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Abstract

In this work we implement two numerical schemes namely continuous Galerkin-Petrov (cGP(2)) and Legen-

dre Wavelet Collocation Method (LWCM) for the approximate solution of the mathematical model which

describes the behavior of CD4+ T-cells, infected CD4+ T-cells and free HIV virus particles after HIV in-

fection. The present study discuss and analyse the effect of constant and different variable source terms

(depending on the viral load) used for the supply of new CD4+ T-cells from thymus on the dynamics of

CD4+ T-cells, infected CD4+ T-cells and free HIV virus. Furthermore, the model is also solve using fourth

order Runge Kutta (RK4) method. Finally, the validity and reliability of the proposed schemes are ver-

ified by comparing the numerical and graphical results with the results of RK4-method. Comparison of

the numerical and graphical results of cGP(2) and LWCM with RK4-method confirmed that cGP(2) and

LWCM performs excellent accuracy. The present study highlights the accuracy and efficiency of the proposed

schemes with the other traditional schemes such as the Laplace Adomian Decomposition Method (LADM),

Variational Iteration Method (VIM), Homotopy Analysis Method (HAM), Homotopy Perturbation Method

(HPM), Genetic Algorithm (GA), Interior Point Algorithm (IPA), Active Set Algorithm (ASA), Multistep

Laplace Adomian Decomposition Method (MSLADM) etc.
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1. Introduction

Infectious diseases also known as communicable diseases have long been recognized as a continuous threat

to human beings all over the world. Communicable diseases are the diseases transferable from animals to

humans, from humans to humans, or from human to animals. The spread occurs abundantly via bacteria,

airborne viruses, and through body fluids, e.g., urine, spit, blood, breast milk, tears and so on. Acquired

immunodeficiency syndrome (AIDS) is a communicable disease and human immunodeficiency virus (HIV)

is the causative agent for AIDS which damages ability of body to fight against diseases and leave it open to

attack from usual innocuous infections. On entering the body HIV infects a large amount of CD4+ T-cells

and replicates quickly. During this first stage of infection the blood contains high loads of HIV virus particles

which spreads throughout the body. HIV viruses spread through bodily fluids, e.g., urine, spit, breast milk,

blood, tears and so on. Within these bodily fluids, HIV is present as both free virus particles and virus

within infected immune cells. HIV is a retrovirus, in humans CD4+ T-cells lymphocytes are the target of

HIV and these are the most abundant white blood cells of the immune system. Because of the central role of
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CD4+ T-cells in immune regulation, their depletion and destruction can have wide spread deleterious effects

on the functioning decreasing the resistance of the immune system. In fact, the decline in the number of

these cells is used in a clinical as indicator for the stage of AIDS. The distraction of the function of CD4+

T-cells lies at the heart of the immunodeficiency that characterizes AIDS (see [1, 2, 3, 4] for more details).

In recent years, several models for human immune system have been established and extensive research has

been conducted in the area of HIV infection of CD4+ T-cells to understand HIV dynamics, HIV infection,

disease progression and interaction of the immune system with HIV. Mathematical modeling for the spread

of communicable diseases has an increasing influence on the practice and theory of disease control and

management [5]. The model for the primary infection with HIV first proposed by Perelson [1] in 1989 and

subsequently modified by Perelson et al. [2] using Perelson’s model and proved mathematically some of the

model’s behavior. They observed that the model exhibits many of the symptoms of AIDS seen clinically,

i.e., the depletion of CD4+ T-cells, low levels of free virus in the body, and the long latency period etc.

They defined the model by considering four compartments: free virus particles, healthy, latently infected

and actively infected CD4+ T-cells. They presented dynamics of these compartments by a system of four

differential equations. Several models for HIV infection have been developed using the idea of Perelson et

al. [2] model which are very important in the field of mathematical modeling of HIV infection. Culshaw and

Raun [6] simplify the Perelson [2] model into one consisting of only three components, i.e., the free virus

particles, infected and healthy CD4+ T-cells. They introduce a discrete time delay to the model and show

the change in time between the expel of virus particles and infection of cells on a cellular level. In literature,

a large number of analytical and numerical schemes were employed in order to find out the approximate

solution of the HIV infection model (see [7, 8, 9, 10, 11, 12, 13] for details).

The key objective of the present study is to show and analyze the effect of constant and different variable

source terms of new CD4+ T-cells from thymus depending on the viral load and compared the influence

on the HIV infection model proposed by Malik et al. [11]. We utilized the cGP(2) and LWCM to find out

the approximate solution of the proposed model. Furthermore, we solved the model by using classical RK4-

method. For validity and reliability of the proposed schemes, we compared the results with those obtained

from RK4-method. We also compared the results and absolute error of of the present schemes with other

classical schemes used in literature [7, 8, 9, 11, 12] for the model relative to RK4-scheme. Graphical results

have been presented and discussed quantitatively to illustrate the solution. The model discussed here focuses

on the population of healthy CD4+ T-cells and infected CD4+ T-cells. Throughout the remainder of this

article the term healthy T-cells and infected T-cells will use to mean healthy CD4+ T-cells and infected CD4+

T-cells respectively. This article is organized as follows: Section 2 describes the model for HIV infection of

healthy T-cells. Section 3 and 4 includes the cGP(2) and LWCM implemented for the proposed model. In

Section 5, the results and discussions for the model are presented. Finally, a brief conclusion of the study is

given in Section 6.

