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1 | INTRODUCTION

Summary

In this paper, we deal with the wave equation with acoustic boundary conditions. The
exponential stabilization is obtained by Lyapunov approach and Riemannian geom-
etry method. We then apply our main theorem to the wave equations with memory
type acoustic boundary conditions, which is not available in the literature and give

an example in the end.
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Let (2, d) be a n-dimensional compact Riemannian manifold with smooth boundary I' = I'y U I";, where I'j and I'; are

closed and disjoint, with I, # @.

This article is devoted to the analysis of the following wave equation

(4, — Au=0, inQx(0,00),

u=0, onl}x(0,),

m(xX)u,, +0,u+you, + pu, = a(x)y,, onlI'| x(0,0), @)
u, + p(x)y, +q(x)y=0, onI; X (0,00),

L u(x,0) = ug(x), u,(x,0) =u;(x), ¥(x,0) = yy(x), in Q,

where A is the associated Laplace-Beltrami operator on manifold (€2, d). We denote by v the unit outward normal vector along

the boundary I'. Here the functions p,q : [, - R* are essentially bounded, satisfying some conditions which will be specified

later. And then we apply our main theorem to the wave equations with memory type acoustic boundary conditions as follows

A

(4, — Au=0, inQx(0,00),
u=0, onl}Xx(0,),
fol gt — 5)(0,u(s) +yo,u(s) =y, onlyx(0,o00), 2
u, +p(0)y, +q(x)y=0, onI'; x(0,00),

L u(x,0) = ug(x), u,(x,0) = u;(x), y(x,0) = yy(x), in Q.
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Acoustic boundary conditions were discussed in Morse and Ingard'® and the models of wave equations with acoustic
boundary conditions were first introduced by Beale and Rosencrans>>#. In23#, they proved the global existence and regularity
of solutions in a Hilbert space with semigroup methods. The asymptotic behaviour was obtained in? (Theorem 2.6). Recently,
wave equations with acoustic boundary conditions have been studied by many authors, see >6.7-8.9:10,12,14.15,16,17,20,23,22,24

Compared with previous articles on this subject, the main difference of this article is related with the equations (1); and

(2)5. In most previous work, for instance, %14:15:1620.

2224 the memory term of 9, u, has not been considered. In'°, they discussed
the equation including the memory term for d,u, on I';, and also with the viscoelastic term A, in the domain Q. Liu and Sun '
studied the following problem:
Uy — Au+a(t) [ gt — )Au(s)ds =0, inQ x (0, c0),
u=0, onl{Xx(0,o),
4 0, u— a(t) /OI gt —s)0,u(s)ds =y,, onl';x(0,),
u, + p(x)y, +q(x)y=0, onI'x(0,0),
{ u(x,0) = ug(x), v'(x,0) = u;(x), y(x,0) = yy(x), in Q.

With the perturbed energy functional technique, they established a general decay result relying on the behavior of both a(#)
and g(¢). Motivated by®!'>16, we intend to study the energy decay rate of (1) with Lyapunov approach in the framework of
Riemannian geometry. Then as an application, we get the exponential stabilization of the wave equations with memory type
acoustic boundary conditions on I'; and no damping terms in the domain Q.

The paper is organized as follows. In section 2, we give some assumptions, notations and the main results. In section 3, we

drive some important lemmas and give the proof of the theorems. Section 4 is devoted to the applications and examples.

2 | PRELIMINARIES AND MAIN RESULTS

To state the results, we begin with the conditions on the functions coefficients of the system.
Assumption (A) There are some basic assumptions about the functions in the system:

(A1) The coefficients in the equation (1); satisty
m(x)>0, y>0, >0, m(x)—py >0, for xeTI. 3)

(A2) The positive functions p, g € C(I'}) are essentially bounded such that

1 2
{B-‘_%}’ q(x) >qy >0, forae x€T,. )

For the Riemannian manifold (2, d), we assume that

> pp > max
p(x) > Do et

Geometrical assumption (G) Given the triple {€,Ij,I";}, there exists a vector field H on Riemannian manifold (€2, d)
such that the following properties hold true:

(G1) DH(:, ") is strictly positive definite on ﬁ, that is, there exists a W1’°°(§) function A(x) > p such that for some p > 0
andall x € Q, forall X € M . (the tangent space at x):

