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1 | INTRODUCTION

The Stokes system of PDE is derived from the linearised steady-state Navier-Stokes system. Studying this system gives us an
opportunity to introduce several tools necessary for a treatment of the full Navier-Stokes equations, see for example (L' > Chapter Ty,
In addition to its importance in applications, this system of PDEs has attracted the attention of numerical analysts.

Boundary integral equations and the hydrodynamic potential theory for the Stokes system with constant viscosity have been
extensively studied by numerous authors, (see e.g.2342/07) BDIE systems for the incompressible and compressible Stokes
system with variable viscosity in three dimensional space have been investigated in® and“ respectively, but BDIE systems in
2D, following a similar approach as in'? have not yet been studied. In the case of constant viscosity, fundamental solutions for
both velocity and pressure are available in analytical form. However, such fundamental solutions are not available for PDEs
with variable viscocity. Therefore, the parametrix (Levi function), see, e.g.,89 is used in order to derive and investigate the
BDIE systems for the corresponding variable-coefficient BVPs. In'HU0 authors derived and investigated BDIE systems for
BVP with variable-coefficient scalar elliptic PDE defined on a bounded domain. In®2 authors transformed mixed BVP with
variable coefficient for Stokes problem defined on a bounded domain to BDIE systems for their further analysis. In this paper, we
shall derive and investigate BDIE systems for variable coefficient Mixed BVP for compressible Stokes equations in appropriate
Sobolev-Slobodetski (Bessel potential) spaces.

TBDIE Systems for Mixed Stokes equations in 2D
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2 | PRELIMINARIES

Let Q = Q* be a bounded and simply-connected open two-dimensional region of R? and the boundary dQ be closed and
infinitely smooth curve. Moreover, 0Q2 = @ U @ where 02, and Q2 are non empty and non-intersecting part of 0Q with
infinitely smooth boundary curve E n @ € C™.

Let v be the velocity vector field, p the pressure scalar field and y € C*(2) be the variable kinematic viscosity of the fluid
such that u(x) > ¢ > 0. For compressible fluid the stress tensor operator, o;; , for an arbitrary couple (p, v) is defined as

. aui an )
6, (P, V(X) 1= =8 p+ ux) | — + — —ad! divv(x) |,
J ! ox;, O0x; i

J 1
and the Stokes operator is defined as

AP VX =20, (p.V)N)

X
-9 <M(x)<%+%—a5i div V(x)>> _a_p’ j.ie{1,2}, .
0x; dx ; 0x; ! ox j
wherea = lora = % and 6{ is Kronecker symbol. Here and henceforth we assume the Einstein summation in repeated indices
from 1 to 2. We denote the Stokes operator as A = {Aj }?=1 and A 1= Al u=1 - We will also use the following notation for
derivative operators: dj = 0x/ = % withj =1,2;V := (01,02).

In what follows H*(Q) = H; (Q),jH *(0Q) are the Bessel potential spaces, where s is a real number (see, e.g. 12113 "wWe recall
that H* coincide with the Sobolev-Slobodetski spaces W' for any non-negative s. We denote by H*(€2) the subspace of H S(R?),
H Q) = {g : g € H'(R?),supp(g) C Q}; similarly, H*(S)) = {g : g € H*(0Q),supp(g) C S}, L2(Q) = L*(Q)/R =
{g € LAQ) : [,qdx = 0}. We will also use the notations H'(Q) = [H*(Q)]*, LA(Q) = [Lz(sz)]z, D(Q) = [2(Q)]* for
2-dimensional vector space. We will also make use of the following space (see, e.g 14119,

HY(Q; A) := {(p,v) € HH(Q) x H'(Q) : A(p,v) € L} (Q)}

endowed with the norm
2 i 2 2 2
1P, 00y = 1P gyt 1Y ey + 1T AGY I,
Let us define a space

HO(QA) = {(p,v) € L2 Q) xH'(Q) : A(p,v) € LY (Q)}
endowed with the norm

2 . — 2 2 2
1PV 0y = 1P+ 1V g + 11 AG) I -

The operator A acting on (p, v) is well defined in the weak sense provided u(x) € L*®(Q) as
~1
(A(P’ V)a u>Q = _g((P7 V)7 u)’ Vu c H (Q)a
where the form £ : [L*(Q) x H'(Q)] x ﬁl(Q) — R is defined as

E((p,v),m) 1= / E ((p,v),u) (x) dx, (2)
Q
and the function E ((p, v), u) given by
p(X) <0ui(x) N auj(x)> <0v[(x) N 0v;(x)

E =
(. ¥, W) 2 0x; ox ox; 0x

> — au(x) div v(x) div u(x) — p(x) div u(x).

i i

For sufficiently smooth functions (p, v) € H*~'(Q*) x H°(Q*) with s > 3/2, we can define the classical traction operators,
T = (T/* }12:1 on the boundary o€ as
T5(p, V(X) 1= [r*o;;(p, VX my(x), 3)

where 7,(x) denote components of the unit outward normal vector n(x) to the boundary 0Q of the domain and y* is the trace
operator from inside and outside Q2.
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1
Traction operator (3] can be continuously extended to the canonical traction operator T* : H"(Q*; A) - H 2(0Q) defined
in the weak form similar to®® as

(T*(p, V), W0 1= i/ [A(. W ~'w) + E((p, V). 7' w)] dx,
O+
(p,v) € H(Q*: A), Yw € H: (0Q).

Here the operator y~! : H%(()Q) - Hl(IRZ) denotes a continuous right inverse of the trace operator y* : Hl(IR{Z) - H% 0Q).
In addition, for (p,v) € Hi’O(Q; A) the traction operator T are also defined.
Furthermore, if (p, v) € H'*(Q;.A4) and u € H'(Q), the following first Green identity holds, (see, e.g., #1158 4 d2),

(TH(p, V), 7 ) yq 1= / [A(p, v)u + E((p, v), w(x)] dx. “)
Q
Equation (@) is also defined for (p,v) € Hi’O(Q; A) and u € H'(Q). Applying the identity (@) to the pairs (p,v) € H'Y(Q; A)

and (q,u) € Hl’O(Q; A) with exchanged roles and subtracting the one from the other, we arrive at the second Green identity,
(see, e.g. 131151819 ),

/ [A;(p, vu; — A (g, w; + g divy - pdivu| dx = / [T;(p.VIu; — Ty(q, w)v;] dS,. (5)
Q oQ
Equation (3)) is also defined for (p,v) € Hi’O(Q; A) and (g,u) € HL’O(Q; A).

3 | FORMULATION OF THE BOUNDARY VALUE PROBLEM

We shall derive and investigate BDIE systems for the following mixed BVP. For f € L’(Q), g € LX(Q), @, € H%(()Q p) and
1
v, € H2(0Qy), find (p, v) € H'*(Q; A) such that:

A(p,v)(x) = f(x), x € Q, (6a)
divv(x) = g(x), x € Q,, (6b)
raQDerV(x) = @y(x), X €0Q,, (6¢)
rmNTJ“(p, V)(X) = y((X), X € 0Qy. (6d)

Theorem 1. The BVP (6a)-(6d) has at most one solution in the space H'(Q; A).

