�ij(q̊k, ů
k)(x − y)

and
Tj(x; qk,uk)(x, y) ∶= �ij(x; qk,uk)(x − y)ni(x) =

�(x)
�(y)

T̊j(x; q̊k, ů
k)(x, y) (10)

substituting (8)-(9) into Stokes system (1) with variable coefficients, we get

j(x; qk;uk)(x, y) =
)
)xi

(

�ij(x; qk,uk)(x − y)
)

= )
)xi

(

�(x)
�(y)

̊�ij(q̊k, ů
k)(x − y)

)

=
�(x)
�(y)

)
)xi

(

̊�ij(q̊k, ů
k)(x − y)

)

+ )
)xi

(

�(x)
�(y)

)

̊�ij(q̊k, ů
k)(x − y)

=
�(x)
�(y)

̊j(q̊k, ů
k)(x) + 1

�(y)
)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y)

=
�(x)�(x − y)�kj

�(y)
+ 1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y
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=
�(y)�(x − y)�kj

�(y)
+ 1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y)

= �kj �(x − y + 1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y)

Thus,
j(x; qk;uk)(x, y) = �kj �(x − y) + Rkj(x, y), (11)

where

Rkj(x, y) =
1
�(y)

)(�(x))
)xi

̊�ij(q̊k, ů
k)(x − y) = (|x − y|−1)

is a weakly singular remainder. This implies that (qk,uk) is a parametrix of the operator A.

3.2 Volume and Surface Potentials
Let � and��� be sufficiently smooth scalar and vector function onΩ. The parametrix-based Newton-type and the Remainder vector
potential operators are defined as

[U���]k (y) =kj�j(y) ∶= ∫
Ω

ukj (x, y)�j(x)dx, [R���]k (y) = kj�j(y) ∶= ∫
Ω

Rkj(x, y)�j(x)dx, y ∈ ℝ2

for the velocity v, and the scalar Newton-type and remainder potentials for the pressure,

[Q�]j(y) = j�(y) ∶= −∫
Ω

qj(x, y)�(x)dx, (12)

���(y) =Q ⋅ ���(y) = j�j(y) ∶= −∫
Ω

qj(x, y)�j(x)dx, (13)

R∙���(y) = −2⟨)iq̊j(., y), �i)j�⟩Ω − 2�i(y))i�(y) = −2v.p.∫
Ω

)q̊j(x, y)
)xi

)�(x)
)xi

�j(x)dx − �j(y)
)�(y)
)yj

, (14)

for y ∈ R2. The integral in (14) is understood as a 2D strongly singular integral in the Cauchy sense, (see, e.g.,8,9).
For the velocity, the parametrix-based single layer and double layer potentials are defined for y ∉ )Ω as :

[V���]k (y) = Vkj�j(y) ∶= −∫
)Ω

ukj (x, y)�j(x)dSx, [W���]k (y) = Wkj�j(y) ∶= −∫
)Ω

T +j (x; q
k,uk)(x, y)�j(x)dSx,

and for pressure in the variable coefficient Stokes system, the single layer and double layer potentials are defined for y ∉ )Ω as:

Πs���(y) = Πsj�j(y) ∶= ∫
)Ω

q̊j(x, y)�j(x)dSx, Πd���(y) = Πdj �j(y) ∶= 2∫
)Ω

)q̊j(x, y)
)n(x)

�(x)�j(x)dSx.

The corresponding boundary integral (pseudo-differential) operators of direct surface values of the single layer potential and
the double layer potential, the traction of the single layer potential and the double layer potential are

[V���]k (y) = kj�j(y) ∶= −∫
)Ω

ukj (x, y)�j(x)dSx, [W���]k (y) =kj�j(y) ∶= −∫
)Ω

T +j (x; q
k,uk)(x, y)�j(x)dSx, y ∈ )Ω,

[

W ′���
]

k (y) =  ′

kj�j(y) ∶= −∫
)Ω

T +j (y; q
k,uk)(x, y)�j(x)dSx, y ∈ )Ω, L±���(y) ∶= T±(Πd���,W���)(y), y ∈ )Ω,

where T± are the traction operators (see, e.g.,8,9).
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The parametrix-based integral operators depending on the variable coefficient, �(x), can be expressed in terms of the
corresponding integral operators for the constant coefficient case, � = 1, see (8,9 for 3D case).

U��� = 1
�
Ů���, (15)

[R���]k = −
1
�

[

)
)yj

̊ki(�j)i�)(y) +
)
)yi

̊kj(�j)i�) − ̊k(�j)j�)
]

, (16)

Q� = 1
�
Q̊(��), ∙��� = −2 )

)yi
̊j(�j)i�) − �j

)�
)yi

, (17)

V��� = 1
�

V̊���, W��� = 1
�

W̊(����), (18)

V��� = 1
�
̊���, W��� = 1

�
̊(����), (19)

Πs��� = Π̊s���, Πd��� = Π̊d(����), (20)
[

W ′���
]

k =
[

W̊ ′���
]

k −
(

)i�
�

[

V̊���
]

k +
)k�
�

[

V̊���
]

i − ��
k
i

)j�
�

[

V̊���
]

j

)

ni, (21)

L̂(���) ∶= L̊(����). (22)

Note that the constant-coefficient velocity potentials Ů���, V̊��� and W̊��� are divergence-free inΩ± , the corresponding potentials
U���, V��� and W��� are not divergence-free for the variable coefficient �(y),(see e.g.,9). Note also that by 9 and 12,

̊j� = )jPΔ� (23)

where
PΔ�(y) = −

1
2� ∫

Ω

log
|x − y|
r0

�(x)dx

is the harmonic Newton potential. Hence
div Q̊� = )j̊j� = ΔPΔ� = −�. (24)

Moreover, for the constant-coefficient potentials we have the following well-known relations,

Å(Π̊s���, V̊���) = 0, Å(Π̊d���,W̊���) = 0, Å(Q̊���, Ů���) = ���. (25)

In addition, by (23) and (24),

̊j((2 − �)�,−Q̊�) = −)i
(

)i̊j� + )j̊i� − ��
j
i div Q̊�

)

− (2 − �))j�
= −

(

Δ̊j� + )j div Q̊� − �)j div Q̊�
)

− (2 − �))j� = 0 (26)

Theorem 1. Let s ∈ ℝ, the following operators are continuous:

Πs ∶ H− 1
2 ()Ω)→ L2(Ω), Πd ∶ H

1
2 ()Ω)→ L2(Ω), (27)

Πs ∶ H− 1
2 ()Ω)→ L2∗(Ω), Πd ∶ H

1
2 ()Ω)→ L2∗(Ω), (28)

V ∶ Hs()Ω)→ Hs+ 3
2 (Ω), W ∶ Hs()Ω)→ Hs+ 1

2 (Ω), (29)
V ∶ Hs()Ω)→ Hs+1()Ω), W ∶ Hs()Ω)→ Hs+1()Ω), (30)
L± ∶ Hs()Ω)→ Hs−1()Ω), W ′ ∶ Hs()Ω)→ Hs+1()Ω), (31)

(Πs,V) ∶ H− 1
2 ()Ω)→ H1,0(Ω;A), (Πd ,W) ∶ H

1
2 ()Ω)→ H1,0(Ω;A) (32)

(Πs,V) ∶ H− 1
2 ()Ω)→ H1,0

∗ (Ω;A), (Πd ,W) ∶ H
1
2 ()Ω)→ H1,0

∗ (Ω;A). (33)

Moreover, the following operators are compact,

V ∶ Hs()Ω)→ Hs()Ω), (34)
W ∶ Hs()Ω)→ Hs()Ω), (35)
W ′ ∶ Hs()Ω)→ Hs()Ω). (36)

Proof. The continuity of the operators for the constant coefficient case is proved in3 section 5.6.4. Consequently, from the rela-
tions (15)-(21) follows the continuity of variable coefficient operators (27) - (31) as well and the continuity of the operators (32)
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and (33) can be proved similar to9 Theorem 4.3. The compactness of operators (34) - (36) is implied by the Rellich compactness
embedding theorem (see,14 Theorem 3.27) for scalar case.