DH(X,X)=(DyH,X) = h(x)|X|* 2 p| X|*. Q)
(G2) The boundary I'; satisfies

I, ={xel|(H,v)>0}, 6)



and we have (H,v) <0on T,
Remark 1. The equality (5) in (G1) implies that divH = nh(x) on Q.
Throughout this paper, we use the notation
V={ue H(Q) : u=0onT},
which is a Hilbert space endowed with the inner product

W, v), = /(Vu(x), Vo(x))dx .
Q
We set

n(x,t) = m(xu,(x,t) +you, x€ly.
We consider the unknown
U= (u, v= u,|9,n,y)T ,
in the state space, denoted by
H=VxLQ)x L*")) x L*(T')),
with the norm defined by

IUIE, = Nl 0.0, 0" 5,

_ 2 2 1 1 2 l 2
= /(qul +uv )dx+2/m(x)_ﬁyn dF+2/q(x)y drT.

Q I, r

A simple computation yields
n, = m(x)u,, + ydvAu,

= —0, u— fu, + a(x)y,

= _%(x)u, — Pu, + a(x)y,
_ 1 o mx) e a()g(x)
- * % d p(x) i p(x)

Thus system (1) can be rewritten in the abstract form

{ U' = AU,
Up= (uo’ul’ﬂo’yo)T’

where the operator A is defined by

<

<

=

p(x)

1 q(x)
— U — —
p(x) p(x)

<

v
Au
AT Cy e o gy e
o1 Y p(x) ’ Y
- y

with domain

D(A) :={wv,n.y)" € H : Aue L*(Q),n = m(x)vlr, +7yo,u}.

@)

®)

)

(10)

an

12)

13)
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According to the norm defined in (11) in the state space H, we give the associated energy of system (1) by

1 2 1 2
E@t) == /(u + |Vu| )dx + = / e )—ﬁ}/ dl"+§/q(x)y dar. (14)

1 1—‘l

The wellposedness of (12) can be obtained by using linear semigroup theory in!°. These are our main results.

Theorem 1. Assume that the assumptions (A) and (G) hold, for each initial data (u,u,,ny, y,) € H, there exists a unique

solution (u, u,, 7, y) to system (1) in the class
(u,u,m, y) € C(0, 005 H),
furthermore, for (uy, u;, 1y, ¥y) € V N HX(Q) XV x Lz(Fl) X Lz(Fl), system (1) has a strong solution in the class
(u,u,,1,¥) € C(0,00;V N HX(Q) X V x LX) x L*(T'))) N C(0, o0; H).

Now we show the decreasing of the energy functional E(¢) given in (14). Noticing (8), (11) and (1),, a simple computation

yields

E'(t)= /(u,u,,+Vu-Vu,)dx+/;nntdr+/q(x)yy,dr
2 4 (m(x) — By)

1

1 1
uavudF—/—nzdF+—/nu dr
/ ’ y(m(x) — By) y ] ™

1 r I,
= | pooniar- [
——  upydl-— dr — dr
) = ﬂy)ny, p(x)y; Uy,
1 I, I,
_ _ L,
= /utavudr /2m(x)yn dr
lql Iﬂl
- ! n*dl ! / dr
/ (y(m(x)—ﬂy) 2m(x)y) Ty 7 e
a(x) ) _
m(x) 2 2
= —9*w)dr
/ o+ Ty
- ! 2dr 1 / dr
/ oo " 7
a(x) ) _
—(m(x) ﬂy)nyt dl’ — /p(x)ytdF /u,y,dF. (15)
1 I, I,
Now by Cauchy’s inequality we have
1 1 2 /m(x)—ﬁy 2
- dr< | ———— 42dT —— 24T, 16
y/ " —/ xmeo—pn T U (16)
T, I Iy
a(x)
— =  yydl
o) —pn)™
p 2 m(x)a*(x)
dr — 7 2T, 17
/ amemx) — " ] B - pn an

Ly



and

/ ,y,dFSﬂ/ 2dr+ﬁ/y2dr

Substituting the inequality (16)-(18) to (15) yields

E'() < - / ('"(x) '”(x) br —g)ufdl"— / #(x)afudl“

Iy

1 1 1 5
- - - dT’
/(V(m(X) =By) 2m(x)y 2y(m(x) - ﬂ}’))n

Iy

, ,
n-dl’
+/ Iy m(x) — pr) "

m(x)az(x) 1.,
- — 2)y*dT
/(() BmGo—pp) 5

W2dT — /La2 dF—/ b 241
/ 2m(x) Am(x)(m(x) — pr) "

1

m(x)az(x) 1

- et Ly ogp
r/ R Ry T gy Sl R

Moreover we have
Theorem 2. Let the assumptions (A) and (G) hold. The energy of the system (1) defined in (14) satisfies that
E(t) < Ce™™,

for ¢+ > 0 and some positive constants C and .