Proof. let (p,,v,) and (p,, v,) are in H"*(Q; .A) that satisfy the BVP (6a)-(&d).Then (p,v) := (p,,V,) — (p;,v,) also belongs to
H'"(Q; A) satisfy the following homogeneous mixed BVP

Alp,v)(x) =0, xeEQ, (7a)
divv(x) =0, xe Q, (7b)
Fag, 7 V() = 0, x € 0Qp, (7¢)
rag, THP.VI®X) = 0, x € 9Qy. (7d)

The first Green identity (@) holds for any u € H'(Q)and for any pair (p,v) € H'Y(Q; A).
Then due to (7a)-(7d) we have, [, E(v,w)(x)dx = 0 which implies that |, % <M + M) (M + M) dx = 0. from

ox; 0x; ox; ox
@, E(v,u) = fg E(v,u)(x)dx. In particular, choose u = v. Then

i

Ev,v) = / E(v,v)(x)dx = 0.
Q
As u(x) > 0, the only possibility is that v(x) = a+ b(—x,, x,)7, i.e., v(x) is a rigid movement. Taking into account the Dirichlet
condition (7c), we deduce that v = 0. Hence, v, = v,.
Considering now v = 0 and keeping in mind the Neumann-traction condition (7d), we conclude that p; = p,. O
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4 | PARAMETRIX AND PARAMETRIX-BASED HYDRODYNAMIC POTENTIALS

4.1 | Parametrix and Remainder

The operator A becomes the constant-coefficient Stokes operator A when u# = 1. The fundamental solution defined by the pair
of distributions (§¥, &*) ,where i’tf represent components of the incompressible velocity fundamental solution and §* represent
the components of the pressure fundamental solution, (see, e.g.,”2*5)_ So for r, > 0, &* and ¢* will have the form:

k(X y) = 1 <5kl ng—yl_(xj_yj)(xk_yk)>

o Ix —y|?
_( Xy — yk)
ok
X,y) = ————
q(xy) 2lx—yP
with (§*, ") satisfying the relations
2
‘on=3s i(—%loglx—yl)=—5(x—y> ®)
) 2 2k a
Ay 6 y) = Zf — 2’ - % = sks(x—y),  div @ (xy) =0. ©)
Let us denote o;; ;(p.v) 1= oy,(p, V)| u= 1- Then in partlcular case, for 4 = 1 and the fundamental solution (g*, & )k 1o of the

operator A, the stress tensor o; J( ,u )(x y) reads

R 1 G =y = y)(x — y)
o, (% ¢4, WY x —y) = = —
T [x -yl
Indeed,
ok ok
o . ok ok _ ok J
o,;(x ¢ w)xX—y)=-q6; + <()— + ()_x)
- - (x; =y = yi)
_ kT 5. + o0 (1 5* log Ix —yl O = V)X — Y
2r|x —y|2 Y ox; \4r \ "/ o [x —y|?
2 (L (g 22z owy))
axj 4z o [x —y]|
Since

l (x,' - yi)(xj - yj')(xk - yk)
™ Ix —y|* '

the boundary traction becomes

Te(x: ¢4, 0 y) 1= o (@, i )x — y)n,(x)
1 (= y,-)(xj - yj')(xk =)

= ; |X — y|4 ni(X).
Let us define a pair of functions (¢*, u )k 12 similar as in®%,
, 1 Ix—yl G5 =)0 = w)
Wix,y) = ——i*(x,y) = (5& lo - , (10)
o9 = 2o @\ x—yP
k H(X) o H(X) Vi —
q (X,Y) _q (X,Y) —s J’ke{192} (11)
y) u(y) 2z |x — yl2
Then
. ou” 0uj.‘ .
0% ¢, u)x —y) = = 8/ ¢" + ux) | == + =L — a8/ div uk(x)
! ox; ()x,- !

— gk A gk
a( I‘(y) l ) a( u(y) uj) a5} div ( k(X))
okl o, ox, 2
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, ik i
A (-5{5" + (i i ad! div uk(x))> B (@, 89 x - y).

u(y) G 0x; n
Thus,
o, (i gt U (x - y) = ”E ; &, (@ 6 x — y)
and ) -
T,(x; g5 u)(xy) 1= 0,(x: g4, ub)x -y, (0 = 52 oy D 9y

substituting (I0)-(TI) into Stokes system (IJ) with variable coefficients, we get

A g u)(x y) = aixl(o[,»(x;q",u"xx—y)) 9 <ZE; (@ 6 (x — y>>

_ ,u(x) 6 (O( & )(x y)) 6 <”(X)>g‘}j(ék,ﬁk)(x_y)

u(y) ox; V)
ux) o 1 d(u(x )) * i
= A ,u
o ><>+()a &, (@, 8 x - y)
MRS =VI8] | aux) . . .k
ST T ox, @MY
HWBX =8 | 0 . ok
ST TEw o @EY
1 o) o
= 655(x —y + T ox &, (G d)x —y)
Thus,
A% ¢ UK Y) = 655(x — y) + Ry (%),
where
0
Ry 00) = = TR, G i y) = O = yI)

is a weakly singular remainder. This implies that (g*, u¥) is a parametrix of the operator .A.

4.2 | Volume and Surface Potentials

12)

13)

Let p and p be sufficiently smooth scalar and vector function on €. The parametrix-based Newton-type and the Remainder vector

potential operators are defined as

[Upl, (¥) =Uy;p;(y) 1= / wi (%, y)p,(x)dx, [Rpli (¥) = Ry;p,(y) := / R, (x,y)p;(x)dx, y € R?
Q Q
for the velocity v, and the scalar Newton-type and remainder potentials for the pressure,

[Qp],(y) = Q,p(y) := — / ¢ (x, y)p(x)dx,

Q
p(y) = Q- p(y) =Q;p;(y) := —/qj(x,y)pj(X)dx,
Q
) o’ 0
Rp(Y) = 20,0 (- ¥). 9,010 — 20,(Y)0,u(¥) = ~20.p. / PRI, ax — gty >@
i i J

Q

for y € R?. The integral in (T6) is understood as a 2D strongly singular integral in the Cauchy sense, (see, e.g.,%2).
For the velocity, the parametrix-based single layer and double layer potentials are defined fory & dQ as :

Vol (¥) = Vijp;(y) = —/uf(x, Vo, 0dS,,  [Wpl (¥) = Wyp,(y) = —/Tf(x; g, u")(x,y)p,(x)d S,,

0Q 0Q

(14)

5)

16)
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and for pressure in the variable coefficient Stokes system, the single layer and double layer potentials are defined for y & dQ2 as:

s — TIT1° . SJ d _1d . a‘?j(x’ y)
ICp(y) = Tp;(y) := [ ¢'(X,¥)p;(x)d Sy, p(y) =115 p;(y) :=2 T(X)M(X)Pj(x)dsx-
0Q Q

The corresponding boundary integral (pseudo-differential) operators of direct surface values of the single layer potential and
the double layer potential, the traction of the single layer potential and the double layer potential are

[Vol, 3) = Vo, ¥) 1= — / XY MdS,, IVl (Y) = Wip,(y) 1= - / TH(%: 45, U)X, ¥)p,(0d S, ¥ € 0L,

2Q 0Q
Wol, ) = W,,0,(y) =~ / THy:; ¢ u )X y)p,0dS,,  L*p(y) := T*[1p, Wp)(y), y € 0L,
0Q

where T* are the traction operators (see, e.g.,5%).
The parametrix-based integral operators depending on the variable coefficient, p(x), can be expressed in terms of the
corresponding integral operators for the constant coefficient case, u = 1, see (82) for 3D case.

Up = 11ip, (17
y7i
1] 0 . .
[Rpl, = _; a_yvki(pjai”)(Y) + a_yUkj(Pjai/") - Qk(pjaj/’l) > (18)
J i
_ 14 e 095 _, 0
Qp= P Qup), R'p= 2ayi Q;(p;0ip) = p; oy (19)
le 1
Vp = ;Vp, Wp = ;W(ﬂp), (20)
1 1.
Vp = ;Vp, Wp = ;W(MP), 21
p=1Tp, M =I1"(up), (22)
’ o 0 H
Wl = [Wo], = (22 Vo], + 22 [V, - a6t 22 (] ), @)
L) := Lur). (24)

Note that the constant-coefficient velocity potentials Up, Vp and Wp are divergence-free in Q* , the corresponding potentials
Up, Vp and Wp are not divergence-free for the variable coefficient u(y),(see e.g.,?). Note also that by and

Q;p=0;Pyp (25)

where

p 1 Ix —yl
AP(Y) = ~5s log p(x)dx
T rO

Q
is the harmonic Newton potential. Hence
divQp=0,Q,p=APyp=—p. (26)
Moreover, for the constant-coefficient potentials we have the following well-known relations,
A(Tp,Vp) =0, A11p,Wp) =0, AQDp,Up)=p. @7

In addition, by (23)) and (26),

A (2= 0)p,=Qp) = =0, (9,Q;p + 9,Q,p — a5] div Qp) = 2 = @)9;p
— (Aéjp + ()j div Qp — a()j div Qp) -2- a)()jp =0 (28)
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Theorem 2. Let s € R, the following operators are continuous:

I : H:1(0Q) - LA(Q), I : H3(0Q) — L(Q) (29)

I : H™2(0Q) — LA(Q), I : H:(0Q) —» LX(Q) (30)

VvV H(0Q) - B3 (Q), W : H'(0Q) » B3 (Q), @31)

vV H'(0Q) - B (0Q), W : H'(0Q) - H'' (0Q), (32)