2. The HIV Infection Model Description

Mathematical models have become important tools in the area of HIV infection of healthy T-cells to

understand HIV dynamics, HIV infection, disease progression and interaction of the immune system with

HIV. The main target of HIV virus in humans are healthy T-cells. Once HIV enters the body, it infects

a large amount of healthy T-cells which causes gradual depletion of healthy T-cells. Subsequently the

immune system of the body is destabilized, and thus progressively compromises the host’s immune response
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to opportunistic infections leading to acquired immunodeficiency syndrome (AIDS). Therefore, the decline

in the number of these cells is used as a primary indicator in order to measure progression of HIV infection

and stages of AIDS. These cells produce at a constant rate s0 from precursors in the bone marrow and

thymus [14]. The transfer diagram is depicted in Figure 1. The model which consist of nonlinear system of

Figure 1: Diagrammatic representation of the mathematical model for HIV infection, where S=s0 + αT (t)
(

1 − T (t)+I(t)
Tmax

)
.

ordinary differential equations for HIV infection of healthy T-cells proposed by Malik et al. [11] is:

dT (t)

dt
= f1 (T (t), I(t), V (t)) = s0 − µTT (t) + αT (t)

(
1− T (t) + I(t)

Tmax

)
− βV T (t), (2.1)

dI(t)

dt
= f2 (T (t), I(t), V (t)) = βV (t)T (t)− I(t)µI , (2.2)

dV (t)

dt
= f3 (T (t), I(t), V (t)) = γµII(t)− µV V (t). (2.3)

with the following initial conditions:

T (0) = 0.1, (2.4)

I(0) = 0, (2.5)

V (0) = 0.1. (2.6)

In the above expression T , I and V represent the population of healthy T-cells, infected T-cells and free HIV

virus particles in the blood of HIV infected individual respectively. The initial values of these dependent

variables and explanation of other parameters with their values involved in the HIV model are given in

Table 1

Table 1: List of parameter and variables used in the HIV model

Parameters Description Values

s0 The new supply rate of healthy T-cells from thymus 0.1 day−1mm−3

α Growth rate of healthy T-cells population 3 day−1

µT Turnover rate of healthy T-cells 0.02 day−1

µI Turnover rate of infected T-cells 0.3 day−1

µV Turnover rate of free virus 2.4 day−1

β The infection rate 0.0027 day−1

Tmax Maximum population level of healthy T-cells 1500 mm−3

γ Number of virus produced by infected T-cells 10 day−1

3



In literature (see [6, 7, 8, 9, 10, 11, 12, 13] for more details) the HIV model proposed with a constant

source term for the supply of new healthy T-cells from thymus. But HIV may have the ability to infect

T-cells in the bone marrow and thymus on entering into humans body and thus lead to reduced production

of new healthy T-cells [2]. For this reason, the HIV model (see [1, 2, 15, 16, 17] for more details) assumed

with variable source term for the supply of new healthy T-cells from thymus, i.e, kirschner [15] and Webb

et al. [18] consider the source term s1 = 0.5s0 + 5s0
1+V (t) , Perelson et al. [2] used the source term s2 = s0ξ

ξ+V (t) ,

where ξ is constant. If V = 0, then s2 is a constant and will be decreased to half of its normal value if the

viral load V(t) increases to the point ξ, and the source term s3 = s0 exp(−ξV (t)) is assumed in Perelson [1]

model. Kirschner et al. [16], Hermández [17] and Butler et al. [19] also consider the HIV model with source

term like used in Perelson et al. [2] model with ξ = 1.

In this work, we consider the HIV model proposed in [11] and show the influence of all these source terms

on the dynamical behaviour of healthy T-cells, infected T-cells and free HIV virus particles. Solutions are

obtained by using continuous Galerkin Petrov method.

3. The CGP(2) Method for the HIV Infection Model

Nowadays the cGP-method has been successfully employed to solve many types of non linear problems

in science and engineering see for example [20, 21, 22, 23, 24, 25, 26]. In this paper, we used this approach

to the HIV infection model [11]. The system of ODEs for HIV model (2.1)–(2.3) can considered as:

Find u : [0, tmax]→ V = Rd such that

dtu(t) = F(t,u(t)) for t ∈ (0, tmax),

u(0) = u0,
(3.1)

where u(t) = [T (t), I(t), V (t)] and F is the nonlinear right hand side vector valued function. At t = 0,

u1(0) = T (0), u2(0) = I(0) and u3(0) = V (0), where T (0), I(0) and V (0) are the initial conditions given in

Table 1.