Theorem 2. Let Ω be a bounded open region ℝ2 with closed, infinitely smooth boundary )Ω. The following operators are
continuous:

U ∶ H̃
s
(Ω)→ Hs+2(Ω), s ∈ ℝ, (37)

U ∶ Hs(Ω)→ Hs+2(Ω), s > −1
2
, (38)

R ∶ H̃
s
(Ω)→ Hs+1(Ω), s ∈ ℝ, (39)

R ∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (40)

Q ∶ H̃s(Ω)→ Hs+1(Ω), s ∈ ℝ, (41)

Q ∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (42)

 ∶ H̃
s
(Ω)→ Hs+1(Ω), s ∈ ℝ, (43)

 ∶ Hs(Ω)→ Hs+1(Ω), s > −1
2
, (44)

∙ ∶ H̃
s
(Ω)→ Hs(Ω), s > −1

2
, (45)

∙ ∶ Hs(Ω)→ Hs(Ω), s > −1
2
. (46)

(̊,U ) ∶ Hs(Ω)→ Hs+2,0(Ω;A), s ≥ 0, (47)
((2 − �)�I,−Q) ∶ Hs−1(Ω)→ Hs,0(Ω;A), s ≥ 1, (48)

(∙,R) ∶ Hs(Ω)→ Hs+1,0(Ω;A), s ≥ 1 (49)

Proof. We use similar procedure as in9 Theorem 4.1. Since the surface )Ω is infinitely differentiable, the operatorsU andQ are
respectively pseudodifferential operators of order -2 and -1[3 , section 9.1.3]. Then, the continuity of (37) and (41) immediately
follows by virtue of the mapping properties of the pseudodifferential operators. Alternatively, these mapping properties are well
studied for the constant coefficient case, i.e. operators Ů and Q̊, see, e.g.,3.Then continuity of operator (43) immediately follows
from representation (13) and continuity of operator (41). Consequently, the respective mapping properties for the remainder
operators (39) and (45) immediately follow by considering the relation (16).
For the remaining part of the proof, we shall first assume that s ∈ (− 1

2
, 1
2
). In this case, Hs(Ω) is identified with H̃s(Ω).

Hence, the continuity of the operator (38) immediately follows from the continuity of (37).
To prove the case s ∈ ( 1

2
, 3
2
), we consider g = (g1, g2), g ∈ Hs(Ω) and by using divergence theorem and the relation

)
)xi

ůkj (x, y) = −
)
)yi

ůkj (x, y) we obtain,

̊kj()igj)(y) = ∫
Ω

ůkj (x, y)(
)
)xi

gj)(x)dx

= ∫
)Ω

ůkj (x, y)

+gj(x)nidx − ∫

Ω

gj(x)
)
)xi

ůkj (x, y)dx = ∫
)Ω

ůkj (x, y)

+gj(x)nidx + )

)yi
(∫
Ω

ůkj (x, y)gj(x)dx)

= −V̊kj(
+gjni)(y) +
)
)yi

(̊kjgj(y))

that is,
)i̊kjgj = ̊kj()igj) + V̊kj(
+gjni), i, j, k ∈ {1, 2} (50)

where ni denotes the components of the normal vector to the surface )Ω directed outwards the domain. It is well known that
)igj ∈ Hs−1(Ω) and 
+g ∈ Hs− 1

2 ()Ω) due to the continuity of the operator )i and the trace theorem.
Due to the mapping properties of V̊ ∶ Hs− 1

2 ()Ω) → Hs+1(Ω) in Theorems 1 and Ů ∶ Hs−1(Ω) → Hs+1(Ω) in the previous
paragraph, we deduce that )iŮg ∈ Hs+1(Ω) is continuous for i ∈ {1, 2}. Consequently, from relations (15) and (18), for
s ∈ ( 1

2
, 3
2
), immediately follows the continuity of the operator (38). Furthermore, by induction on k ∈ ℕ, using the representation

in identity (50) and one can prove by induction that the operator (38) is also continuous for s ∈ (k − 1
2
, k + 1

2
), where k is an
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arbitrary nonnegative integer. The continuity of the operator (38) for the cases s = k + 1
2
is proved by applying the theory of

interpolation of Bessel potential spaces, (see, e.g.17 , Chapter 4). Continuity of the operator (42) and hence (44) can be proved
following a similar argument. Continuity of the remainder operators (40) and (46)) immediately follows from the continuity of
operators (38) and (42) by relations (16) and (17). Also the Continuity of the operator (47), (48) and (49) can be proved similar
as in9 Theorem 4.1.

Theorem 3. Let ��� ∈ H
1
2 ()Ω) and ��� ∈ H− 1

2 ()Ω). Then, the following jump relations hold


±V��� = V���, 
±W��� = ∓1
2
��� +W��� (51)

T±(Πs���,V���) = ±1
2
��� +W ′���, (52)

Proof. For constant constant coefficient case, � = 1, the jump properties for the corresponding operators are proved in3 Lemma
5.6.5. Due to relations (18) and (21), the theorem holds for (51) and (52) as well.

Theorem 4. Let ��� ∈ H
1
2 ()Ω) . Then the following jump relation holds

(L±
k − L̂k)��� = −
±

[

()i�)Wk(���) + ()k�)Wi(���) − ��ki ()j�)Wj(���)
]

ni (53)

Proof. The proof follows word for word the corresponding proof in 3D case in9 , Theorem 4.6.

Proposition 1. Let s > 1
2
. The following operators are compact,

R ∶ Hs(Ω)→ Hs(Ω), R∙ ∶ Hs(Ω)→ Hs−1(Ω), s ∈ ℝ

+R ∶ Hs(Ω)→ Hs− 1

2 ()Ω), T±(∙,R) ∶ H1,0(Ω;A)→ H− 1
2 ()Ω),

T±(∙,R) ∶ H1,0
∗ (Ω;A)→ H− 1

2 ()Ω).

Proof. The proof of the compactness for the operators R, 
+R and ∙ immediately follows from Theorem 2 and the trace
theorem along with the Rellich compact embedding theorem. To prove the compactness of the operator T±(∙,R) we consider
a function g ∈ H1(Ω). Then, (∙g,Rg) inH1(Ω) ×H2(Ω) and hence, (∙g,Rg) ∈ H1,0(Ω;A)(or H1,0

∗ (Ω;A)).
The traction operator T± is the composite of a differential operators, with respect to the first variable and with respect to

the second variable, and the trace operator 
± which reduces the regularity by 1∕2 according to the Trace Theorem. Therefore,
T±(∙g,Rg) ∈ H

1
2 ()Ω). Then, its compactness follows from the Rellich compact embedding H

1
2 ()Ω) ⊂ H− 1

2 ()Ω).

4 INVERTIBILITY OF THE HYDRODYNAMIC SINGLE LAYER POTENTIAL OPERATOR
IN 2D

Suppose that ��� = T+(p, v) where (p, v) ∈ H1,0
∗ (Ω). The single layer potential operator is a Fredholm of index zero. In 3D case,

for ��� ∈ H− 1
2 ()Ω), if V���(y) = 0, y ∈ Ω , then ��� = 0. But this is not generally true for 2D case.