L*: H'(0Q) - H ' (0Q), W' H'(0Q) - B (0Q), (33)

(P, V) : H3(0Q) —» H9Q; A), (19, W) : H: (0Q) — H'9(Q; A) (34)

(I, V) : H20Q) —» H@:4), (14, W) : H2(0Q) - HLY(Q; A). (35)
Moreover, the following operators are compact,

V : H'(0Q) — H°(0Q), (36)

W : H'(0Q) — H*(0Q), (37

W H(0Q) — H*(0Q). (38)

Proof. The continuity of the operators for the constant coefficient case is proved in® section 364 Consequently, from the relations

(T7)-([23) follows the continuity of variable coefficient operators (29) - (33) as well and the continuity of the operators (34) and
(33) can be proved similar to® Theorem 43 The compactness of the operators (36) - (38) is implied by the Rellich compactness
embedding theorem (see, 13 Theorem 327y for gcalar case. O

Theorem 3. Let Q be a bounded open region R? with closed, infinitely smooth boundary 0. The following operators are
continuous:

U :u©Q -HB*?Q), seR, (39)

U : H'Q) - HQ), s> —%, (40)

R : H(©Q - H*Q), seR, (41)

R : H'(Q) - HM(Q), s> —%, 42)

Q: H'Q - H"Q), seR, (43)

Q: H'Q — B*(Q), s> —%, (44)

Q: H(©Q - H"(Q), seR, (45)

Q : H'(Q) — H'(Q), s> —%, (46)

R H(@Q) - HYQ), s> —%, 7

R H'(Q) — HQ), s> —%. (48)
Q.U : H'(Q) - B*(QA), s>0, (49)
Q-ayul,-Q) : H Q) » H*(Q; A4), s> 1, (50)
R, R) : H'(Q) - HQ; A4), s>1 (51

Proof. We use similar procedure as in® Theorem 4.1 Since the surface 0Q is infinitely differentiable, the operators U and Q are
respectively pseudodifferential operators of order -2 and -1[=>section9-1.3] Then, the continuity of and immediately
follows by virtue of the mapping properties of the pseudodifferential operators. Alternatively, these mapping properties are well
studied for the constant coefficient case, i.e. operators U and Q°, see, €. g.,3.Then continuity of operator (@3]) immediately follows
from representation (I3) and continuity of operator {@3)). Consequently, the respective mapping properties for the remainder
operators (41]) and immediately follow by considering the relation (T8).

For the remaining part of the proof, we shall first assume that s € (—%, %). In this case, H*(Q) is identified with H* Q).
Hence, the continuity of the operator immediately follows from the continuity of (39).
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To prove the case s € (%, %), we consider g = (g,,8,), g € H’(Q) and by using divergence theorem and the relation

aixi i (x,y) = —aiy_ﬁf(x, ) we obtain,

1

U 0r8)y) = / g ()

Q
. o . . 5] .
= / i (x, y)rtg; (Xmdx — / /%)  Y)dx = / 5 06Y)r g (omdx + 5 / i (x, y)g; (X)dx)
0Q Q 0Q Q

= V(g m)y) + a%(%g,(y»

that is,

0Viy8; = Uiy (0,8) + Viy(rTgmp). i k € (1.2} (52)
where n; denotes the components of the normal vector to the surface Q2 directed outwards the domain. It is well known that
0,8, € H s=1(Q) and y*g € HS_% (0€2) due to the continuity of the operator 0; and the trace theorem.

Due to the mapping properties of vV H‘Y_%(aﬂ) — H**'(Q) in Theorems [2|and u: H'(Q) > H*"Y(Q) in the previous
paragraph, we deduce that 0iL°lg € H**'(Q) is continuous for i € {1,2}. Consequently, from relations and (20), for
s € (%, %), immediately follows the continuity of the operator (@0). Furthermore, by induction on k € N, using the representation
in identity (32) and one can prove by induction that the operator (@0) is also continuous for s € (k — %, k + %), where k is
an arbitrary nonnegative integer. The continuity of the operator (40) for the cases s = k + % is proved by applying the theory
of interpolation of Bessel potential spaces, (see, e.g.1% - Charter 4y Continuity of the operator (#4)) and hence (#6)) can be proved
following a similar argument. Continuity of the remainder operators (@2)) and (48))) immediately follows from the continuity of

operators and by relations and (T9). Also the Continuity of the operator (#9), (50) and can be proved similar
as il‘lg' Theorem 4.1 . O

Theorem 4. Lett € H% (0Q) and p € H_%(aﬂ). Then, the following jump relations hold

y¥Vp=Vp, y*Wr= i%r +Wr (53)

T(Tp, Vo) = £3p+ W, (54)

Proof. For constant coefficient case, g = 1, the jump relations for the corresponding operators are proved in® Lemmas65 Dye

to relations and (23)), the theorem holds for and (34) as well. O
Theorem 5. Lett € H: (0Q2) . Then the following jump relation holds

(LE = Le = —r* [0, W, (@) + @O Wi(e) — as(0, )W, (0] n, (55)

Theorem 6. The proof is similar to the corresponding proof in® 3D case.
Proposition 1. Let s > % The following operators are compact,

R : H(©Q - H®Q), R :H®Q) - H'(Q), seR
VPR H(Q) - HT10Q), THR,R) : HYQ; A) - H 3 (0Q),
T*R',R) : H(Q; A) > H2(0Q).

Proof. The proof is similar to the corresponding proof in® Theorem 4.2 31y caqe, O

S | INVERTIBILITY OF THE HYDRODYNAMIC SINGLE LAYER POTENTIAL OPERATOR
IN 2D

Suppose that p = T*(p, v) where (p,v) € Hi’O(Q). The single layer potential operator is a Fredholm of index zero. In 3D case,
forp e H 2(0Q),if Vp(y) =0,y € Q, then p = 0. But this is not generally true for 2D case.
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It is well known” P-6% that in R? the single layer operator fail to be invertible. So that for some 2D domains the kernel of
o 1 1
the operator V : H 2(dQ) — H2(0) is non-zero, which is by the first relation in (ZI]) implies that also kerV # {0} for some
domains. The following example is from‘2 Lemma I and illustrates this fact.

Example 1. Take the density function P} = 6;, and Q = B(0, R) to be a disc of radius R centered at the origin and 0Q =
dB(0, R) be the circular boundary of the disc. We want to show that

o R R .
Ui V) = Vo] §) = =2 8(2log = — 1), Iyl <R, k. j.m € {1.2}.
0

Remark 1. If we setry = Re_% in Example with u(y) # 0, we get, [Vp], (y) =0in Q.

In order to have invertibility for the single layer potential operator in 2D, we define the subspace H;_(9Q) of the space H*(0Q),

see for example7' (Appendix A, in particular s = 3 and 2)’

H (0Q) :={p e H'(0Q) : (p;,1) =0 for i=1,2}, (56)
where the norm in H _(9Q) is induced norm of H*(0Q).

-1
The boundary integral operator, V is a Fredholm operator of index zero on H™3(0Q) as in® Lemma A2 and also V) : H, 2 (0Q) —
1
H?,(0Q) by the relation (Z1).

_1
Theorem 7. If ¥ € H,? (0Q) satisfies V¥ = 0 on 0L, then ¥ = 0.

Proof. Let us proof by using similar procedure as inl Corollary 811 The single layer potential (5, V) = (IT'®, V¥) satisfies

AV-V5=0 in QF (57)
div(®) =0 in QF (58)
y*v=0 on 0Q. (59)

For the exterior problem , we use the following growth conditions at infinity,

%(x):Alogm+(9(1), p=0(x]"" as |x| - o,
o

1
where A = fm WdS,, see e.g.? section23.1 Gince P € H;E 0Q), i.e., fm YdS, =0, it follows that v =0and p=0in Q.
For the interior problem, using first Green identity and Dirichlet condition, we get, v = 0 and using interior part of (57)), we
have that V5 = 0 in Q. Since p € L2(Q), then p = 0. Consequently, ¥ = T* (T*®, V&) — T~ (Ti®, V¥) = 0. Thus, ¥ = 0. That
is, from V¥ = 0 follows that ¥ = 0 and relation (21) implies for the operator V as well. [

-1 1
Theorem 8. Let Q C R? be a bounded domain. Then the single layer potential V : H, 2 (0Q) — H2,(0Q) is invertible.