In order to find the approximate solution of (3.1), we partitioned the time interval I := [0, tmax] into a

number of small pieces In := (tn−1, tn), where n ∈ {1, . . . , N} and

0 = t0 < t1 < · · · < tN−1 < tN = tmax.

The symbol τ = tn − tn−1 is used to represent the maximum time step size. For the derivation of the cGP-

method, the system of equations in (3.1) is multiplied with a suitable test functions (see [20, 21, 22, 26] for

more details) and integrate over In. The discrete solution uτ |In can be represent by the polynomial ansatz

uτ |In(t) :=

k∑
j=0

Uj
nφn,j(t), (3.2)

where Uj
n are the members of the function space V and the basis functions φn,j ∈ Pk(In) can be chosen as

Lagrange basis functions w. r. t. the k + 1 points tn,j ∈ In with the following assumption

φn,j(tn,i) = δi,j , i, j = 0, . . . , k (3.3)

where δi,j the usual Kronecker delta. We choose the points as tn,0 = tn−1 and tn,1, . . . , tn,k the (k + 1)-

quadrature points of Gauß-Lobatto formula on each time interval. In this way, the initial condition can be

written as

U0
n = uτ |In−1

(tn−1) if n ≥ 2 or U0
n = u0 if n = 1. (3.4)
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The basis functions φn,j ∈ Pk(In) of (3.2) are defined using the reference transformations (see [20, 21, 22, 26]

for more details). Similarly, the test basis functions ψ̂i ∈ Pk−1(Î) are defined with appropriate choice in

order to compute the coefficients (see [20, 21, 22, 26] for details). Finally, the cGP(k)-method reads:

k∑
j=0

αi,jU
j
n =

τn
2

{
F(tn,i,U

i
n) + βiF(tn,0,U

0
n)

}
∀ i = 1, 2, 3, · · · , k, (3.5)

where U0
n = Uk

n−1 for n > 1 and U0
1 = u0 for n = 1, are the initial values and αi,j and βi are defined are

αi,j = ϕ̂′j(t̂i) + βiϕ̂
′
j(t̂0), tn,u = ωn(t̂µ) and βi = ŵ0ψ̂i(t̂0). (3.6)

Once the above system is solved, the initial condition for the next time interval Īn+1 is set to U0
n+1 = Uk

n.

For k = 2, the coefficients αi,j and βi,j of the cGP(2)-method are computed as follows:

3.1. The cGP(2) method

Three-point Gauß-Lobatto formula (Simpson rule) is used to define the quadratic basis functions with

weights ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3 and t̂0 = −1, t̂1 = 0, t̂2 = 1. Then, we get

αi,j =

(
− 5

4 1 1
4

2 −4 2

)
, βi =

(
1
2

−1

)
, i = 1, 2, j = 0, 1, 2.

Thus, the system to be solved for U1
n,U

2
n ∈ V from the known U0

n = U2
n−1 becomes:

α1,1U
1
n + α1,2U

2
n = −α1,0U

0
n +

τn
2

{
F(tn,1,U

1
n) + β1F(tn,0,U

0
n)

}
, (3.7)

α2,1U
1
n + α2,2U

2
n = −α2,0U

0
n +

τn
2

{
F(tn,2,U

2
n) + β2F(tn,0,U

0
n)

}
, (3.8)

where U0
n represent the initial condition at the current time interval.

4. Description of LWCM for HIV Infection Model

Wavelet has wide spread application in many areas of science and engineering. During last two decades

the use of wavelet in approximation theory is very popular. In this section we use LWCM which uses

Legendre polynomials as a basis function. The unknown function is approximated with Legendre wavelet.

The collocation points are used to obtain the system of algebraic equations. The algebraic equations are

solved with the help of Mathematica software. The important feature of Legendre wavelet is it orthogonality

due to which coefficient of expansion are easily calculated. Another main advantage of the using wavelets

method is the sparsity of the coefficient matrix of the final system of equations. LWCM is successfully applied

to ordinary differential equations [27], partial differential equations [28], fractional differential equations [29],

and fractional partial differential equations [30].

4.1. Legendre wavelet

The Legendre wavelet [31] is defined on [0,1) and is given by

ψn,m(t) =

{ √
m+ 1

2 2
k
2 Pm(2kt− 2n+ 1), n−1

2k−1 ≤ t ≤ n
2k−1 ,

0, otherwise
(4.1)
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where n = 1, 2, 3, · · ·, 2k−1, m = 0, 1, 2, 3, · · ·,M − 1, the coefficient
√
m+ 1

2 is for orthonormality, and k,M

are positive integers. Pm(t) are the Legendre polynomials of order m which are defined on the interval [-1,

1] and is given by the following recurrence relations

P0(t) = 1,

P1(t) = t,

Pm+1(t) =

(
2m+ 1

m+ 1

)
tPm(t)−

(
m

m+ 1

)
Pm−1(t), m = 1, 2, 3 · ··

The Legendre wavelet form an orthonormal basis for L2(R), so we can approximate a function as a linear

combination of Legendre wavelet.