It is well known7 p.696 that in ℝ2 the single layer operator fail to be invertible. So that for some 2D domains the kernel of
the operator V̊ ∶ H− 1

2 ()Ω) → H
1
2 ()Ω) is non-zero, which is by the first relation in (19) implies that also kerV ≠ {0} for some

domains. The following example is in18 , Lemma 1 which illustrates this fact.

Example 1. Take the density function �mj = �jm and Ω = B(0, R) to be a disc of radius R centered at the origin and )Ω =
)B(0, R) be the circular boundary of the disc. We want to show that

�(y)kj�mj (y) = ̊kj�mj (y) = −
R
2
�km(2 log

R
r0
− 1), |y| ≤ R, k, j, m ∈ {1, 2}.

Remark 1. If we set r0 = Re
− 1
2 in Example 1, with �(y) ≠ 0, we get, [V���]k (y) = 0 in Ω.

In order to have invertibility for the single layer potential operator in 2D, we define the subspace Hs
∗∗()Ω) of the space Hs()Ω),

see e.g.,7 Appendix A, in particular s = − 1
2
and 1

2
,

Hs
∗∗()Ω) ∶= {��� ∈ Hs()Ω) ∶ ⟨�i, 1⟩)Ω = 0 for i = 1, 2}, (54)

where the norm in Hs
∗∗()Ω) is induced norm of Hs()Ω).
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Theorem 5. IfΨΨΨ ∈ H
− 1
2

∗∗ ()Ω) satisfies VΨΨΨ = 0 on )Ω, thenΨΨΨ = 0.

Proof. Let us proof by using similar procedure as in14 Corollary 8.11. The single layer potential (p̊, v̊) = (Π̊sΨΨΨ, V̊ΨΨΨ) satisfies

Δv̊ − ∇p̊ = 0 in Ω±, (55)
div v̊ = 0 in Ω±, (56)

±v̊ = 0 on )Ω. (57)

For the exterior problem , we use the following growth conditions at infinity,

v̊(x) = A log |x|
r0
+ (1), p̊ = (|x|−1) as |x| →∞,

where A = ∫)ΩΨΨΨdsx, see, e.g.,3 section 2.3.1. SinceΨΨΨ ∈ H
− 1
2

∗∗ ()Ω) ,i.e., ∫)ΩΨΨΨdsx = 0, it follows that v̊ = 0 and p̊ = 0 in Ω−.
For the interior problem, using first Green identity and Dirichlet condition, we get, v̊ = 0 and using interior part of (55), we
have that ∇p̊ = 0 in Ω. Since p ∈ L2∗(Ω), then p = 0. Consequently,ΨΨΨ = T̊+(Π̊sΨΨΨ, V̊ΨΨΨ)− T̊−(Π̊sΨΨΨ, V̊ΨΨΨ) = 0. Thus,ΨΨΨ = 0. That
is, from V̊ΨΨΨ = 0 follows thatΨΨΨ = 0 and relation (19) implies for the operator V as well.

Theorem 6. Let Ω ⊂ ℝ2 be a bounded domain. Then the single layer potential V ∶ H
− 1
2

∗∗ ()Ω)→ H
1
2
∗∗()Ω) is invertible.

Proof. Due to7 Lemma A.2 the operator V̊ is Fredholm of index zero and the first relation in (19) implies that so is operator V .
Theorem 5 implies the injectivity of operetor V and hence the invertibility of operator V .

To prove the H− 1
2 ()Ω)- ellipticity of the single-layer potential operator for the Stokes system by setting the condition on the

domain, for r0 > 0, consider the fundamental solution

ůkj (x, y) =
1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

.
̊k
j wj(x, y) = −∫

)Ω

1
4�

(

�kj log
|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2

)

wj(x)dSx.

Due to19 Appendix, the single layer potential operator V̊ is positive , that is,

⟨V̊w̃, w̃⟩S > 0 (58)

for a non-zero w̃ that satisfy ∫S w̃dS = 0 where S is the boundary of the domain and follows the theorem.
Consider the following basis of the space of rigid body translations in plane: e1 = [1, 0]T , e2 = [0, 1]T .

Theorem 7. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary )Ω. Let )Ω is contained in the interior of a circular disk
with a radius R. If r0 ≥ Re−

1
2 , then V is H− 1

2 ()Ω)- elliptic.

Proof. First we show the positivity of V̊ and we use a similar procedure as in20 Proposition 2. Let )B denote the boundary of
the disk with radius R containing )Ω. The operator V̊ is positive by (58). So that

⟨[V̊w̃]j , w̃j⟩()Ω∪)B) > 0 (59)

for non-zero w̃ ∈ H− 1
2 ()Ω ∪ )B) satisfying

∫
)Ω∪)B

w̃j(x)dSx = 0. (60)

Let us take w̃ in the form w̃ =

{

w on )Ω,
∑2
k=1 !kek on )B,

with !k chosen so that (60) is satisfied. Let cj = ∫)Ωwj(x)dSx.

Condition (60) gives 0 = ∫)Ω∪)B w̃j(x)dSx = ∫)Ωwj(x)dSx + ∫)B
∑2
k=1 !ke

k
jdSx = cj + 2�R!j . But

⟨[V̊w]j , wj⟩()Ω∪)B) = ⟨− ∫
)Ω∪)B

ůjk(x, y)wk(y)dSy, wj⟩()Ω∪)B)

= ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩()Ω∪)B) + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩()Ω∪)B)
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= ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)Ω + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)Ω

+ ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)B

= ⟨[V̊w]j , wj⟩)Ω + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)Ω

+ ⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B + ⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩)B

and

⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B =
2
∑

j,k=1
∫
)Ω

wj(x)
⎡

⎢

⎢

⎣

−∫
)B

ůjk(x, y)wkdSy

⎤

⎥

⎥

⎦

dSx

=
2
∑

j,k=1
(−∫

)Ω

wj(x)∫
)B

1
4�
(�kj log

|x − y|
r0

−
(xj − yj)(xk − yk)

|x − y|2
)wkdSydSx)

= −
2
∑

j,k=1
∫
)Ω

wj(x)[∫
)B

1
4�
(log

|x − y|
r0

)wjdSy]dSx −
2
∑

j,k=1
∫
)Ω

wj(x)[∫
)B

1
4�
(−
(xk − yk)2

|x − y|2
)wjdSy]dSx

=
2
∑

j=1
(−∫

)Ω

wj(x)[∫
)B

1
4�
(2 log

|x − y|
r0

− 1)wjdSy]dSx)

=
2
∑

j=1
(− 1
4�
(2 log R

r0
− 1)∫

)Ω

wj(x)dSx ∫
)B

wj(y)dSy) = −
2
∑

j=1

1
4�
(2 log R

r0
− 1)(−c2j )

= − 1
4�
(−2 log R

r0
+ 1)(c21 + c

2
2).

Similarly,

⟨−∫
)Ω

ůjk(x, y)wk(y)dSy, wj⟩)B = −
1
4�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2),

⟨−∫
)B

ůjk(x, y)wk(y)dSy, wj⟩()B) =
1
4�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2).