3 | EXPONENTIAL STABILIZATION OF SYSTEM (1)

This section is devoted to the proof of Theorem 2.
Next, we construct a Lyapunov functional which is equivalent to E(t).

Define

Y(@) = 2/u,H(u)dx+(n — 1)/h(x)u,udx

Q
/ ude+§ / p(x)y*dT,

I I

+

NI ©

where h(x) and p are given in (5).

18)

19)

(20)

Lemma 1. Assume that the assumption (A) holds. Let (v, u,, 7, y) be the solution to (1), then there exists a constant C; > 0 such

that

|¥®)| < CLE®).

21



Proof.
Y] < 2/IM,IIHIIVMIdX+(n—1)|Ih||Leo<g>/lutlluldx
Q Q

+§/|u||y|dr+§/p(x)y2dr.

r r

Using Cauchy inequality, Poincaré inequality, Holder inequality and trace embedding theorem in!, we get

2/|u,||H||Vu|dxg/u3dx+M2/|Vu|2dx, (22)
Q Q Q
where M = maxg|H|,
/lut||u|dx§ %/utzdx+%cl/|Vu|2dx, (23)
Q Q Q
1
/|u||y|dF < /—yde) </u2dr>2
q, £
< M/ q(x )yzdl"+c2/|Vu| dx, (24)
Q

where ¢, ¢, are constants given in the Poincaré inequality and trace embedding theorem, respectively. Due to the assumptions

plipll -
L / p(0)y2dl < — =10 / q(x)y3dT. (25)
4 44,
r

on p(x) and g(x) we have

Combining (22)-(25) yields that
|P()| < CLE®),
where C, = C,(n, p, M, ¢y, ¢, ||l Loy 405 1191l oo, )» 111l L IS @ positive constant.

O

Lemma 2. Assume that the assumptions (A) and (G) hold. Let (u, u,, n, y) be the solution to (1), then the functional ¥(¢) defined
by (20) satisfies

¥(1) < —g/(|Vu|2+ut2)dx+C/u2dx+C/dfua’F+/|V1u|2a’F
Q Q

T, T,
+M/u$dr+c/ 2dr — -/ q(x)y*dT, (26)
r I, I,

where p is the constant given in (5) and M = maxg|H |.



Proof. Due to the definition of ¥ in (20) we have

V()= 2 / u, H(u)dx + 2 / u,Hu)dx + (n—1) / h(x)u, udx
Q Q

Q

+(n—1) / h(x)utzdx+§ / uy,dl
Q

I

+§/u,ydr+§/p(x)ytydl“

I, I,
= {2/AuH(u)dx+(n— 1)/h(x)uAudx}
Q Q
+{2 / u,H(u,)dx + (n—1) / h(x)u’dx}
Q Q
+{§/uy,dr—§/q(x)y2dF}
I, I,
£ L)+ L) + B@). 27

Here we estimate the iterms of (27). By ,we have
(Vu, V(H(u))) = DH{(Vu, Vu) + %dw(quH) - %qulzdiuH,
then