4.2. Methodology of LWCM

In this section we apply the LWCM to the model given by Eq. (2.1)-(2.6). According to LWCM

T (t) =

2k−1∑
n=1

M−1∑
m=0

an,mψn,m(t) = Aψ(t), (4.2)

I(t) =

2k−1∑
n=1

M−1∑
m=0

bn,mψn,m(t) = Bψ(t), (4.3)

V (t) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t) = Cψ(t). (4.4)

The nonlinear terms are approximated as:

T 2(t) =

2k−1∑
n=1

M−1∑
m=0

dn,mψn,m(t) = Dψ(t), (4.5)

T (t)I(t) =

2k−1∑
n=1

M−1∑
m=0

en,mψn,m(t) = Eψ(t), (4.6)

V (t)T (t) =

2k−1∑
n=1

M−1∑
m=0

fn,mψn,m(t) = Fψ(t), (4.7)

where A, B, C, D, E, F, and ψ are 2k−1M × 1 matrices given by:

A =

[
a1,0, · · ·, a1,M−1, a2,0, · · ·, a2,M−1, · · ·, a2k−1,0, · · ·, a2k−1,M−1

]
,

B =

[
b1,0, · · ·, b1,M−1, b2,0, · · ·, b2,M−1, · · ·, b2k−1,0, · · ·, b2k−1,M−1

]
,
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C =

[
c1,0, · · ·, c1,M−1, c2,0, · · ·, c2,M−1, · · ·, c2k−1,0, · · ·, c2k−1,M−1

]
,

D =

[
d1,0, · · ·, d1,M−1, d2,0, · · ·, d2,M−1, · · ·, d2k−1,0, · · ·, d2k−1,M−1

]
,

E =

[
e1,0, · · ·, e1,M−1, e2,0, · · ·, e2,M−1, · · ·, e2k−1,0, · · ·, e2k−1,M−1

]
,

F =

[
f1,0, · · ·, f1,M−1, f2,0, · · ·, f2,M−1, · · ·, f2k−1,0, · · ·, f2k−1,M−1

]
,

ψ(t) =

[
ψ1,0, · · ·, ψ1,M−1, ψ2,0, · · ·, ψ2,M−1, · · ·, ψ2k−1,0, · · ·, ψ2k−1,M−1

]T
.

Using Eq. (4.2)–(4.7) in Eq. (2.1)–(2.6) we obtained the following equations:

ATψ′(t) = s0 + µTA
Tψ(t) + αATψ(t)− α

Tmax

(
DTψ(t) + ETψ(t)

)
− βFTψ(t), (4.8)

BTψ′(t) = βFTψ(t)−BTψ(t)µI , (4.9)

CTψ′(t) = γµIB
Tψ(t)− µV CTψ(t), (4.10)

ATψ(0) = 0.1, (4.11)

BTψ(0) = 0, (4.12)

CTψ(0) = 0.1. (4.13)

Now collocating Eq. (4.8)-(4.10) and Eq. (4.5)-(4.7) at

tj =
j − 0.5

2k−1M
,

where
(
j = 1, 2, 3, · · · 2k−1M − 1

)
for Eq. (4.8)-(4.10) and

(
j = 1, 2, 3, · · · 2k−1M

)
for Eq. (4.5)-(4.7) we

obtained the following equations:

ATψ′(tj) = s0 + µTA
Tψ(tj) + αATψ(tj)−

α

Tmax

(
DTψ(tj) + ETψ(tj)

)
− βFTψ(tj), (4.14)

BTψ′(tj) = βFTψ(tj)−BTψ(tj)µI , (4.15)

CTψ′(tj) = γµIB
Tψ(tj)− µV CTψ(tj), (4.16)

T 2(tj) = DTψ(tj), (4.17)

T (tj)I(tj) = ETψ(tj), (4.18)

V (tj)T (tj) = FTψ(tj). (4.19)

From Eq. (4.2)–(4.7) it is clear that there are total 6(2k−1M) unknown constants. To find out these constants

we need 6(2k−1M) equations out of which 6(2k−1M)−3 equations are obtained from Eq. (4.14)–(4.19) while

remaining three equations are obtained from Eq. (4.11)–(4.13). Solving the system of equations will give

the unknown constants which upon using in Eq. (4.2)–(4.4) will give the desire solution.
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5. Results and Discussion

In this section, the simulation results illestrate graphically and numerically carried out by cGP(2) and

LWCM. The parameters values and initial conditions used in the numerical simulations are given in Table 1.

The population dynamics of healthy T-cells, infected T-cells and free HIV virus particles with constant and

different variable source terms are presented in Figure 2a–2c. The graph of T (t), I(t) and V (t) shows a

decaying oscillatory behaviour but their are only a slightly difference in their population dynamics using

different source terms i.e., constant and variable (depending on viral load). From Figure 2a, it could be

seen that the population dynamic of healthy T-cells for s1, behaves different from s0, s2 and s3 throughout

the time period of seventy days while for some time s2 and s3 follows considerably the same dynamics

as like constant source term. But after some time their are observable changes appear in their dynamics.