Therefore, the integral (59) yields

0 < ⟨[V̊w]j , wj⟩)Ω + ∫
)Ω

wj(x)
⎡

⎢

⎢

⎣

−∫
)B

ůjk(x, y)wkdSy

⎤

⎥

⎥

⎦

dSx

+ ∫
)B

wj

⎡

⎢

⎢

⎣

−∫
)Ω

ůjk(x, y)wk(y)dSy

⎤

⎥

⎥

⎦

dSx

+ ∫
)B

wj(x)
⎡

⎢

⎢

⎣

−∫
)B

ůjk(x, y)wk(y)dSy

⎤

⎥

⎥

⎦

dSx. (61)

Hence, equation (61) becomes

0 < [⟨V̊w]j , wj⟩)Ω −
1
4�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2). (62)
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Also equation (62) can be written as
1
4c�

[

−2 log R
r0
+ 1

]

(c21 + c
2
2) < ⟨[Vw]j , wj⟩)Ω. (63)

Then the relation ⟨[Vw]j , wj⟩)Ω > 0 is always true for r0 ≥ Re−
1
2 , therefore (63) must be positive for any non-zero w. From3

, Theorem 5.6.13, eq.5.6.50 and19 , Eq.(A.15) satisfy Gårding inequality. Thus from positivity and Gårding inequality implies
that V is H− 1

2 ()Ω)- elliptic due to Lemma 5.2.5 in3.

Theorem 8. Let Ω ⊂ ℝ2. If r0 >
1
2
e−

1
2 diam(Ω), then the operator V has a bounded inverse on H− 1

2 ()Ω).

Proof. By Theorem 7 the operator V is H− 1
2 ()Ω)- elliptic and due to Theorem 1 it is also continuous, that is, bounded. Hence

the Lax-Milgram Lemma implies V has a bounded inverse.

5 THE THIRD GREEN IDENTITIES

Theorem 9. For any (p, v) ∈ H1,0(Ω;A)(or H1,0
∗ (Ω;A)) the following third Green identities hold

v +v − VT+(p, v) +W
+v = UA(p, v) −Q div v in Ω, (64)
p +∙v − ΠsT+(p, v) + Πd
+v = ̊A(p, v) + (2 − �)� div v in Ω. (65)

Proof. The proof is similar to the corresponding proof in9 3D case.

If the couple (p, v) ∈ H1,0(Ω;A)(or H1,0
∗ (Ω;A)) is a solution of the Stokes PDE (2) with variable coefficient, then (64) and

(65) give

v +Rv − VT+(p, v) +W
+v = U f −Qg, in Ω (66)
p +∙v − ΠsT+(p, v) + Πd
+v = ̊f + (2 − �)�g, in Ω (67)

We will also need the trace and traction of the third Green identities (66) and (67) on )Ω.
1
2

+v +R+v − VT+(p, v) +W
+v = 
+U f − 
+Qg (68)

1
2

T+(p, v) + T+(∙,R)v −W ′T+(p, v) +L+
+v = T+(̊f + (2 − �)�g, U f −Qg) (69)
One can prove the following two assertions that are instrumental for proof of equivalence of the BDIEs and the original PDE.

Lemma 1. Let v ∈ H1(Ω), p ∈ L2(Ω)( or L2∗(Ω)), g ∈ L
2(Ω), f ∈ L2(Ω),ΨΨΨ ∈ H− 1

2 ()Ω),ΦΦΦ ∈ H
1
2 ()Ω) satisfy equations,

v +Rv − VΨΨΨ +WΦΦΦ = U f −Qg, in Ω, (70)
p +∙v − ΠsΨΨΨ + ΠdΦΦΦ = ̊f + (2 − �)�g, in Ω. (71)

Then (p, v) ∈ H1,0(Ω;A)(or H1,0
∗ (Ω;A)) and solve the equations

A(y; p, v) = f, div v = g. (72)

Moreover, the following relations hold true:

V(ΨΨΨ − T+(p, v))(y) −W(ΦΦΦ − 
+v)(y) = 0, y ∈ Ω, (73)

Πs(ΨΨΨ − T+(p, v))(y) − Πd(ΦΦΦ − 
+v)(y) = 0, y ∈ Ω. (74)

Proof. The proof is similar to the corresponding proof in9 3D case .

Lemma 2. (i) Let eitherΨΨΨ∗ ∈ H− 1
2 ()Ω) and r0 >

1
2
e−

1
2 diam(Ω) orΨΨΨ∗ ∈ H

− 1
2

∗∗ ()Ω). If

VΨΨΨ∗(y) = 0, y ∈ Ω, (75)

thenΨΨΨ∗ = 0
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(ii) LetΦΦΦ∗ ∈ H
1
2 ()Ω). If

WΦΦΦ∗(y) = 0, y ∈ Ω, (76)
thenΦΦΦ∗ = 0.

Proof. We will use similar procedures as in10.

(i) Taking the trace of (75) on )Ω and using jump relation (51). Then we have

VΨΨΨ∗ = 0 on )Ω

IfΨΨΨ∗ ∈ H− 1
2 ()Ω) and r0 >

1
2
e−

1
2 diam(Ω), then the result follows from the invertability of the single layer potential given

by Theorem 8. On the other hand, ifΨΨΨ∗ ∈ H
− 1
2

∗∗ ()Ω), then the result is implied by Theorem 6.

(ii) Taking the trace of (76) and then by (51) gives

−1
2
ΦΦΦ∗ +WΦΦΦ∗ = 0 on )Ω,

due to (19), − 1
2
Φ̂ΦΦ
∗
+W̊Φ̂ΦΦ

∗
= 0 on )Ω, where Φ̂ΦΦ

∗
= �ΦΦΦ∗. Due to the contraction property of the operator − 1

2
I+W̊ , then

Φ̂ΦΦ
∗
is uniquely solvable and �(y) ≠ 0,

Φ̂ΦΦ
∗
= 0 implies ΦΦΦ∗ = 0.

6 INVERTIBILITY OF THE HYPERSINGULAR OPERATOR IN 2D

The kernel of the traction of the double layer potential L̊+ is not trivial. This can be seen by taking p = 0 and v = w in Ω,
where w ∈  and inserting in to the integral equation (69) for the case � = 1, we obtain L̊+
+v = 0 on )Ω. In order to have
invertibility for the hypersingular operator, we define the following subspace of the space H

1
2 ()Ω),

H
1
2
()Ω) = {v ∈ H

1
2 ()Ω) ∶ ⟨v,w⟩)Ω = 0 for all w ∈ }.

Theorem 10. Let )Ω be an infinitely smooth boundary curve. The pseudo-differential operator ,

L̂ ∶ H
1
2
()Ω)→ H− 1

2 ()Ω) (77)

is invertible. The operator
L+ − L̂ ∶ H

1
2 ()Ω)→ H− 1

2 ()Ω) (78)
is bounded and compact.

Proof. For ��� ∈ H
1
2 ()Ω) using the jump relation (53), one can obtain the relation, ̂k��� = ̊+k (����) = +k��� +


+
[

()i�)Wk(���) + ()k�)Wi(���) − ��ki ()j�)Wj(���)
]

ni. The hypersingular boundary integral operator L̊ ∶ H
1
2
()Ω)→ H− 1

2 ()Ω) is
bounded by Theorem 1. Moreover, from3 , Theorem 5.6.13 satisfy the inequality

⟨L̊���, ���⟩
)Ω
+

3
∑

k=1
⟨���,wk⟩

2
)Ω

≥ c ∥ ��� ∥2
H
1
2 ()Ω)

.

But ��� ∈ H
1
2
()Ω) we have that ⟨L̊���, ���⟩

)Ω
≥ c ∥ ��� ∥2

H
1
2 ()Ω)

for all ��� ∈ H
1
2
()Ω) which implies that L̊ is H

1
2
()Ω)-elliptic.