Proof. Due to Lemma A2 the operator V is Fredholm of index zero and the first relation in (ZT)) implies that so is operator V.
Theorem [7]implies the injectivity of operetor V and hence the invertibility of operator V. O

To prove the H: (0€2)- ellipticity of the single-layer potential operator for the Stokes system by setting the condition on the
domain, for r, > 0, consider the fundamental solution

Ix—yl (=)0 — yk>>

ok 1 k
(x,y) = — | 6%1
u/(x Y 4z \ / o8 ro |x —yl|?

o _ 1 K |x —y]| (xj _yj)(xk = V)
Vj w;(x,y) = —/ o <6j log Py - x—yP w;(x)d Sy.

0Q
Due to/8 Appendix he single layer potential operator V is positive , that is,

(VW W)s >0 (60)

for a non-zero W that satisfy /.  WdS = 0 where S is the boundary of the domain and follows the theorem.
Consider the following basis of the space of rigid body translations in plane: e' = [1,0]”, *> = [0, 1]”.
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Theorem 9. Let Q C R? be a bounded domain with smooth boundary 9. Let 0Q is contained in the interior of a circular disk
1 1
with aradius R. If ry > Re™ 2, then V is H™ 2(0Q)- elliptic.

Proof. First we show the positivity of V by a similar procedure as in™ Proposition2 [ et 9 B denote the boundary of the disk with
radius R containing 0Q2. The operator Vis positive by (60). So that

(VW @, ) 0auom) > 0 (61)

for non-zero W € H_%(()Q U 0B) satisfying
w;(x)d Sy = 0. (62)
0QUIB
w on 0Q,
> ot on 9B
Condition (62) gives 0 = [, ., 0,(X)dS, = [, w,X)dS, + [, Zi:l a)ke;dex =c¢; + 27 Rw;. But

Let us take W in the form W = { . with @, chosen so that (62) is satisfied. Let ¢; = [}, w;(x)dS;.

<[‘°)W]j’wj>(6£2U03):<_ / U (X, Y)w (1A Sy, w;)oauas)
IQUIB

= (‘/&jk(X,)’)wk(}’)dSy’wj)(aguos)+(‘/&jk(X,)’)wk(}’)dSy’wj)(aguos)
B
= (‘/ﬁjk(X,)’)wk(Y)dSy,wJ-)og+<—/ﬁjk(X,Y)wk()’)dSy,wﬂag
P B
+<_/&jk(x5y)wk(y)dsy5 wj>03+<_/ﬁjk(xay)wk(y)dsya wj>aB
a0 OB

= ([\oﬁw]j, W;)oq +(— / (X, Y)W (0d Sy, w;) 9o + (— / (X, Y)w(0d Sy, w;) yp

+ (_/&jk(x’ Vw(»dSy, w;) o
OB

and

2
<_/&jk(x’y)wk(y)dsys wj)dB: 2 /wj(x) _/&jk(xsy)wkdsy A
J0B

o0 Jk=150
2 — V. —
_ z /w (X)/—(5k X -yl _ (xj = y)(x; yk))wde ds,)
jk=1 ro |X_Y|2 Y
2
/w (x)[/ L (log yl)wdey]dSX /w (x)[/ —(——y")) /dS,1dS,
Jj.k= 1 J.k= 1

M ||Mm

/w (x)[/ —Q2lo g yl = Dw;dS,1dS,)

(——(210g— - 1)/w (x)d Sy /w (y)dS)

1 B

-
Il

=— Z i(zlog R_ D(=c?)
&~ A r 4
Jj=1 0

1 R 2 2
= —E(—Zlog a + 1)(C1 + c5)-
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Similarly,
o 1 R 2 2
(= [ X)W (0dSy, w;)op = 1 —2log — + 1| (¢} +¢3),
T 7'0
oQ

o 1 R
(- / i (X, Y)w (»)d Sy, w;) o5 = i [_2 log a + 1] (012 + C;)-
oB
Therefore, the integral (61)) yields

0<([\°)w]j,wj)ag+/wj(x) —/L°tjk(x,y)wdey de+/wj —/ﬁjk(x,y)wk(y)dSy ds,

0Q 0B 0B 0Q

+/wj(x) —/ftjk(x,y)wk(y)dSy dS,. (63)
B 0B
Hence, equation (63)) becomes

° 1 R 2, 2
0 < VW), 10,00 = £ [—210g .t 1] (@ +c). (64)
Also equation (64) can be written as
1 R 2, 2
Ton [—210g a + 1] (c; +¢3) <{[VW];, w;)sq- (65)

Then the relation ([VW];,w;),q > 0 is always true for r, > Re'%, therefore (63) must be positive for any non-zero w.

From3! Theorem 5.6.13,€4.5.6.50 5 dlI8 Eq.(A-15) gatisfy Garding inequality. Thus from positivity and Garding inequality implies that V
1

is H™ 2 (0Q)- elliptic that is due to Lemma 5.2.5 in". O

Theorem 10. Let Q c R2. If ro > %e_%diam(ﬂ), then the operator V has a bounded inverse on H_%(OQ).

Proof. By Theorem@the operator V is -3 (0€2)- elliptic and due to Theoremit is also continuous, that is, bounded. Hence
the Lax-Milgram Lemma implies V has a bounded inverse. O

Theorem 11. Let S, and .S, be non empty, non-intersecting 0Q = K 1 UEZ . Then for s € R, the following operators are compact,
re,V i H(S) - H(S),  rgW: HS)>H(S), rgW tH(S) - H(S)
Proof. From Theorem 2] the following operators are continuous:
re Vi H(S) - HY(Sy), rgW i H(S) - HT(S), rgW I H(S) - HY(S,.
Since H**! (S,) € H’(S,) is compact, the theorem follows. O
Theorem 12. Let .S, be a non-empty open smooth part of d€2 with smooth boundary. Then the operator
reL fii(S,) — HOH(S))
is invertible and the operator

rs, (LY = L) H2(S,) - H3(S))

is bounded and compact.

1
Proof. Similar to lamé system as in Lemma .18 (L) 2 c = I?, forallz € HL(0Q) = {v € H%(BQ)

H2(09)
(V,W),o = 0 forall w €& R}.As in the norm equivalence sobolev> Theorem 26 ‘we define,

Izl o ={(z. Wl +I71>, }
HZ (09Q) H2 (0Q)
and then we get,
o 1
(Lr,7) >Cz|*, forallt € H2(0Q).
H2 (0Q)
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1 |
For a given 7 € H*(.S,). let 7 € H2(0Q) denote the extension defined by

1
T forx € H*(S,)

0 otherwise.

As in the norm equivalence soboley> Theorem 2.6

2
T 1 = T ||y 2 + |T
I ”Hi(aQ),Sz i ”L (OQ/SZ) | lﬂ%(ag)}

to be equivalent norm in H% (09Q2). So that,
(£7.7) >(Lr,7) >Clz)?,
S 0Q H2(0Q)

3 2 _
=C{Il 7 lli200ys,) +|T|H%(ag)} =Cl= ”H%(agz),s2

>Cllzll . =ClTl.. .
HZ2 (0Q) H2(S,)

The continuity of this operator and the Lax-Milgram lemma then imply its invertibility. The operator W, W;, W, are continuous
3 1
and since H 2(.S,) is continuously embedded in H 2 (.S,), using the relation

A~ ou 1 e, 1 k1
tir-Lr=-3E ((—51 F W)+ 8K =51+ W) + 5531+ wj))f

1

,we obtain continuity of the operator Lt — L. The embedding H: (S, C H: (.S,) is compact ,which implies that the operator
~ 1 1
Lt — L : H2(S,) - H 2(S,) is compact . O

Theorem 13. Let .S, be a non-empty part of the boundary curve 0Q.

i) The operator

rs Vi HO2(S) - Hi(S)) (66)

is bounded and fredholm of index zero.

1
i) Ify € H,}(S)) satisfies rg Vi =0on S, theny =0.

_1 o
Proof. i) Since the operator V : H *(0Q) — H%(aQ) is bounded so that (66) also bounded. The operators r s, Y admits

.y °y 7
the decomposition rg V = rg Vs +rg K, see,”.

Vy 0 ~ 1 Ix —yl -
= , VYV =—— [ log——wdsS,.
VA [ O vA:I A.I, 47[ / Og rO V’ X

1
The operator rg V, is a Fredholm of index zero because each of the components are Fredholm of index zero as
in'l0 corollary 27® and rg K is a compact operator as in "™ A2 Thus by relation V = iv, we obtain that operator (66)
is Fredholm of index zero as well.