1,(t) = 2/AuH(u)dx+(n—1)/h(x)uAudx
Q

Q

= 2/div(VuH(u))dx—2/<Vu, V(H (u)))dx
Q

Q

+(n—1) / div(h(x)uVu)dx — (n — 1) / h(x)|Vu|?dx
Q Q

—(n-1) / uVh(x) - Vudx
Q

= 2/6VuH(u)aT—2/DH(Vu, Vu)dx—/diu(|Vu|2H)dx

r Q Q

+/ |Vul®divHdx + (n — 1)/h(x)u0vudl“
Q r,

—(n— 1)/h(x)|Vu|2dx —(n— 1)/th(x) - Vudx (28)
Q Q

= / 20,uH (u)dT" — / |Vul?>(H,v)dT + (n— 1) / h(x)ud,udl
r r,

r

- / h(x)|Vu|*dx — (n—1) / uVh(x)Vudx.
Q Q
Denote by

1,,(0) / 20,uH (u)dT — / |Vul>(H,v)dT + (n — 1) / h(x)ud, udT".
I I

Iy



5|

As u = 0 on Iy, we have on Iy that Vu = d,u - v, |Vu|* = 0%u and H(u) = d,u{H,v). Meanwhile on I'; we have

Vu=0u-v+Vu |Vul* = 0%+ |V,ul* and H(u) = 0,u(H,v) + (H,V_ u). Thus we have

1,,(1) =

IA

/ 202u(H,v)dT + / 202u(H,v)dT + / 20,u{H,V u)dl

Lo Iy Iy

—/a§u<H,v>dr—/(a§u+|v,u|2)(H, v)dl

o I

+(n— 1)/h(x)u0vudF
r

/a§u<H,v>dr+/a§u<H, v)dr—/|v,u|2<H,v>dr

Iy r, r,

+ / 20,u(H,V u)dT + (n— 1) / h(x)ud,udl

Iy Ly

0+M/03udr+o+M2/afudr+/|v,u|2dr
l—‘l l—‘I l—‘I

+e/|vu|2dx+ce/a§udr
Q

Ty

(M+M2+C€)/0fud1"+/|V,u|2d1"+€/|Vu|2dx,
T, r, Q

(29)

where we notice the assumptions (5) and (6). Here M = maxg|H| and e is a constant small enough. And it’s easy to know

(n—1)/th(x)VudxSe/qulza’x+C€/u2dx
Q Q

Q

Combining (29), (30) with (28) to get

() < —/(h(x)—ze)|w|2dx+c€/afudr

Q
+/|V7u|2dF+C€/u2dx.
I Q

Iy

By divergence theorem we have,

I,(t) = 2/u,H(u,)dx+(n— 1)/h(x)ut2dx
Q Q
= /utz(H,v)dF—/(diUH—(n—l)h(x))utzdx
<

I, Q
M/utzdF—/h(x)utzdx.
I, Q

(30)

(€19}

(32)



Using Holder inequality, Young’s inequality with € and trace embedding theorem,

B(t) = g/uy,dr‘—g/q(x)y2dr‘

; P 2
) —E/q(x)ydr

IA
)
—
—
<
[38)
QU
!
~—
o1
—
—
<
~o
QU
!

l—‘] Iﬁl l—‘l
< e/ |Vu|2dx+C€/ytzdF— g/q(x)yzdr. (33)
Q T, r,

Substituting (31)-(33) to (27) yields that
¥ () < — / (h(x) = 3¢€)|Vul|*dx — / h(x)u’dx + C, / wdx

Q Q Q
+C. / 0ZudT + / |V ul|?dl" + M / udl
1 r I
+C, / yr-* / g(x)y2dr. (34)
I, I
Then taking € = ’é in (34) completes the proof. O

Obviously we obtain

Lemma 3. Assume that the assumptions (A) and (G) hold. Let (u, u,, 1, ¥) be the solution to (1), we have

p 1 2 2 2
E@+T%)5—/:—————-dF+A{/udF+C/’dF
g 2 mG)— )" /o Y

Iy
+C / 0Zudl + / |V u|?dl" + C / uldx. (35)
I, I, Q
Lemma 4. '' Lemma 7.2. Let € > 0 be given small. Let u solves the problem (1). Then
T-¢
/ / |V u|?dTdt
e I
T
2 2
< G { // (02u+u?)dTdt + ””||H%+f<gx<o,r>>} : (36)
0 T,

According to Lemma 3 and Lemma 4, we obtain the following observability inequality of the system (1).