Then the Lax-Milgram lemma implies the H
1
2
()Ω) invertibility of L̊. Hence the invertibility of (77) follows. The operator

k,i,j ∶ H
1
2 ()Ω)→ H

3
2 ()Ω) are continuous and sinceH

3
2 ()Ω) is continuously embedded inH

1
2 ()Ω), using the relation

+k − ̂k = −
)�
)ni

(

(−1
2
I +k) + �ki (−

1
2
I +i) + ��kj (−

1
2
I +j)

)

,

we obtain continuity of the operator L+ − L̂ ∶ H
1
2 ()Ω) → H− 1

2 ()Ω). The embedding H
1
2 ()Ω) ⊂ H− 1

2 ()Ω) is compact ,which
implies that the operator L+ − L̂ ∶ H

1
2 ()Ω)→ H− 1

2 ()Ω) is compact.
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7 BDIE SYSTEMS FOR THE DIRICHLET PROBLEM

We shall derive and investigate the BDIE systems for the following Dirichlet boundary value problem. Given the functions
'''0 ∈ H

1
2 ()Ω), g ∈ L2(Ω) and f ∈ L2(Ω), find a couple of functions (p, v) ∈ H1,0

∗ (Ω;A) satisfying,

A(p, v)(x) = f(x), x ∈ Ω, (79a)
div v(x) = g(x), x ∈ Ω, (79b)

+v(x) = '''0(x), x ∈ )Ω. (79c)

Theorem 11. The Dirichlet BVP (79a)-(79c) has a unique solution in the space H1,0
∗ (Ω;A).

Proof. Let (p1, v1) and (p2, v2) are in H1,0
∗ (Ω;A) that satisfy the BVP (79a)-(79c). Then (p, v) ∶= (p2, v2)− (p1, v1) also belongs

to H1,0
∗ (Ω;A) and satisfy the following homogeneous Dirichlet BVP

A(p, v)(x) = 0, x ∈ Ω, (80a)
div v(x) = 0, x ∈ Ω, (80b)

+v(x) = 0, x ∈ )Ω (80c)

The first Green identity (4) holds for any u ∈ H1(Ω) and for any pair (p, v) ∈ H1,0
∗ (Ω;A). Then due to (80a)-(80c) we have,

0 = ∫Ω E(v,u)(x)dx ∶= (v,u), that is

(v,u) =∫
Ω

E(v,u)(x)dx = ∫
Ω

�(x)
2

(

)ui(x)
)xj

+
)uj(x)
)xi

)(

)vi(x)
)xj

+
)vj(x)
)xi

)

dx = 0.

Now if we choose u = v, then we get, (v, v) = 0. As �(x) > 0, the only possibility is that v(x) = a + b(−x2, x1)T , i.e, v is a
rigid movement, see ,14 , Lemma 10.5 for 3D case and3 eq.2.2.11. Taking into account the Dirichlet condition (80c), we deduce
that v ≡ 0. Hence, v1 = v2.
Considering now v = 0 and keeping inmind equation (80a), we haveA(p, v)(x) = 0 and thenwe get∇p = 0. Since p ∈ L2∗(Ω),

we get p = 0.

7.1 BDIE formulations for the Dirichlet Problem
We aim to obtain a segregated boundary-domain integral equation systems for Dirichlet BVP (79a)-(79c). We will use similar
procedures as in10. Let us denote the unknown traction as    = T+(p, v) ∈ H− 1

2 ()Ω) and will further consider    as formally
independent on p and v. Assuming that the function (p, v) satisfies system of PDEs (79a)-(79b), by substituting the Dirichlet
condition into the third Green identities (64),(65) and either into its trace (68) or into its traction (69) on )Ω, we can reduce the
BVP (79a)- (79c) to two different systems of Boundary-Domain Integral Equations for the unknowns (p, v,   ) ∈ H1,0

∗ (Ω;A) ×
H− 1

2 ()Ω) .
BDIE System (D1) From the equations (66), (67) and(68) we obtain

p +∙v − Πs   = F0 in Ω, (81a)
v +v − V   = F in Ω, (81b)

+Rv − V   = 
+F −'''0 on )Ω, (81c)

where
F0 ∶= ̊f + (2 − �)�g − Πd'''0, F ∶= U f −Qg −W'''0 (82)

Using theorems 1 and 2 we have, (F0,F) ∈ H1,0
∗ (Ω;A).

We denote the right hand side of BDIE system (81a)-(81c) as

F1 ∶= [F0,F, 
+F −'''0]T , (83)

which implies F1 ∈ H1,0
∗ (Ω;A) ×H

1
2 ()Ω).

Note that BDIE system (81a)-(81c) can be split into the BDIE system (D1), of two vector equations (81b), (81c)) for two
vector unknowns, v and    ,and the scalar equation (81a) that can be used after solving the system to obtain the pressure, p.
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The system (D1) given by equations (81a)-(81c) can be written using matrix notation as

D1X = F1, (84)

whereX represents the vector containing the unknowns of the systemX = (p, v,   ) ∈ L2∗(Ω) ×H1(Ω) ×H− 1
2 ()Ω). The matrix

operator D1 is defined by

D1 =
⎡

⎢

⎢

⎣

I ∙ −Πs

0 I +R −V
0 
+R −V

⎤

⎥

⎥

⎦

Remark 2. The term F1 = 0 if and only if (f, g,'''0) = 0.
Suppose F1 = 0, then [F0,F, 
+F − '''0]T = 0. Now multiplying the second equation of (82) by � and applying Stokes

operator with � = 1 to these two equations (82), by (25)and (26) we obtain f = 0.
In addition 
+F −'''0 = 0 implies '''0 = 0. Therefore, we obtain that '''0 = 0 on )Ω and by first equation of (82) we obtain

g = 0. On the other hand assume that (f, g,'''0) = 0. Then immediately we have F1 = 0.

BDIE System (D2) From the equations (66), (67) and (69) we obtain

p +∙v − Πs   = F0 in Ω, (85a)
v +Rv − V   = F in Ω, (85b)

1
2
   + T+(∙,R)v −W ′   = T+(F0,F) on )Ω, (85c)

where F0 and F are given by (82). System (D2) can be written in the matrix form as D2X = F2, where

D2 =
⎡

⎢

⎢

⎣

I ∙ −Πs

0 I +R −V
0 T+(∙,R) 1

2
I −W ′

⎤

⎥

⎥

⎦

, F2 =
⎡

⎢

⎢

⎣

F0
F

T+(F0, F)

⎤

⎥

⎥

⎦

Note that BDIE system (85a)-(85c) can be split in to the BDIE system (D2), of 2 vector equations (85b), (85c)) for two vector
unknowns, v and    ,and the scalar equation (85a) that can be used, after solving the system, to obtain the pressure, p.

Remark 3. The term F2 = 0 if and only if (f, g,'''0) = 0.
Indeed, it is evident that (f, g,'''0) = 0 impliesF2 = 0. Let nowF2 = 0. Lemma 1 with F0 = 0 for p and F = 0 for v applying

to equation (82) implies that f = 0, g = 0 and Πd'''0 = 0,W'''0 = 0 in Ω. Therefore, by Lemma 2(ii) '''0 = 0 on )Ω.

In the following theorem we shall prove the equivalence of the the boundary-domain integral equation systems to original
Dirichlet boundary value problem.

7.2 Equivalence and Invertibility Theorems
Theorem 12 (Equivalence Theorem). Let f ∈ L2(Ω), g ∈ L2(Ω) and '''0 ∈ H

1
2 ()Ω)

(i) If some (p, v) ∈ H1,0
∗ (Ω;A) solve the Dirichlet BVP (79a)-(79c), then (p, v,   ) ∈ H1,0

∗ (Ω;A) ×H− 1
2 ()Ω), where

   = T+(p, v) ∈ H− 1
2 ()Ω) (86)

solves the BDIE systems (D1) and (D2) .

(ii) If (p, v,   ) ∈ H1,0
∗ (Ω;A) × H

− 1
2

∗∗ ()Ω) solves the BDIE system (D1) , then (p, v) solves the BDIE system (D2) and BVP
(79a) -(79c), this solution is unique, and    satisfies (86).