~l 1 -1
ii) Suppose y € H_’(S)), i.e. (¥, g = (W;, 1)y = 0, which implies ¢ € H,?(0Q). For y € H,?(0Q), we have
(V@ §) 0 > 0, moreover, if (W, §)yo =0, then = 0 on 0Q, see, 8 Appendix Hence, if rs, V¥ =0, thenrg Vg =0
and (VW W) ,q = (rs VW.¥)s, = 0 implies = 0.
O

Lemma 1.
(i) Let either ¥* € ~3 (0Q2) and r, > %e_%diam(Q) or¥* e H: 0Q). If
V¥*(y) =0, yeQ, (67)
then ¥* =0
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(i) Let ®* € H:(0Q). If

Wo'(y) =0, yeQ, (68)
then ®* = 0.
Proof. We will use similar procedures as in?Y.,
Q) Takmg the trace of (67) on dQ and using jump relation (33). Then we have V¥* = 0 on 9Q. If ¥* € _%(d and
ro > Ee : 2diam(€2), then the result follows from the invertability of the single layer potential given by Theorem On

the other hand, if ¥* € H**Z (0€2), then the result is implied by Theorem

(ii) Taking the trace of (68) and then by (33) gives —%d)* + W®* = 0 on 0Q, due to (Z1), —%t/l\)* +WB =0 onoQ
where ® = u®*. Due to the contraction property of the operator —%I + W, then ® is uniquely solvable and u(y) # 0,
®" = 0 implies ®* = 0.

O
— — ~—1 ~1
Lemma 2. Let 0Q = S| U S,, where S| ad S, are open non-empty non-intersecting. Let ¥* € H_*(S,), ®* € H*(S),). If
V¥ - WO =0, II'¥ -—I®* =0, in Q, (69)
then ¥* = 0 and ®* = 0 on 0Q.
Proof. Multiply the first equation in (69) by u and applying the relation (ZI]), we have
V¥ - W(u®*) =0 in Q.
Taking the trace of this equation on .S
r [V -y W(u®*)] =0 on S,
1
o\ A F 1 N
r, V¥ — r, W(ud*) + Ersl (u®*)=0 on S,
r V¥ —r Wu®)=0 on S,.
1 1
Taking the traction on .S,
r [THIT¥, V) - T (11 (u®"), W(u®*)] =0 on S,
which implies r WP — r s, [o,(,utb*) =0 on S,. Thus we obtain
y >
r V¥ —r W® =0 on S,
S K
re W — rs, L& =0 on S,
where ® = u®*. The above system of equation can be written in matrix form as
MX =0, (70)
where .
o= | Y Y e X
T r W ~rs, cl’ Tl
From'? Theorem 5.6.13,69.5.6.50 ' \ye haye (r )% 23 P, + (Fhm) 2 c||‘I’*||2 . We know that ¥* = T*(p,v) with (p,v) €
2 (0Q2)

H'(Q, A) and ¥* € H,, (ag) So that (¥*,n),, =

Then (r_ V‘I‘*,‘I’*)Sl > c||P*))?> , for¥* € H*ﬁ (S}). In the proof of Theorem (—r (B D )s > c||® ||2 .In
! H 2 (0Q) 2(0Q)
addition, the operators

~1

roW ’(Sz)—>H2(Sl)andr W H 2(S)—>H‘ (S,)
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: o~ o, ~—l ~ 1
are mutually adjoint, i.e..(rg W® ,¥*)g = (® ,rg WW¥")g for arbitrary ¥* € H, (S)) and arbitrary o ¢ H’(S,).
Consequently, we derive the inequality

(MX,X) > (P>, +19 I, )—c||X||2
H 2 (0Q) H2(0Q) H 2(0Q)><H2(OQ)

Due to (70), this implies ¥* = 0 and ® =0 Keeping in mind that u(y) # 0, we have ®* = 0 on 9Q. O

6 | THE THIRD GREEN IDENTITIES

Theorem 14. For any (p,v) € H]’O(Q; A) the following third Green identities hold

V+RV=VT*(p,v) + WyTv=UA(p,v) — Qdivy inQ, (71)
P+ RV—IPT(p,v) + 1% v =0A(p,v) + 2 —a)u divv in Q. (72)
Proof. The proof is similar to the corresponding proof in® 3D case . O

If the couple (p, v) € H'*(Q; .A) is a solution of the Stokes PDE with variable coefficient, then and give

v+ Rv—VTH(p,v) + WyTv=UFf - Qg, inQ (73)
P+ RV =TT (p,v) + Tl *y = Of + (2 — a)ug, inQ (74)
We will also need the trace and traction of the third Green identities and on 0€2.
LV RIS VT + Wy 'ty = UL - 1 Qg ()
LGN + TR R = W (0w + L7y = TG + 2 - g, Ut - Q) (76)

One can prove the following two assertions that are instrumental for proof of equivalence of the BDIEs and the original PDE.
Lemma 3. Letve H(Q),p € L2(Q),g € LX(Q).f € LX(Q),¥ e H_%(aﬂ),(b € H%(()Q) satisfy equations.

V+Rv—-V¥ + WO =Uf- Qg, inQ, an
P+ RV—IPY + 11D = Of + 2 — a)ug, inQ. (78)
Then (p, v) € H(Q; .A) and solve the equations

A(y;p.v) =1, divv=g. (79
Moreover, the following relations hold true:
V& -T p.v)y) - W@ -7"v)(y) =0, yeQ, (80)
¥ - T*(p, )(y) - TY(@ - y*v)(y) =0, yeQ. (8D
Proof. The proof is similar to the corresponding proof in” 3D case . [

7 | BDIES FOR MIXED BVP

We aim to obtain a segregated boundary-domain integral equation system for mixed BVP (6a)-(6d). We will use similar
procedures as inH89,
To this end, let®, € Hz (0€2) be a fixed extension of the given data ¢, from 0Q D to 0Q. An arbitrary extension ® € H7 (0Q2)

preserving the function space can then be represented as ® = @, + ¢ with @ € H2 (0Q ). Analogously, let ¥, € H (0Q)be a
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fixed extension of the given data y, from 0Q, to 0Q. An arbitrary extension ¥ € H: (0€2) preserving the function space can
1

then be represented as ¥ = ¥, + y withy € H: (0Qp). Let us now represent
y'v=®,+¢@, T (p,v)=%,+w on 0Q (82)

1 1
where @ € A’ (0Qy)andy € H: (0Q ) are unknown boundary functions.
BDIE system(M11). Let us now take equations and (74) in Q and restrictions of equations (73]) and (76)) to the boundary
parts 0Q, and 02, respectively. Substituting there representations (82)) and considering further the unknown boundary func-
tions @ and y as formally independent of (segregated from) the unknown domain functions p an(li v, we obta:in the following

BDIE system (M11) consisting of four BDIEs for four unknowns, (p, v,y, @) € H'°(Q; A) x H: (0Q2p) X H’ (0Qy) :

p+RV-IFy +1l% =F, in Q, (83a)
v+ Rv—-Vy +We=F in Q, (83b)
. ytRv — . Vy + o We = . y"F—g@, on 0Q, (83c¢)
- THR, R)v — oo Wy + r, Le=r, T*(F,,F)—w, on 0Qy. (83d)
where
Fy 1= Of — 2 — a)ug + 'Y, - 11’®,, F :=Uf- Qg+ V¥, - Wd, (84)

Applying Theorems and to (84) implies (F,, F) € H'*(Q; A).
We denote the right hand side of BDIE system (83a)- (83d) as

= [F(]’ F7 rdS2DY+F - ¢07 raszN T+(F()7 F) - .I,()]Ta (85)

which implies 7! € H'0(Q; A) x H (9Q,,) x H™3 (0Q,)

Note that BDIE system (83a))- can be split into three vector equations (83D}, (83¢), (83d) for three vector unknowns, v,
w and @, and the scalar equation (834)) that can be used, after solving the system, to obtain the pressure, p. The system (M11)
given by equations (83a)- (83d) can be written using matrix notation as

Mlx =F! (86)

where X represents the vector containing the unknowns of the system

~1
= v.yp.@)! € L*(Q) xH'(Q) x H : (0Qp) x H? (0Qy).
The matrix operator M!! is defined by
I R —Ir I
0 I+R -V W
0 rdQD]/+R —rdQDV rdQDW '
0 raQN T+ (R., R) _r‘)QN W/ r‘)QN £+