Similarly, the influence of these source terms show same behavior for the population dynamics of infected

T-cells and free HIV virus particles like for healthy T-cells as shown in Figures 2b–2c. The phase diagram of

I(t)–T (t), V (t)–T (t), V (t)–I(t) and V (t)–I(t)–T (t) for HIV infection model are presented in Figures 2d–2g.

For all source term, the HIV infection model exhibit chaotic behavior. Initially, the results overlap over

each other and after some time they show different behavior in their dynamics in phase diagrams. Although

every phase diagram has numerically individual meaning at every point and not focus on the detail medical

interpretation of figures related to solution. Additionally, we utilized the RK4-method to the HIV infection

model and obtained its numerical solution. We compared the numerical solutions of cGP(2) and LWCM with

RK4-method. Furthermore, we also compared the results and absolute errors of the proposed schemes with

other conventional method, i.e., HPM [7], LADM [8] MVIM [32], VIM [12], Bessel collocation [9], GA [11],

IPA [11], ASA [11], GA-IPA [11] and GA-ASA [11] relative to RK4-method given in Tables 2–10 for T (t), I(t)

and V (t) respectively. After comparison it could be clearly observed that the proposed schemes provides a

quite accurate results as compared to other methods used for the model. The results of the presents methods

are very close to RK4-methods. For more concerns, we illustrated the graphical results of both techniques

through Figures 2h–2j relative to RK4-method. The results obtained through cGP(2) and LWCM are in

fairly good accuracy with RK4-method. So it depicts the accuracy and validity of the proposed methods, as

both results clearly overlap each other throughout the time period of seventy days.

From the graphical results in Figures 2h–2j and numerical results presented in Tables 2–10 clearly expose that

the proposed techniques provide the results of the HIV infection model in a reasonably good agreement with

the results obtained by RK4-method which implies that the cGP(2) and LWCM can predict the behavior of

these variables accurately for the region under consideration.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2: The influence of constant and different variable source terms of new healthy T-cells depending on the concentration

of virus from thymus on HIV infection model, phase plot of I(t)–T (t), V (t)–T (t), V (t)–I(t), V (t)–I(t)–T (t) for 70 days and

graphical comparison between the results of cGP(2)-method and RK4-method for T (t), I(t) and V (t) for 10 days
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Table 2: Comparison of numerical solutions for T (t) between the proposed schemes and classical methods

ti GA [11] IPA [11] ASA [11] GA-IPA [11] GA-ASA [11] RK4 cGP(2) LWCM

0.0 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000

0.1 0.145758404 0.145782503 0.145782636 0.145782500 0.145782579 0.146356333 0.146358492 0.146359154

0.2 0.207342243 0.207410504 0.207411437 0.207410481 0.207411152 0.208800678 0.208806496 0.208808176

0.3 0.291230014 0.291379572 0.291381169 0.291379533 0.291380703 0.292914452 0.292926206 0.292929539

0.4 0.404593848 0.404877886 0.404879762 0.404877840 0.404879224 0.406213674 0.406234784 0.406240711

0.5 0.556827606 0.557321160 0.557323063 0.557321112 0.557322519 0.558818129 0.558853667 0.558863585

0.6 0.761074981 0.761887565 0.761889589 0.761887514 0.761889002 0.764350814 0.764408244 0.764424204

0.7 1.035757595 1.037052658 1.037055277 1.037052593 1.037054502 1.041146025 1.041236244 1.041261233

0.8 1.406103102 1.408124304 1.408128242 1.408124206 1.408127066 1.413870248 1.414009061 1.414047408

0.9 1.905673283 1.908777600 1.908783521 1.908777453 1.908781756 1.915693859 1.915904055 1.915961934

1.0 2.577892152 2.582589801 2.582597835 2.582589601 2.582595457 2.591195190 2.591509458 2.591593521

Table 3: Comparison of numerical solutions for I(t) between the proposed schemes and classical methods