(iii) If (p, v,   ) ∈ H1,0
∗ (Ω;A) × H− 1

2 ()Ω) solves the BDIE system (D2) , then (p, v) solves the BDIE system (D1) and BVP
(79a) -(79c), this solution is unique, and    satisfies (86).

Proof. (i) Let (p, v) ∈ H1,0
∗ (Ω;A) be a solution of the BVP. Let us define the function    by (86). Taking into account the

Green identities (66)- (68), we immediately obtain that (p, v,   ) solves BDIE systems (D1) and (D2).
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We note that if (p, v,   ) ∈ L2∗(Ω)×H1(Ω)×H− 1
2 ()Ω) solves BDIE systems (D1) and (D2). Due to the first two equations in

the BDIE systems, the hypotheses of Lemma 1 are satisfied implying that (p, v) ∈ H1,0
∗ (Ω;A) and solves PDEs (79a)-(79b)

in Ω and also satisfying
V(   − T+(p, v)) −W('''0 − 
+v) = 0 (87)

(ii) let (p, v,   ) ∈ H1,0
∗ (Ω;A) × H− 1

2 ()Ω) solve BDIE system (D1). If we take the trace of the second equation in (D1)and
subtracting the third equation from it, we arrive at 
+v = '''0 on )Ω. Therefore the Dirichlet boundary is satisfied. Now
using Dirichlet condition in (87), we have V(   − T+(p, v)) = 0, y ∈ Ω, Lemma 2(i) then implies    = T+(p, v).

(iii) Let (p, v,   ) ∈ H1,0
∗ (Ω;A) × H− 1

2 ()Ω) solve BDIE system (D2). If we take the traction of the first and second equations
in (D2) and subtracting the third equation from it, we arrive at    = T+(p, v) on )Ω. Therefore    satisfies (86) . Now
putting    = T+(p, v) in (87),we have W('''0 − 
+v) = 0, y ∈ Ω , Lemma 2(ii) then implies '''0 = 
+v. Therefore satisfy
the Dirichlet Condition. The uniqueness of the BDIE system solutions follows form Theorem 11.

Theorem 13. If r0 >
1
2
e−

1
2 diam(Ω) or    ∈ H

− 1
2

∗∗ ()Ω), then the following operators are invertible

D1 ∶ L2∗(Ω) ×H1(Ω) ×H− 1
2 ()Ω) ←→ L2∗(Ω) ×H1(Ω) ×H

1
2 ()Ω) (88)

D1 ∶ H1,0
∗ (Ω;A) ×H− 1

2 ()Ω) ←→ H1,0
∗ (Ω;A) ×H

1
2 ()Ω). (89)

Proof. Theorem 12(ii) implies that operators 88 and 89 are injective. To see this, letD1X = 0, then F1 = 0, or [F0,F, 
+F −
'''0]T = 0 byRemark 2, which implies (f, g,'''0) = 0. ThismeansA(p, v) = 0, div v = 0,'''0 = 
+v = 0, hence by Theorem 12(ii),
v = 0, p = 0,   = 0. Therefore, X = 0.
Let us denote

D̃1 =
⎡

⎢

⎢

⎣

I 0 −Πs

0 I −V
0 0 −V

⎤

⎥

⎥

⎦

.

Then D̃1 ∶ L2∗(Ω) ×H1(Ω) ×H− 1
2 ()Ω) ←→ L2∗(Ω) ×H1(Ω) ×H

1
2 ()Ω) is continuous which is bounded. It is invertible due to its

triangular structure and invertibility of its diagonal operators I ∶ L2∗(Ω) ←→ L2∗(Ω), I ∶ H1(Ω) ←→ H1(Ω) and−V ∶ H− 1
2 ()Ω) ←→

H
1
2 ()Ω) (see theorem 8). Due to proposition 1 the operatorD1− ̃1 ∶ L2∗(Ω)×H1(Ω)×H− 1

2 ()Ω) ←→ L2∗(Ω)×H1(Ω)×H
1
2 ()Ω)

which is

D1 − D̃1 =
⎡

⎢

⎢

⎣

0 ∙ 0
0 R 0
0 
+R 0

⎤

⎥

⎥

⎦

is compact, implying that operator (88) is Fredholm operator with zero index (cf.14, Theorem 2.27) and then the injectivity of
operator (88) implies its invertibility.
To prove the invertibility of the operator (89), consider the solution  = (D1)−1F1 of the system (84). Here F1 ∈

H1,0
∗ (Ω;A)×H

1
2 ()Ω) is an arbitrary right hand side and (D1)−1 is the inverse of the operator (88) which exists. Applying Lemma

1 to the first two equations of the system (81a)- (81c), we get that  ∈ H1,0
∗ (Ω;A) × H− 1

2 ()Ω). Consequently, the operator
(D1)−1 is also the continuous inverse of the operator(89).

Theorem 14. The operators

D2 ∶ L2∗(Ω) ×H1(Ω) ×H− 1
2 ()Ω) ←→ L2∗(Ω) ×H1(Ω) ×H

1
2 ()Ω) (90)

D2 ∶ H1,0
∗ (Ω;A) ×H− 1

2 ()Ω) ←→ H1,0
∗ (Ω;A) ×H

1
2 ()Ω) (91)

are invertible.

Proof. Theorem 12(iii) implies that operators 90 and 91 are injective. To see this, let D2X = 0, then F2 = 0, or
[F0,F, T+(F0,F)]T = 0 by Remark 3, which implies (f, g,'''0) = 0. This means A(p, v) = 0, div v = 0, '''0 = 0, hence by
Theorem 12(iii), v = 0, p = 0,   = 0. Therefore, X = 0.
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Let us denote

D̃2 =
⎡

⎢

⎢

⎣

I 0 −Πs

0 I −V
0 0 1

2
I

⎤

⎥

⎥

⎦

Then D̃2 is continuous which is bounded. It is invertible due to its triangular structure and invertibility of its diagonal operators
I ∶ L2∗(Ω) ←→ L2∗(Ω) and I ∶ H1(Ω) ←→ H1(Ω). Due to Theorem 1 and proposition 1, the operator

D2 − D̃2 =
⎡

⎢

⎢

⎣

0 ∙ 0
0 R 0
0 T+(∙,R) −W ′

⎤

⎥

⎥

⎦

is compact, implying that operator (90) is Fredholm operator with zero index (see,14,Theorem 2.27) and then the injectivity of
operator (90) implies its invertibility.
To prove the invertibility of the operator (91), consider the solutionX = (D2)−1F2 . HereF2 ∈ H1,0

∗ (Ω;A) ×H
1
2 ()Ω) is an

arbitrary right hand side and (D2)−1 is the inverse of operator (90) which exists. Applying Lemma 1 to the first two equations of
the system (85a) - (85c), we get thatX ∈ H1,0

∗ (Ω;A) ×H− 1
2 ()Ω). Consequently, operator (D2)−1 is also the continuous inverse

of the operator(91).

8 BDIE SYSTEMS FOR THE NEUMANN PROBLEM

We shall derive and investigate the BDIE systems for the following Neumann boundary value problem. Given the functions
   0 ∈ H− 1

2 ()Ω), g ∈ L2(Ω) and f ∈ L2(Ω), find a couple of functions (p, v) ∈ L2(Ω) ×H1(Ω) satisfying,

A(p, v)(x) = f(x), x ∈ Ω, (92a)
div v(x) = g(x), x ∈ Ω, (92b)

T+(p(x), v(x)) =    0(x), x ∈ )Ω. (92c)

Theorem 15.

i. The homogeneous problem corresponding to the BVP (92a)-(92c), admits solutions in L2(Ω) × H1(Ω) spanned by
(p0, v0) = (0, {wk}3k=1).

ii. The non-homogeneous problem (92a)-(92c) is solvable if and only if the following solvability condition is satisfied

⟨f, v0⟩
Ω
− ⟨   0, 


+v0⟩
)Ω
= 0 (93)

for each rigid body motion v0 of in ℝ2.