Ml =

Remark 2. The term F!'! = 0 if and only if (f, g, ®,, ¥,) =

Suppose F!! = 0, then [F,, F, ro v F—e@yr TF (FO,F) w,]7 = 0. Taking into account how the terms F and F,, are
defined, see (84), considering that Fo = 0 for pand F = 0 for v, we can deduce by applying Lemma [3| to equations (84) we
obtain that f = 0, g = 0 and we have,

'Y, - 1@, =0, V¥,-Wd,=0
In addition, as Fy =0 and F = 0, we get
rov"F—r @, =0 implies r ®,=0, r_ T*(F,, F) - r. ¥o=0 implies r ¥, =0.
D D N N N

Qp

-1 ~!
Consequently, ¥, € H_’(0Qp) and @, € H*(0Qy). Therefore, the hypotheses of Lemma are satisfied, we thus obtain that
¥, = 0and ®;, = 0 on dQ. On the other hand assume that (f, g, ®,,¥,) = 0. Then it is evidently Fll =0,
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BDIE system(M12). Let us now take equations and in Q and equation on the whole boundary Q. Substituting
there representations (82)), we arrive at the following system of BDIEs,

p+RV-IFy +1l% = F, in Q, (87a)
v+ Rv—-Vy +We=F in Q, (87b)
%(p +7"RV-Vy + We =y"F-®, on 0Q. (87¢)
where F, and F are given by (84).Denote the system in matrix form as M'?X = F!2 where,
I R -IF I F,
MPZ=|0I+R -V W , Fl2= F
0 y*R -V GI+W) y'F - ®,

_1
Remark 3. Let¥, € H_?(0Q)), Then F'? = 0 if and only if (£, g, ®,, ¥,) = 0
Indeed, from (84) we immediately obtain that (f, g,®,,%¥,) = 0 implies 7' = 0. Let us now prove that if !> = 0 then
f, g,®,,%¥,) = 0. Taking into account how the terms F and F;, are defined, considering that F, = 0 for p and F = 0 for v, we
can deduce by applying Lemma [3]to equations (84) we obtain f = 0, g = 0 and
The equality y*F — ®, = 0 implies ®, = 0 on 0Q. Thus V¥, = 0, hence by Lemma (i) it follows ¥, = 0.

BDIE system(M21). Let us now take equations and in Q and equation on the whole boundary Q. Substituting
there representations (82)), we arrive at the following system of BDIEs,

p+RvV-IlPy +%@ =F, in Q, (88a)
v+ Rv—Vy +We=F in Q, (88b)
%w +T R RWV-Wy + LY@ =T (F,,F) - ¥, on oQ (88c)
where F, and F are given by (84). Denote the system in matrix form as M>'X = F?! where,
1 R - 114 F,
M2 =10 I+R -V W, FIl= F
0 TR, R) GI-W) L+ T*(F,.F) -

Remark 4. F?! = 0 if and only if (f, g, ®,, ¥,)) = 0. We can show this similarly as in Remark

BDIE system(M22). Let us now take equations and (74) in Q and restrictions of equations ({76)) and to the boundary
parts 0Q, and 0€2, respectively. Substituting there representations (82)) and considering further the unknown boundary func-
tions @ and y as formally independent of (segregated from) the unknown domain functions P and v , we obtain the following

BDIE system (M22) consisting of four BDIEs for four unknowns, (p,v) € H'Y(Q; A), @ e H2 (0Qy) andy € H : (0Q2p) :

p+RV-IFy +Tl% =F, in Q, (89a)

v+ Rv—-Vy+We=F in Q, (89b)

S, TR RV =Wy + Ligl =1, [T'(FF)=%,] on 02y, (®%)
1

30 +7, [V Ro=Vy + Wel=r_ [y'F-®] on oQy. (89d)

where the terms in the right hand side F;, and F are given by (84).

Note that the BDIE system (89a)-(89d) can be split into three vector equations, (89b)-(89d)), for three vector unknowns, v, y
and ¢, and the separate equation (89a) that can be used, after solving the system, to obtain the pressure, p. However, since the
couple (p, v) shares the space H'(Q; A), equations (89b), and are not completely separate from equation (89a).
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The system (89a)-(89d) can be written using matrix notation as follows M?X = F22, where,

I R —I1* g F
0 I+R -V W 0
ME=10 100, TRV R 1g, (51-W)  rog,et | 77 = o
Q) ’ o, \ 5 ) 09, rao, TH(Fo, F) —ryq ¥
0 "aQN7+R —ra,V Toq, <%I+W> "dQNVJrF_”aQN‘Do

Remark 5. The term F2? = 0 if and only if (f, g, ®,, ¥,) =

From (4) it follows that (f, g, @, ¥,) = 0 which implies F'22 0. Conversely, if 7?2 = 0, then (f, g, ®,, ¥,)) = 0. Taking into
account how the terms F and F; are defined and considering that F;y = 0 for p and F = 0 for v by applying Lemma3|to (84) we
obtainf =0, g =0 and

'Y, - 1°®, =0, V¥,—- Wd,=0.
In addition since F, = 0 and F = 0, one can easily see that
ro, T (Fo. F) —ryq ¥y = 0 implies rmD‘I’0 =0
rag y+F—rag QO = 0 lmplleS r QOZO
N

Consequently we see that ¥, € H (()Q ~)and ®, € H2 (0L2p) . Therefore, by Lemmalw1th S, =0Qy and S, = 9Q}, we
thus obtain ¥, = 0 and @, = 0 on ()Q

| EQUIVALENCE AND INVERTIBILITY

Theorem 15.] Let f € LX(Q), g € L¥(Q),and ®, € H%(OQ), and ¥, € H_%(OQ) be some fixed extensions of @, € H%(OQD)
and y, € H 2(0Qy) respectively.
(i) If some (p,v) € lLz(Q) X H]](Q) solves mixed BVP - (6d), then the solution is unique and the set (p,v,y,@) €
H"(Q; . A) x H *(0Q,) x H (0Q,), where
e=y"v-®, y=T"(p,v)-¥, on IQ (90)
solves BDIE systems (M11), (M12), (M21) and (M22).

-1 ~1
(i) If (p,v,y, @) € L*(Q) X HI(Q) X H*j (0Qp) X H? (0Qy) solves one of the BDIE systems (M11) or (M12)or (M21) or
(M22), then the solution is unique and solves the BDIE systems, while (p, v) belongs to H"(Q; A) and solve mixed BVP

(64) - (©d) and the relations (90).

Proof. (i) Let (p,v) € L*(Q) x H'(Q) be a solution of the BVP (6a) - (6d). Since f € L*(Q) then (p,v) € H'*(Q;.A). Due
to Theoremit is unique. Let us define the functions ¢ and y by (90). By the BVP boundary conditions, y*v = @, = ®,
1 1

on 0Qp, and T*(p,v) = w, = ¥, on dQ,. This implies that (w, @) € H 2(0Q,) x H? (0Q,) and recalling how BDIE
systems (M11), (M12), (M21) and (M22) were constructed, we obtain that (p, v,y , @) solves systems (M11), (M12),
(M21) and (M22).

(ii) let (p,v,y, @) € LA(Q) x H/(Q) x H : S (082p) X H2 (025 ) solve BDIE system(M11) or (M12) or (M21) or (M22) The

first two equations in BDIE system and Theorems andlmply that (p, v,y, @) € HY(Q; A) x H*: (0Q2p) X H2 (0Qn).
The hypotheses of Lemma [3] are satisfied for the first two equations in BDIE system, implying that (p, v) solves PDEs
(6a)-(6Db) in Q, while the following equations holds:

[IP* — 1@ =0, VP* - Wd* =0 in Q, 1)
where ¥* 1=y + ¥, — T*(p,v) and ®* := @ + @, — y*v on 0Q.
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_L ~ !
Suppose first that the tuple (p, vy, @) € H'(Q; A) x H_ ’(0Qp) x H?(0Qy) solves BDIE system (M11). Taking the
trace of equation (83b) on 0Q,, using the jump relations (33)) , and subtracting equation from it, we obtain

y'v=¢, on 0Q, (92)
that is (p, v) satisfies the Dirichlet condition (6c)). Taking the traction of equations and (83b) on 0Q,, using the jump
relation (54) and subtracting equation (§3d) from it, we obtain

T*(p,v) =y, on 0Qy, (93)
that is (p, v) satisfies the Neumann condition (6d). Hence (p, v) solves the mixed BVP - (6d).