ti GA [11] IPA [11] ASA [11] GA-IPA [11] GA-ASA [11] RK4 cGP(2) LWCM

0.0 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -2.8562E-21

0.1 4.2247E-06 3.0007E-06 2.6081E-06 2.9975E-06 2.8253E-06 2.8645E-06 2.8648E-06 2.8649E-06

0.2 2.8356E-06 7.6675E-06 7.2513E-06 7.6939E-06 7.7601E-06 6.0318E-06 6.0325E-06 6.0327E-06

0.3 1.7185E-06 1.2065E-05 1.1876E-05 1.2114E-05 1.2455E-05 9.4700E-06 9.4711E-06 9.4713E-06

0.4 3.5927E-06 1.5563E-05 1.5702E-05 1.5614E-05 1.6089E-05 1.3156E-05 1.3157E-05 1.3158E-05

0.5 8.8488E-06 1.8423E-05 1.8837E-05 1.8457E-05 1.8891E-05 1.7076E-05 1.7078E-05 1.7078E-05

0.6 1.6386E-05 2.1373E-05 2.1891E-05 2.1386E-05 2.1664E-05 2.1220E-05 2.1223E-05 2.1223E-05

0.7 2.4450E-05 2.5200E-05 2.5594E-05 2.5200E-05 2.5311E-05 2.5585E-05 2.5589E-05 2.5589E-05

0.8 3.1472E-05 3.0326E-05 3.0413E-05 3.0332E-05 3.0358E-05 3.0172E-05 3.0176E-05 3.0177E-05

0.9 3.6904E-05 3.6391E-05 3.6166E-05 3.6416E-05 3.6478E-05 3.4985E-05 3.4989E-05 3.4990E-05

1.0 4.2058E-05 4.1842E-05 4.1638E-05 4.1873E-05 4.2012E-05 4.0031E-05 4.0036E-05 4.0037E-05

Table 4: Comparison of numerical solutions for V (t) between the proposed schemes and classical methods

ti GA [11] IPA [11] ASA [11] GA-IPA [11] GA-ASA [11] RK4 cGP(2) LWCM

0.0 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000 0.100000000

0.1 0.078656981 0.078656268 0.078656409 0.078656271 0.078656368 0.078663814 0.078663263 0.078663176

0.2 0.061861944 0.061866671 0.061864908 0.061866656 0.061865211 0.061880847 0.061879980 0.061879843

0.3 0.048661037 0.048671537 0.048668574 0.048671515 0.048669164 0.048679673 0.048678650 0.048678489

0.4 0.038284555 0.038298310 0.038295736 0.038298301 0.038296384 0.038296130 0.038295057 0.038294887

0.5 0.030121829 0.030135659 0.030134687 0.030135674 0.030135171 0.030129095 0.030128040 0.030127874

0.6 0.023696108 0.023707580 0.023708379 0.023707619 0.023708600 0.023705703 0.023704707 0.023704550

0.7 0.018639444 0.018647508 0.018649133 0.018647554 0.018649149 0.018653978 0.018653065 0.018652920

0.8 0.014667578 0.014672419 0.014673341 0.014672451 0.014673322 0.014681314 0.014680493 0.014680363

0.9 0.011554820 0.011556941 0.011556164 0.011556949 0.011556283 0.011557535 0.011556808 0.011556693

1.0 0.009108938 0.009107460 0.009106245 0.009107464 0.009106480 0.009101579 0.009100944 0.009100818
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Table 5: Comparison of numerical solutions for T (t) between the proposed schemes and classical methods

ti 0.0 0.2 0.4 0.6 0.8 1.0

LWCM 0.1000000000 0.2088081767 0.4062407112 0.7644242042 1.4140474083 2.5915935217

cGP(2) method 0.1000000000 0.2088064964 0.4062347843 0.7644082444 1.4140090611 2.5915094589

GA [11] 0.1000000000 0.2073422431 0.4045938486 0.7610749817 1.4061031024 2.5778921524

IPA [11] 0.1000000000 0.2074105042 0.4048778868 0.7618875655 1.4081243044 2.5825898013

ASA [11] 0.1000000000 0.2074114374 0.4048797626 0.7618895893 1.4081282422 2.5825978353

GA-IPA [11] 0.1000000000 0.2074104817 0.2074104817 0.2074104817 0.2074104817 0.2074104817

GA-ASA [11] 0.1000000000 0.2074111526 0.4048792244 0.7618890022 1.4081270663 2.5825954577

LADM [8] 0.1000000000 0.2088073298 0.4061358315 0.7624762220 1.3980828630 2.5078741510

LADM-Padé [8] 0.1000000000 0.2088072731 0.4061052625 0.7611467713 1.3773198590 2.3291697610

VIM [12] 0.1000000000 0.2088073214 0.4061346587 0.7624530350 1.3978805880 2.5067466690

MVIM [12] 0.1000000000 0.2088080868 0.4062407949 0.7644287245 1.4140941730 2.5919210760

HPM [7] 0.1000000000 0.2088073294 0.4061358277 0.7624762056 1.3980828100 2.5078740100

Bessel [9] 0.1000000000 0.2038616561 0.3803309335 0.6954623767 1.2759624442 2.3832277428

RK4 method 0.1000000000 0.2088006788 0.4062136749 0.7643508145 1.4138702489 2.5911951903

Table 6: Comparison of numerical solutions for I(t) between the proposed schemes and classical methods

ti 0.0 0.2 0.4 0.6 0.8 1.0

LWCM -2.85625E-21 6.03271E-06 1.31583E-05 2.12238E-05 3.01774E-05 4.00378E-05

cGP(2) method 0.00000E+00 6.03254E-06 1.31579E-05 2.12231E-05 3.01764E-05 4.00364E-05