Proof.

i. Consider the following homogeneous Neumann BVP

A(p, v)(x) = 0, x ∈ Ω, (94a)
div v(x) = 0, x ∈ Ω, (94b)

T+(p, v)(x) = 0, x ∈ )Ω. (94c)

The first Green identity (4) holds for any u ∈ H1(Ω) and for any pair (p, v) ∈ H1,0(Ω;A). Then due to (94a)-(94c) we
have, 0 = ∫Ω E(v,u)(x)dx ∶= (v,u), that is

0 =∫
Ω

E(v,u)(x)dx = ∫
Ω

�(x)
2

(

)ui(x)
)xj

+
)uj(x)
)xi

)(

)vi(x)
)xj

+
)vj(x)
)xi

)

dx.

Now if we choose u = v, then we get, (v, v) = 0. As �(x) > 0, the only possibility is that v ∈ , i.e, v is a rigid
movement. Considering now v is a rigid movement and keeping in mind equation the Neumann condition (94c), we have
p = 0.

ii. Let (p, v) is a solution to system (92a)-(92a), thenA(p, v)− f = 0. Now multiplying by v0 ∈  and then we arrive at (93).
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8.1 BDIE formulations for Neumann problem
We aim to obtain a segregated boundary-domain integral equation systems for Neumann BVP (92a)-(92c). Let us denote the
unknown trace as ''' = 
+v ∈ H

1
2 ()Ω) and will further consider ''' as formally independent on p and v. Assuming that the

function (p, v) satisfies system of PDEs (92a)-(92b), by substituting the Neumann condition into the third Green identities (64),
(65) and either into its trace (68) or into its traction (69) on )Ω, we can reduce the BVP (92a)- (92c) to two different systems of
Boundary-Domain Integral Equations for the unknowns (p, v,''') ∈ H1,0(Ω;A) ×H

1
2 ()Ω).

BDIE System(N1) From the equations (66), (67) and its traction (69) we obtain

p +∙v + Πd''' = G0 in Ω, (95a)
v +Rv +W''' = G in Ω, (95b)

T+(∙,R)v +L+''' = T+(G0,G) −   0 on )Ω, (95c)

where
G0 ∶= ̊f + (2 − �)�g + Πs   0, G ∶= U f −Qg + V   0 (96)

By Theorem 1 and 2, (G0,G) ∈ H1,0(Ω;A).
We denote the right hand side of BDIE system (95a)-(95c) as

G1 ∶= [G0,G,T+(G0,G) −   0]T , (97)

which implies G1 ∈ H1,0(Ω;A) ×H− 1
2 ()Ω). In matrix form it can be written as N 1X = G1 , where

N 1 =
⎡

⎢

⎢

⎣

I ∙ Πd

0 I +R W
0 T+(∙,R) L+

⎤

⎥

⎥

⎦

, G1 =
⎡

⎢

⎢

⎣

G0
G

T+(G0, G) −   0

⎤

⎥

⎥

⎦

Note that BDIE system (95a)-(95c) can be split in to the BDIE system (N1), of two vector equations (95b), (95c)) for two
vector unknowns, v and ''', and the scalar equation (95a) that can be used after solving the system, to obtain the pressure p.

Remark 4. The term G1 = 0 if and only if (f, g,   0) = 0.
Indeed, it is evident that (f, g,   0) = 0 impliesG1 = 0. Let nowG1 = 0which impliesG0 = 0 ,G = 0 andT+(G0, G)−   0 = 0.

Thus    0 = 0. From (96) with    0 = 0, we have

̊f + (2 − �)�g = 0, U f −Qg = 0.

multiplying by � of the second equation above and applying the Stokes operator , we get f = 0 and then using the first equation
in above we also get g = 0.

BDIE System(N2) From the equations (66), (67) and(68) we obtain

p +∙v + Πd''' = G0 in Ω, (98a)
v +v +W''' = G in Ω, (98b)


+Rv + 1
2
''' +W''' = 
+G on )Ω, (98c)

Note that BDIE system (98a)-(98c) can be split into the BDIE system (N2), of two vector equations (98b), (98c)) for two vector
unknowns, v and ''', and the scalar equation (98a) that can be used after solving the system to obtain the pressure p.
The system (N2) given by equations (98a)-(98c) can be written using matrix notation as

N 2X = G2, (99)

where X represents the vector containing the unknowns of the system

X = (p, v,''') ∈ L2(Ω) ×H1(Ω) ×H
1
2 ()Ω)

The matrix operator N 2 is defined by

N 2 =
⎡

⎢

⎢

⎣

I ∙ Πd

0 I +R W
0 
+R 1

2
I +W

⎤

⎥

⎥

⎦

, G2 =
⎡

⎢

⎢

⎣

G0
G


+ G

⎤

⎥

⎥

⎦
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Remark 5. Let    0 ∈ H− 1
2 ()Ω) and r0 >

1
2
diam(Ω)e−

1
2 . The term G2 = 0 if and only if (f, g,   0) = 0.

Suppose G2 = 0, then [G0,G, 
+G]T = 0. Taking into account how the terms G and G0 are defined in (96) considering that
G0 = 0 and G = 0, we can deduce by applying Lemma 1 to equations (96) that f = 0, g = 0 and

ΠsΨΨΨ0 = 0, V   0 = 0

Therefore, by Lemma 2(i) we obtain that
   0 = 0 on )Ω

.

In the following theorem we shall see the equivalence of the original Neumann boundary value problem to the boundary
domain integral equation systems.

8.2 Equivalence and Invertibility Theorems
Theorem 16 (Equivalence Theorem). Let f ∈ L2(Ω), g ∈ L2(Ω),   0 ∈ H− 1

2 ()Ω) and satisfy the solvability condition (93)

(i) If some (p, v) ∈ L2(Ω) ×H1(Ω) solves the Neumann BVP (92a)- (92c), then (p, v,''') where

''' = 
+v ∈ H
1
2 ()Ω) (100)

solves BDIE system (N1) and (N2) .

(ii) If (p, v,''') ∈ L2(Ω) × H1(Ω) × H
1
2 ()Ω) solves the BDIE system (N1), then (p, v) solves the BDIE system (N2) and the

Neumann BVP (92a)- (92c) and the function ''' satisfies (100).

(iii) If (p, v,''') ∈ L2(Ω) ×H1(Ω) ×H
1
2 ()Ω) solves the BDIE system (N2) and r0 >

1
2
e−

1
2 diam(Ω), then (p, v) solves the BDIE

system (N1) and the Neumann BVP (92a) - (92c) and the function ''' satisfies (100).

(iv) The homogeneous BDIE systems (N1) and (N2) have linearly independent solution 0 = (p0, v0,'''0)T =
(0, {wk}3k=1, {wk}3k=1)

T in L2(Ω) × H1(Ω) × H
1
2 ()Ω). Condition (93) is necessary and sufficient for solvability of the

nonhomogeneous BDIE systems (N1) and (N2) in L2(Ω) ×H1(Ω) ×H
1
2 ()Ω).

Proof. (i) Let (p, v) ∈ L2(Ω) × H1(Ω) be a solution of the BVP. Since f ∈ L2(Ω), then (p, v) ∈ H1,0(Ω;A) . Let us define
the function ''' by (100). Taking into account the Green identities (66)- (69), we immediately obtain that (p, v,''') solve
system (N1) and (N2).