Taking into account ¢ = 0, ®, = @, on 0Q, andy = 0, ¥ = 0, ¥, = y, on 0Q,, equations and imply
that the second equation in @'C_TD is satisfied on 0Q, and the first equation in (O0) is satisfied on dQ . Thus we have
1 1

¥ € H *(0Qp) and ®* € H?(9Qy) in @1). Let S, = 9Q,, and S, = 9Q. Then for ¥* € H,’(0Q,) and Lemma
implies ¥* = @* = 0, which completes the proof of conditions in (90). Uniqueness of the solution to BDIE system (M11)
follows from (90) along with Remark [2] and Theorem I}

~_1
Similar arguments work if we suppose that instead of the BDIE systems (M11), (p, v, ¥, @) € LX(Q)xH! ()xH_?(0Q2p)x

~1
H’ (0Q,) solves BDIE systems (M12) or (M21) or (M22).

O

Theorem 16. The following operators are invertible
M LHQ) x H(Q) x ﬁ;f (0Qp) X i’ (0Qy) — L*(Q) x H(Q) x Hf*(aQD) x H™3 (0Qy), (94)
M" HY(Q; A) x ﬁ;f (0Q)) X ﬁ%(agN) — HY(Q; A) x Hf*(aQD) x H™3 (0Qy). (95)

Proof. Remark 2]implies that the operators (94) and (95) are injective. Let us denote
IR -IP n
|01 -voow
00 —rgV 0
00 0 rynkl

—~ ~—1 ~1 1
where L is given by (53). Then M!! : L2(Q) x H'(Q) x H ’(0Qp) xH?(0Qy) — L*(Q) % H'(Q) xH2,(0Q)) X H: (0Q2x)
is bounded. It is invertible due to its triangular structure and invertibility of its diagonal operators I, I, V from Theorem[I3|and
L from Theorem

~_1 1 N !
I:0%Q) - LAQ), 1:H'(Q) -H(Q).ry V:H/ 02— HL0Q), ry L:H

0Qy) — H™3(0Qy).
By Proposition I} Theorem [TT]and [I2]the operator

0 R 0 0

0 R 0 0

0 ru, y"R 0 ra0, YV

0 roq THR',R) 0 ryq (LY = L)

M _J\’;l“ll =

is compact. Note that, we can write the operator M!! as a sum of compact and inveritible operator, M!! = (M!! = M)+ M1,
like as for scalar case implying that it is a Fredholm operator with zero index, see e.g., 13 Theorem 226 “Then the injectivity of
operator (94) implies its invertibility, see e.g., L3 Theorem 2.27,

1 1
To prove invertibility of operator || we remark that for any F!'' € L2(Q) x H'(Q) x H2,(dQ,) x H2(dQy) a solution of
system

Mx =Fl, (96)
1 ~—L
can be written as X = [M!!]7'F! where [M!!]7! : Lz(Q)XHl(Q)XHj*(GQD)XH_%(6QN) - LX(Q)xH'(Q)xH,_ 2 (0Qp)x

1
H’ (0Q) is the continuous inverse operator to operator (94). Applying Lemma |3|the first two equations of system (96) implies



Mulugeta A. Dagnaw ET AL | 19

_1 1
that X = [M!]7'FI1 € HYY(Q; A) x H_’(0Q),) x H?(0Qy) and the operator [M'']™! is a continuous inverse to |b as
well. L]

Theorem 17. The operator
~—1L ~L
M7 LHQ) x HY(Q) x H, 2 (02,) x H (0Qy) — L2(Q) x H'(Q) x H: (0Q), 97)
is invertible.

Proof. The operator is injective, i.e., ker M~ = {0}. To see this, let M X = 0, which implies 7'2 = 0 or (Fp, F,y"F—®)T =
0. By Remark f,g,®,,¥;) = 0. This means f = 0,g = 0,®;, = 0,%, = 0, hence A(p,v) =0, divv=0inQ, y*v=0o0n
0Q ), and T*(p,v) =0o0n 0Qy. Theoremimplies p =0, v =0 and then by Theorem @ = 0,y = 0. Therefore, X = 0. Let
us denote

10 —I1° 114
M2:=|01 -V W],
00 -V %1

It is not hard to see that M2 is bounded. Due to the mapping properties of the operators involved in the matrix M2 — M2, by
Theorem [2]and Proposition [T} the operator

0 R 00
MPE—MZ:=l0 R 00
0y" RO W
is compact. To show the invertibility of M 12, consider the equation
MP2x =F, (98)

_1 L ~ ~ o~ ~
with an unknown vector X = (p,v,w, @) € L*(Q) X HI(Q) X H*: (0Qp) X H*(0Qy) and a given vector F = (F,, F,, F3) €
1
L2(Q) x H/(Q) x Hz (0Q). Rewrite (©8) componentwise

p-TPy +1% = F, inQ, (99)
v-Vy+We = F, inQ, (100)
%¢ ~Vy = F, onoQ, (101)

The restriction of equation (I0I) on 09, gives
—raq, VW =raq, F. (102)

_1
Due to Theorem , equation (T02)) is uniquely solvable. i.e., for arbitrary F; € H%(dQ) there exist a unique y € H_?(0Qp)
satisfying (T02). Note that in accordance with (T0Z2))

~1
[Vy + Fy] € B2 (0Qy). (103)
Then (TI0T)) along with (TO3)) yield that ¢ is defined also uniquely as
@ =2[Vy + F,] € H (0Qy).

L ~!
Thus, equation (TOI)) with arbitrary F; € H%(()Q) defines ¢ € H*(0Qy) and y € H_’(0Q ) uniquely. Remark that we then
have [Ty, IT%@ € L3(Q), Vyr, We € H'(Q) and from equation (99) and (TO0) we get
p =Py -l + Fl in Q, V=VI[I—W(0+F2 in Q.

That is, the functions (p,v) € L2(Q) x H'(Q) is defined also uniquely. We conclude that M" is invertible. Note that, we can
write the operator M2 as a sum of compact and inveritible operator, M'? = (M'2— M)+ M ", implying that it is a Fredholm
operator with zero index. Then the injectivity of operator implies its invertibility. O

Theorem 18. The operator

M LX(Q) x H(Q) x ﬁ_%(agl,) X ﬁ%(dQN) — L2(Q) x H'(Q) x H 3 (09), (104)

is invertible.



20 | Mulugeta A. Dagnaw ET AL

Proof. 1t is straight forward to show that the operator M is injective. To see this, let M X = 0. We show that X = 0. Since
F2 = 0, we have:
(Fy, F, T*(F,,F)—¥,)" =0

which implies (f, g, ®,,¥,) = 0, see Remark Hence A(p,v) =0and divv=0inQ, y*v=00n0Q, and T"(p,v) = 0 on
0Q . Furthermore, Theorem [I)implies that p = 0, v = 0. We thus have ¢ = 0 and y = 0 by Theorem Then we get X = 0
as desired.

Let us set
10 -TI1* 114
MU=[0T -V W[,
00 X1 L
It is not hard to see that M?! is bounded. By Theorem and Proposition the operator
0 R 0 0
M —-MT=10 R 0 0

0 T'R,R) -W L+-L

is compact. Since the operators LA, 1, and I are invertible and by arguments similar to those in the proof of Theorem |17|and
then M?! is invertible . Note that, we can write the operator M?! as a sum of compact and inveritible operator, that is, M?! =
(M - M )+ M. This implies that M?! is a Fredholm operator with zero index. Then the injectivity of this operator implies
its invertibilit and, hence, the theorem. O

To prove the invertibility of the operator M?? we need some auxiliary assertions.

Lemma 4. Let 0Q = ?l u S_2 , where S| and S, are two non-intersecting non-empty of 0Q with infinitely smooth boundaries.
For any vector
F = (F),F,%,®) € H9(Q; A) x H3(S,) x H ()
there exists another vector
(8.1 ¥,.@,)" = Cy o F € LXQ)x LA(Q) x H 3 (0Q) x H2 (0Q)
which is uniquely determined by F and such that
Of, + 2 — a)ug, + 'Y, —II'@, = F,, in Q,
uf, - Qg + V¥, -wWo, =F, inQ,

=%, onsS,

=®, on S,

r

g ¥

ragsz *
Furthermore, the operator
Cs,.s, t HY(Q A) x H3(S) x Hi(S,) » LA(Q) x LA(Q) x H 3(9Q) x H3 (0Q)

is continuous.