GA [11] 0.00000E+00 2.83561E-06 3.59276E-06 1.63861E-05 3.14727E-05 4.20582E-05

IPA [11] 0.00000E+00 7.66752E-06 1.55638E-05 2.13739E-05 3.03260E-05 4.18421E-05

ASA [11] 0.00000E+00 7.25138E-06 1.57029E-05 2.18911E-05 3.04139E-05 4.16383E-05

GA-IPA [11] 0.00000E+00 7.69390E-06 1.56145E-05 2.13863E-05 3.03320E-05 4.18740E-05

GA-ASA [11] 0.00000E+00 7.76013E-06 1.60895E-05 2.16643E-05 3.03590E-05 4.20128E-05

LADM [8] 0.00000E+00 6.03270E-06 1.31589E-05 2.12329E-05 3.02427E-05 4.03332E-05

LADM-Padé [8] 0.00000E+00 6.03270E-06 1.31591E-05 2.12683E-05 3.00691E-05 3.98736E-05

VIM [12] 0.00000E+00 6.03263E-06 1.31487E-05 2.10141E-05 2.79513E-05 2.43156E-05

MVIM [12] 1.00000E-13 6.03270E-06 1.31583E-05 2.12233E-05 3.01745E-05 4.00254E-05

HPM [7] 0.00000E+00 6.03270E-06 1.31589E-05 2.12329E-05 3.02427E-05 4.03332E-05

Bessel [9] 0.00000E+00 6.24787E-06 1.29355E-05 2.03526E-05 2.83730E-05 3.69084E-05

RK4 method 0.00000E+00 6.03187E-06 1.31564E-05 2.12206E-05 3.01728E-05 4.00314E-05
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Table 7: Comparison of numerical solutions for V (t) between the proposed schemes and classical methods

ti 0.0 0.2 0.4 0.6 0.8 1.0

LWCM 0.1000000000 0.0618798436 0.0382948879 0.0237045502 0.0146803638 0.0091008183

cGP(2)-method 0.1000000000 0.0618799805 0.0382950575 0.0237047074 0.0146804932 0.0091009447

GA [11] 0.1000000000 0.0618619447 0.0382845550 0.0236961083 0.0146675785 0.0091089381

IPA [11] 0.1000000000 0.0618666712 0.0382983109 0.0237075809 0.0146724192 0.0091074600

ASA [11] 0.1000000000 0.0618649088 0.0382957364 0.0237083794 0.0146733410 0.0091062452

GA-IPA [11] 0.1000000000 0.0618666565 0.0382983011 0.0237076190 0.0146724517 0.0091074649

GA-ASA [11] 0.1000000000 0.0618652111 0.0382963843 0.0237086009 0.0146733229 0.0091064801

LADM [8] 0.1000000000 0.0618799531 0.0383081805 0.0239198161 0.0162123434 0.0160550224

LADM-Padé [8] 0.1000000000 0.0618799603 0.0383132488 0.0243917435 0.0099672189 0.0033050764

VIM [12] 0.1000000000 0.0618799531 0.0383082013 0.0239202926 0.0162170455 0.0160841871

MVIM [12] 0.1000000000 0.0618799088 0.0382959577 0.0237102948 0.0147004190 0.0091572387

HPM [7] 0.1000000000 0.0618799531 0.0383081805 0.0239198161 0.0162123434 0.0160550224

Bessel [9] 0.1000000000 0.0618799186 0.0382949349 0.0237043186 0.0146795698 0.0237043186

RK4 method 0.1000000000 0.0618808474 0.0382961304 0.0237057031 0.0146813143 0.0091015790

Table 8: Comparison of absolute errors for T (t) of the proposed schemes and classical methods relative to RK4 method

ti 0.0 0.2 0.4 0.6 0.8 1.0

LWCM 2.78E-17 7.50E-06 2.70E-05 7.34E-05 1.77E-04 3.98E-04

cGP(2)-method 0.00E+00 5.81E-06 2.11E-05 5.74E-05 1.38E-04 3.14E-04

GA [11] 0.00E+00 1.39E-03 1.35E-03 2.50E-03 5.85E-03 8.88E-03

IPA [11] 0.00E+00 1.32E-03 1.06E-03 1.69E-03 3.83E-03 4.19E-03

ASA [11] 0.00E+00 1.32E-03 1.06E-03 1.69E-03 3.83E-03 4.18E-03

GA-IPA [11] 0.00E+00 1.32E-03 1.06E-03 1.69E-03 3.83E-03 4.19E-03

GA-ASA [11] 0.00E+00 1.32E-03 1.06E-03 1.69E-03 3.83E-03 4.18E-03

LADM [8] 0.00E+00 7.78E-05 1.95E-04 1.10E-03 1.39E-02 7.89E-02

LADM-Padé [8] 0.00E+00 7.77E-05 1.65E-04 2.43E-03 3.46E-02 2.58E-01

VIM [12] 0.00E+00 7.78E-05 1.94E-04 1.13E-03 1.41E-02 8.00E-02

MVIM [12] 0.00E+00 7.85E-05 3.00E-04 8.49E-04 2.14E-03 5.14E-03

HPM [7] 0.00E+00 7.78E-05 1.95E-04 1.10E-03 1.39E-02 7.89E-02

Bessel [9] 0.00E+00 4.87E-03 2.56E-02 6.81E-02 1.36E-01 2.04E-01
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Table 9: Comparison of absolute errors for I(t) of the proposed schemes and classical methods relative to RK4-method