(ii) let (p, v,''') ∈ L2(Ω)×H1(Ω)×H
1
2 ()Ω) solve BDIE system (N1). If we take the traction of (95a) and (95b)and subtracting

(95c) from it, we arrive at    0 = T+(p, v) on )Ω. Thus the Neumann condition is satisfied.

Also we note that if (p, v) ∈ L2(Ω) × H1(Ω) then A(p, v) = f ∈ L2(Ω). Due to relations (95a) and (95b) the hypotheses
of the Lemma 1 are satisfied. As a result we obtain that (p, v) is a solution of A(p, v) = f satisfying

V(   0 − T+(p, v)) −W(''' − 
+v) = 0 (101)

Now inserting    0 = T+(p, v) in (101),we have W(''' − 
+v) = 0, y ∈ Ω, Lemma 2(ii) then implies ''' = 
+v. Therefore '''
satisfies (100) .

(iii) let(p, v,''') ∈ L2(Ω) ×H1(Ω) ×H
1
2 ()Ω) solve BDIE system (N2). If we take the trace of (98b) and subtracting (98c) from

it, we arrive at ''' = 
+v on )Ω. Then inserting ''' = 
+v in (101) gives V(   0 − T+(p, v)) = 0, Lemma 2(i) then implies
   0 = T+(p, v) on )Ω) . Hence the Neumann condition is satisfied.

(iv) Theorem 15 along with item (i)-(iii) imply the claims of item (iv).

If we consider (p, v) ∈ H1,0
 (Ω;A), the Neumann BVP has a unique solution in H1,0

 (Ω;A) and we have the following
equivalence theorem and the invertibility of the operatorsN 1 andN 2.Note that in this case we use the space H1,0

 (Ω;A) instead
of H1,0

∗ (Ω;A) as we saw from section 7.
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Remark 6. The Neumann BVP (92a)- (92c) has a unique solution in H1,0
 (Ω;A).

Theorem 17. Let f ∈ L2(Ω), g ∈ L2(Ω) and    0 ∈ H− 1
2 ()Ω)

(i) If some (p, v) ∈ H1,0
 (Ω;A) solves the Neumann BVP (92a)- (92c), then (p, v,''') where

''' = 
+v ∈ H
1
2 ()Ω) (102)

solves BDIE system (N1) and (N2) .

(ii) If (p, v,''') ∈ H1,0
 (Ω;A)×H

1
2 ()Ω) solves the BDIE system (N1), then (p, v) solves the BDIE system (N2)and the Neumann

BVP (92a)- (92c) and the function ''' satisfies (102).

(iii) If (p, v,''') ∈ H1,0
 (Ω;A) × H

1
2 ()Ω) solves the BDIE system (N2) and r0 >

1
2
e−

1
2 diam(Ω), then (p, v) solves the BDIE

system (N1)and the Neumann BVP (92a)- (92c) and the function ''' satisfies (102).

(iv) The BDIE systems (N1) and (N2) are uniquely solvable in L2(Ω) ×H1
(Ω) ×H

1
2 ()Ω.

Proof. The procedure of the proof is similar with the above Theorem.

Theorem 18. The operators

N 1 ∶ L2(Ω) ×H1
(Ω) ×H

1
2 ()Ω) ←→ L2(Ω) ×H1

(Ω) ×H− 1
2 ()Ω) (103)

N 1 ∶ H1,0
 (Ω;A) ×H

1
2 ()Ω) ←→ H1,0

 (Ω;A) ×H− 1
2 ()Ω) (104)

are invertible.

Proof. Theorem 17(ii) implies that operators 103 and 104 are injective. To see this, let N 1X = 0, then N 1 = 0, or
[G0,G, T+(G0,G) −   0]T = 0 by Remark 4, which implies (f, g,   0) = 0. This means A(p, v) = 0, div v = 0,    0 = 0, hence
by Theorem 17, v = 0, p = 0,''' = 0. Therefore, X = 0.
Let us denote

Ñ 1 =
⎡

⎢

⎢

⎣

I 0 Πd

0 I W
0 0 L̂

⎤

⎥

⎥

⎦

.

Then Ñ 1 ∶ L2(Ω)×H1
(Ω)×H

1
2 ()Ω) ←→ L2(Ω)×H1

(Ω)×H− 1
2 ()Ω) is continuous which is bounded. It is invertible due to its

triangular structure and invertibility of its diagonal operators I ∶ L2(Ω) ←→ L2(Ω), I ∶ H1
(Ω) ←→ H1

(Ω) and L̂ ∶ H
1
2
()Ω) ←→

H− 1
2 ()Ω) . Due to proposition 1 the operator N 1 − Ñ 1 ∶ L2(Ω) ×H1

(Ω) ×H
1
2 ()Ω) ←→ L2(Ω) ×H1

(Ω) ×H− 1
2 ()Ω) which is

N 1 − Ñ 1 =
⎡

⎢

⎢

⎣

0 ∙ 0
0 R 0
0 T +(∙,R) L+ − L̂

⎤

⎥

⎥

⎦

is compact, implying that operator (103) is Fredholm operator with zero index and then the injectivity of operator (103) implies
its invertibility.
To prove the invertibility of the operator (104), consider the solution  = (N 1)−1G1 of (N1). Here G1 ∈ H1,0

 (Ω;A) ×
H− 1

2 ()Ω) is an arbitrary right hand side and (N 1)−1 is the inverse of the operator (103) which exists. Applying Lemma 1 to the
first two equations of the system (98a)- (98c), we get that  ∈ H1,0

 (Ω;A) ×H
1
2 ()Ω). Consequently, the operator (N 1)−1 is also

the continuous inverse of the operator(104).

Theorem 19. The operators

N 2 ∶ L2(Ω) ×H1
(Ω) ×H

1
2 ()Ω) ←→ L2(Ω) ×H1

(Ω) ×H
1
2 ()Ω) (105)

N 2 ∶ H1,0
 (Ω;A) ×H

1
2 ()Ω) ←→ H1,0

 (Ω;A) ×H
1
2 ()Ω) (106)

are invertible.
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Proof. Theorem 17(iii) implies that operators 105 and 106 are injective. To see this, let N 2X = 0, then G2 = 0, or
[G0,G, 
+G]T = 0 by Remark 5, which implies (f, g,'''0) = 0. This means A(p, v) = 0, div v = 0,    0 = 0, hence by Theorem
17, v = 0, p = 0,''' = 0. Therefore, X = 0.
Let us denote

Ñ 2 =
⎡

⎢

⎢

⎣

I 0 Πd

0 I W
0 0 1

2
I

⎤

⎥

⎥

⎦

Then Ñ 2 is continuous which is bounded. It is invertible due to its triangular structure and invertibility of its diagonal operators
I ∶ L2(Ω) ←→ L2(Ω) , I ∶ H1

(Ω) ←→ H1
(Ω) and I ∶ H

1
2 ←→ H

1
2 (Ω) . Due to proposition 1, the operator

N 2 − Ñ 2 =
⎡

⎢

⎢

⎣

0 ∙ 0
0 R 0
0 
+R W

⎤

⎥

⎥

⎦

is compact, implying that operator (105) is Fredholm operator with zero index and then the injectivity of operator (105) implies
its invertibility.
To prove the invertibility of the operator (106), consider the solution X = (N 2)−1G2 . Here G2 ∈ H1,0

 (Ω;A) × H
1
2 ()Ω) is

an arbitrary right hand side and (N 2)−1 is the inverse of the operator (105) which exists. Applying Lemma 1 to the first two
equations of the system (98a) - (98c), we get that X ∈ H1,0

 (Ω;A) × H
1
2 ()Ω). Consequently, the operator (N 2)−1 is also the

continuous inverse of the operator(106).
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