Prolof. The proof is the same with the corresponding Lemma for 3D case” 1™™275 by including further assumptions ¥* €
H,’(0Q). O
Corollary 1. For any F = (F,,F,F,, Fy)T € H'Y(Q; A) x H_% (S)) x H%(Sz), there exists a unique vector
@£ W,.@,)7 = Cs, 5 F € Ly(Q) X Ly(Q) x H™2(99) x H:(0Q)
which is uniquely determined by F and such that
Of, + (2 — a)ug, + 'Y, —TI'@, = F,, in Q,
uf, - Qg + V¢, - W, =F, inQ,
r (T*(F,,F)—¥P,) =F,, on S|,
r (*'F-®,) =F;, onS,.
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Furthermore, the operator
Co,5 t H(Q: A) X HT3(S)) X H(S,) — LA(Q) x L3(Q) x H™3(0Q) x H2 (9Q)

is continuous.
Proof. This corollary follows from applying LemmaEIWith ¥Y=r s, T (Fy,F)—F,and ® = r Sz}/+F - F;. O

Theorem 19. The operator
~l ~ 1 _L
M? HY(Q; A)x H 2 (0Q)) x H? (0Qy) — HO(Q; A) x H, (0Qp) X H%(aQN) (105)
is continuously invertible
_1
Proof. Let us consider an arbitrary right hand side to the system M*2X = F22, F22 € H'Y(Q) x H,? (0Q ) X H%(()Q ~)- By
Corollary |1} the right hand side 7?? can be written in the form
Of, + 2 —a)ug, + 'Y, —T'@, =F, inQ,
uf, - Qg, + V¢, —W®_, =F, inQ,
r (T*(F.F)—¥,) = F2, on oQ,,

2 9
+ _ P22
"o GF-®,) =F:, onoQy

3

ap

where, (g,.f,,P,,®,)" = Coa, 00, F22 where the operator Coq, 00, 18 bounded and has the following mapping property

_1 _1
Cony o, © H'(Q:A) X H, 2 (0Q,) X H2(0Qy) - LX(Q) x LA(Q) x H, (0Q) x H>(0Q)

By Corollary [2|and the equivalence theorem of the system (M22), Theorem |15} there exists a solution of the equation M?*2X =
F22. This solution can be represented as
X =[pvy.el" =(M?) T2

where
_L ~—l ~1
(MP2)™! HY(Q; A) x H, 2 (0Q)) x H (0Q) — HY(Q;.4) x H 2 (0Q ) x H? (9Qy)
is given by
(p,V) = A]_W][g*’f*7raQDlP*7raQN¢*]T7 (106)
y =T (p,v) =¥, =T (p.v) = (Con, 90, F s 107)
@ =rvV-=®, =y"v—(Ci, 0, F)s (108)
Consequently, the operator (M??)~! is continuous by continuity of the operators in (T06)-(T08) . O

The original BVP (6a)-(6d) can be written in the form

A, X =F,
where
A f
div g
A = N P =
N M e
ro, T" v,

The operator A, : H'(Q; A) — L*(Q) x LA(Q) X H% (0Qp) X _%(69 ~) 1s continuous and due to the uniqueness theorem
for the BVP is also injective. The invertibility of the operator M'! from Theorem [16{and equivalence Theorem [15|lead to the
following

Corollary 2. The operator
A, HOQ: A) — LXQ) x L2(Q) x H3 (0Q,) x H™3(0Qy)

is continuously invertible.
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Particularly, when u = 1, the operator A becomes AandR =R =0. Consequently, the boundary domain integral equations
system (89a)- (89d) can be reduced to a BIE system consisting of two vector equations

1 . .
o (¥ - Ww+Lo) =1, TH(FF) =1, % ono0y, (109)

1 . . _ +
o (E(p—VW+W¢> =r, v"F=r @ onoQy (110)
and a BDIE system consisting of a scalar equation and a vector equation
p=F,+IPy -1l in Q (111)

v=F+Vy-—WpinQ (112)

where the terms F, and F are given by (84). The theorem of equivalence between the BVP and BDIE system, Theorem|[I5]leads
to the following result of equivalence for the constant coefficient case.

Theorem 20. Let 4 = 1in Q, f € L?(Q) and g € L2(Q). Moreover, Let d, H%(()Q) and ¥, € H_%(aQ) be some fixed
1 1
extensions of @, € H2(0Qp) and y, € H 2(0Q ) respectively.

_1
(i) Ifsome (p,v) € L2(Q)xH'(Q) solve mixed BVP (6a) - (©d), then the solution is unique, the couple (y, @) € H *(9Q )X
1

ﬁf(ag ) given by
e=y'v-®, y=T"(p,v)—¥,onoQ (113)

solves the BIE system (I09)-(I10) and (p, v) satisfies (ITI)-(T12).

~l 1
(i) If (w,@) € H > (0Q,) X H* (0Q ) solve the BIE system - , then (p, v) given by - solves mixed BVP
ok D N Y
(64) - (©d) and equations (T13) hold. Moreover, the BIE system (I09)-(T10) is uniquely solvable in H (09 D)XHZ (0Qp).

The system (T09)-(I10) can be expressed using matrix notation as follows

M2X = F2 (114)
_1 1
where X = (y, )" € H *(0Q,) x H? (0Qy), the operator
. . .
MZZ . r‘)QD (51 - Wl) rﬁﬂn Lr 7322 . lragn T+F0 - raQD\PO
T o 1 o ’ L + _
TV " <EI + W) "y F0 7 T @0

1
F2 e H_%(aQD) X H%(OQN). Moreover, the operator M?2 : H_%(GQD) x H?(0Qy) = H‘z(ag ) X H2(0Q ) is bounded
and injective.

-1 ~ 1
Theorem 21. The operator M2 :H? (0Qp) xH*(0Qy) — H_% (02p) X H%(GQN) is invertible.

Proof. A solution of system (TT4) with an arbitrary (F22)7 = (F,22, F,2) € = (0Qp) X H: (0Qy) is delivered by the couple
(w, @) satisfying the extended system

ﬂzzx =72,
where X = (p,v,y,@)7, F2 = (0,0, pzzz F322)T
10 —12!8 f{d
01 -V W
M2 = 00r,, (%I—W/> rogbfﬁ J (115)

00 —ro V1, (1I+v°v)

The operator M?2 has a continuous inverse due to Theorem. 9for u = 1. Consequently, the operator M?2 has a bounded right
inverse, which is also a two-side inverse due to injectivity of the operator M22 this implies that operator M2 s surjective.
Theorem [20|implies that operator M2 is also injective and thus an isomorphism. O
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Theorem 22. The operator
~—1 ~1
M2 L2Q) xH' (Q) xH *(0Qp) x H>(0Qy) — LY (Q) x H'(Q) x H‘i(agp) X H%(aQN),
is invertible.

Proof. Let us consider the following operator,

10 —ITs g
01 -V w

~22 PR o

M T 0 0 raQD <%I_W> r090£+ ’ (116)
00  —roV  re, (%I+W>

By Theorem [2| Bll1 1| and [12], the operator M?? is a compact perturbation of the operator M2, Taking into account relations
(20) and (23), the above operator can be represented as

M2 = diag(1, 111, L) S2diag(1, uL, 1, ul),
7T
where diag(1, iI, I, iI) and diag(1, uIL, I, ul) are diagonal 7 X 7 matrices.
The operator M2 is given by (115), is a triangular block matrix operator with the following diagonal operators
_1 ~L 1 1
I:LXQ) - LX(Q), I: H(Q) - H(Q), M? : H *(0Q,)xH*(0Qy) - H2(0Q)) x H2(0Qy).

The operator M2 is invertible due to Theorem Consequently (TT6) is an invertible operator as well. Taking into account
that 4 > constant > 0 and is bounded, this implies the diagonal matrices diag(1, il, 1 %I) and diag(1, uI, I, uI) are invertible

and the operator M2? is invertible. This implies the operator M?2 possesses the Fredholm property and its index is zero.
The invertibility of the operator simply follows from the injectivity of the operator M?? derived from Theorem (iii). O
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