Lemma 5. Assume that the assumptions (A) and (G) hold. Let (u, u,, 1, y) be the solution to (1), then for any € > 0, there exists

T, > 0 and a positive constant Cr., , such that, for all T > T,

(37

T
E©0) < CTM{ / / W2+ 02u+n + yDdTdt +llully, o }
0 T
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Proof. For any € small enough, integrating the inequality (35) on the interval (¢, T — €) yields
T—-¢

p/E(t)dt+‘P(T—e)—‘P(£)

£
T—e T-¢
P 1 2 2 2 2
= —pdl’'+C + d°u+ y)dI’
2//m%m” /ﬂ%V”w
I, e Iy
T—-¢

£

+//|V,u|2dF+C/u2dx.
I, Q

&€

T
2, 32 2., .2
< CT,E,p{ / /(ut + avu + n + yl )dF + ”u”HI/Z“(QX(O,T)) }dx .
0 T,
which yields
T—-¢ T
/ E(tydt < c{ / / W + 2u+n + y)dl + ||u||H1/2+F(QX(0,T))}dx
3 0 I,
+C, (E(T - €) + E(e)), (38)
where we notice the inequality (21) and the constant C| is given there. On the other hand, from inequalities (15)-(18), we have
-E't)<C, / W} + 0’u+n* + y)dr. (39)
1—‘l

Using the above inequality (39) to obtain

E©0)+C,(E(T — )+ E(¢))

2C +e+l 2C +e+l1
= / E@dt + / (E(0) — E(1))dt
+C,(E(e) — E(0)) + C,(E(T — €) — E(0))
2C +e+1 2C +e+1 t
= / E(r)dt — / (/E’(r)dr)dt
£ £ 0
£ T—-¢
+C1/E'(T)dT+C1/E’(T)dT
0 0
max{T—€,2C,+e+1}
< (2C + )G, / / («7 + 2u+n” +y7)dldt
0 I,
2C +e+1
+ / E(t)dt
T—-¢
< (2cl+1)C2//(uf+a§u+n2+y$)drdz
0 T,
T—-¢

+/ﬂwu (40)

&



| n

where in the last step we take T, = 2C; + 2¢ + 1 to guarantee that T — & > 2C, + e+ 1, forall T > T, O

In the following, we use the compactness uniqueness argument to absorb the lower order term in (37). We list the lemma

and omit the proof, which is similar to2!,

Lemma 6. Let (u,u,,#, y) be the solution to (1), then for T' > Tj, large enough, there exists a positive constant C > 0 such that

T
Neell gr12e 0.y < C{ / /(uf + 02U+ + yf)drdt}. 41
0 T,

Combining Lemma 5 and Lemma 6 yields

Lemma 7. Assume that the assumptions (A) and (G) hold. Let (u, u,, 7, y) be the solution to (1), then for any T > Tj), there

exists a positive constant C depending on T, €, p such that
T
EO0)<C / / ! + 02u+n* + yHdldt. (42)
0 I

Proof of Theorem 2. From (19) we know that

w0 < - [ Puar— [ 1 guar— 2 :
E® < r/4”tdr /Zm(x)avudf /4m(x)(m(x)—/37)r, ar

Iy Iy

m(x)a? 1. »
- - )Adr
/ Ry Tomrps e Sl Rl

IA

—c3 / W’ + 9%u+n* + yHdr, (43)
l—‘]

where

2
o= min{ 2. p I _moeE

; J
_7 9 ’p - T T .~ A4 N >
xefl{ 47 2m(x)" 4m(x)(m(x) = py)’"° B Pm(x)— Py)
Substituting (43) to (42) yields that for all T > T,
T
E0)< C / / W} + 02u+n* + y)dldt
0 T,

T
< - [ ew=-SEa) - ko),
] ]
which yields
C—c;
E(T) < E(0).
The exponential decay result follows from the above inequality. O

4 | APPLICATIONS AND THE EXAMPLE

In this section we give an application of Theorem 2 to the wave equation with memory type acoustic boundary conditions,

see system (2).
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First, let’s rewrite the equation (2);. Denote by

t

(g *v)(1) = /g(t — s)v(s)ds.
0
Differentiating (2); yields the following Volterra equation

1 g
Yy — —= * (0 ,u+yo,u,).

ou+you =——:
T = 20" T 50

Then from Theorem 3.5 in '3, we get

1
du+you = —=y, + R*y,),

8(0)
where the resolvent kernel R(?) is the solution of
/ /
RH=-—-=__25 4R
g0 gO
Now we differentiate (2), to get
_ 1 q(x)
Y =~

_u - _y 9
)" po)
where we notice the positivity of function p(x). Moreover, we have

t

/ R — s)y,(s)ds

0

Ry,

t

R(t —9)y,(s) [y + / R'(t — 5)y,(s)ds

0

t

R(0)y,(1) = Ry, (0) + R'(t = 5)y(s) |y + / R'(t = s)y(s)ds
0
R(0)y, (1) + R'(0)y(1) + R" % y — R'(1)y(0) — R(1)y,(0).