ti 0.0 0.2 0.4 0.6 0.8 1.0

LWCM 2.86E-21 8.36E-10 1.95E-09 3.20E-09 4.63E-09 6.44E-09

cGP(2)-method 0.00E+00 6.67E-10 1.49E-09 2.48E-09 3.65E-09 5.04E-09

GA [11] 0.00E+00 3.20E-06 9.56E-06 4.82E-06 1.32E-06 2.06E-06

IPA [11] 0.00E+00 1.64E-06 2.41E-06 1.63E-07 1.74E-07 1.85E-06

ASA [11] 0.00E+00 1.22E-06 2.55E-06 6.81E-07 2.62E-07 1.64E-06

GA-IPA [11] 0.00E+00 1.66E-06 2.46E-06 1.76E-07 1.80E-07 1.88E-06

GA-ASA [11] 0.00E+00 1.73E-06 2.94E-06 4.54E-07 2.07E-07 2.02E-06

LADM [8] 0.00E+00 1.20E-09 5.89E-09 2.24E-08 9.09E-08 3.39E-07

LADM-Padé [8] 0.00E+00 1.20E-09 6.15E-09 5.78E-08 8.26E-08 1.21E-07

VIM [12] 0.00E+00 1.12E-09 4.23E-09 1.96E-07 2.20E-06 1.57E-05

MVIM [12] 0.00E+00 1.19E-09 5.29E-09 1.27E-08 2.27E-08 3.12E-08

HPM [7] 0.00E+00 1.20E-09 5.89E-09 2.24E-08 9.09E-08 3.39E-07

Bessel [9] 0.00E+00 2.16E-07 2.17E-07 8.58E-07 1.78E-06 3.09E-06

Table 10: Comparison of absolute errors for V (t) of the proposed schemes and classical methods relative to RK4-method

ti 0.0 0.2 0.4 0.6 0.8 1.0

LWCM 0.00E-00 1.00E-10 1.24E-06 1.15E-06 9.50E-07 7.61E-07

cGP(2)-method 0.00E+00 8.66E-07 1.07E-06 9.95E-07 8.21E-07 6.34E-07

GA [11] 0.00E+00 1.79E-05 1.03E-05 8.44E-06 1.28E-05 8.11E-06

IPA [11] 0.00E+00 1.32E-05 3.41E-06 3.03E-06 7.94E-06 6.64E-06

ASA [11] 0.00E+00 1.49E-05 8.39E-07 3.83E-06 7.02E-06 5.42E-06

GA-IPA [11] 0.00E+00 1.32E-05 3.40E-06 3.07E-06 7.91E-06 6.64E-06

GA-ASA [11] 0.00E+00 1.46E-05 1.49E-06 4.05E-06 7.03E-06 5.66E-06

LADM [8] 0.00E+00 1.00E-07 1.33E-05 2.15E-04 1.53E-03 6.95E-03

LADM-Padé [8] 0.00E+00 1.08E-07 1.84E-05 6.87E-04 4.71E-03 5.80E-03

VIM [12] 0.00E+00 1.00E-07 1.33E-05 2.16E-04 1.54E-03 6.98E-03

MVIM [12] 0.00E+00 5.61E-08 1.06E-06 5.75E-06 2.01E-05 5.64E-05

HPM [7] 0.00E+00 1.00E-07 1.33E-05 2.15E-04 1.53E-03 6.95E-03

Bessel [9] 0.00E+00 6.59E-08 3.79E-08 2.31E-07 7.87E-07 1.46E-02

6. Conclusion

The numerical solution of a comprehensive model for HIV infection of heathy T-cells has been presented

using the cGP(2) and LWCM. We sought to determine the effect of constant and different variable source

terms for supply of new healthy T-cells from thymus on HIV infection model. By presenting the results, it

can be established that the dynamics of healthy T-cells, infected T-cells and free HIV virus particles behaves

as a damped oscillating manner for all kind of source terms throughout the time period of seventy days

but their are only an unsubstantial changes in their population rate. The change in concentration of T (t),

I(t) and V (t) are different for source term s1 throughout the time period but for other source terms they

have comparatively same in dynamical behavior at initial stages and the changes appear after some time.
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In phase diagram all the source term show similarity in their dynamics for some time but after some time

their population dynamics changes from each other. The population of virus and infected T-cells gradually

increases from the first day of infection in the model with source term s3 and the concentration of healthy

T-cells increases, reach to maximum level and then decreases gradually. On the other hand, we solved the

model by using RK4-method and present the quantitative comparison of cGP(2) and LWCM with other

conventional methods for T (t), I(t) and V (t). Finally, we depicted the numerically curves generated by

cGP(2) and LWCM. We notice that cGP(2) and LWCM have approximately similar accuracy as compared

to other methods used for the HIV infection model.
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