Substituting (46), (47) to (44) and combining with (2), yield

1
—_— 0 )
gO)p(x) i T M E T
_ q(x)
- g(()){ p( ) + R(0) - ﬂg(O)p(x))y, + ﬂg(O)p(x)yt}

)y + R+ y = (R0 + ROY,0) }

(-

i

= {( - ﬁ + R(0) — Bg(0)p(x))y, — ﬂg(O)ut}
{(

% R(0) = pg0)q(0)y+ R" + y = (R@¥0) + ROy, ©) |,
that is,

m(X)u, + pu, + 0, u+yo, u, — a(x)y,

_ Lo
= G { (- 55 - peono)y, }
+ I { (RO - g0+ R =y = (R0 + RO30) .

(44)

(45)

(46)

(47)

(48)
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where we denote by

1 R(0)
s =, 49
O "= %0 “9)

and f is a positive number which could be determined as needed.

m(x) 1=

Assumption (R) We assume the functions p, ¢, g and coefficients a, § satisfy that

(- 25— s}y,
+(R'(0) - f2(0)g(x))y + R" * y — (R'()y(0) + R(1)y,(0)) = 0. (50)
Thus we get
m(xX)u,, + 0,u+yo u, + pu, = a(x)y,, oy

and we know that (50) always has a solution. Due to Theorem 2, we have
Theorem 3. Let the assumptions (A), (G) and (R) hold. The energy of the system (2) defined in (14) satisfies that
E() < Ce™™,
for ¢+ > 0 and some positive constants C and .
Let’s give an example to end this section.
Example 4.1. Let (Q,d) = (Q,5). 6 is the standard metric on R". Given g(t) = e (\f(1 D<«k<9)0<y<1 The

oz 2y
1+y—v/(1—y)2—4yk? 1+y+/(1—y)2—4yk?
2vp

functions g(x) > 0, o < p(x) < . In this case, the system (2) has the exponentially stabilization.

Proof. Now we verify the assumptions of Theorem 3. In (€2, §), A is the Laplacian Operator and the geometrical assumption

(G) holds with the vector field H = x — x,,. Given g(t) = e, (45) becomes
R(t) = ke ™™ 4+ ke™ % R(1),
and by the laplace transform and its inverse transform, we have
R =k
and
R =0, RO)=k, R"®)=0

therefore, from (49) we get m(x) = —) and a(x) =

Assumption (R) becomes

(qg ; + Bp(x))y, + Pa(x)y + ky,(0) = (52)
which is a one order linear ODE with the solution
__Pr@ a0 o oo ky,(0)
O gt O pac’ o)

where we supposed that y,(0) # 0.
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It’s easy to see that p(x) < 474y (;;;)2_471‘2 < 1”;;;_7) = ﬂl—y, which corresponds to m(x) = ﬁ > yp in (Al). The
condition S VU=r A7k W < p(x) < Lyd oy —Arke W guarantees that
YB P = L+ pp+1+ Kk <0, (54)

which is
Bp(x)(1 — pyp(x)) > (1 — Byp(x)) + k2,

which verifies (A2) when we notice m(x) = ﬁ and a(x) = k. Thus the stabilization property holds true with applying Theorem

2. O
Remark 2. As an application we can also consider (2) with the fourth equation (2), changed as

u, +1(x)y, + p(x)y, + q(x)y =0, onI'| X (0, c0), (55)
with /(x) > 0 and an adding initial value y,(0, x) = y,(x) to (1)s.

Here the corresponding energy functional can be defined as

E @) = %/(ut2+|Vu|2)dx+/mn2dF

Q r,

+é / q(x)y*dT + % / 1(x)y2dT. (56)
r, r
Similarly we can get the exponential decay of the energy E,. This kind of boundary condition as in (55) has been recently

considered in the reference !”, where they imposed different boundary condition on y, and got the polynomial decay.
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