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Abstract This research paper discusses the analytical and semi–analytical solutions of the quadratic–

cubic fractional nonlinear Schrödinger (NLS) equation. By applying a new fractional operator we trans-

form the fractional formula of the model to integer–order, which allows applying the analytical and

numerical methods on it. The analytical solutions are obtained by the implementation of two distinct

systematic schemes and the reported solutions are used in applying the Adomian decomposition method

to get the semi–analytical wave solutions of this model. These solutions are used to characterize the

changes over time of a physical system in which case of quantum influence, such as wave-particle duality.

The comparison between the analytical and semi–analytical solutions are given to explain the accuracy

of the obtained solutions.
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1 Introduction

Many natural phenomena been representing by nonlinear partial differential equations (NLPDEs).
Based on these models, certain studies are applied to find the approximate and exact traveling wave so-
lutions. These solutions help to discover new characterizes of these models since the physical properties
of each model play an important role in its applications. These applications extend to many fields (nu-
clear science, atomic science, engineering, biological science, chemistry, and so on). The nonlinear partial
differential equation has two types of formulas; the first type is a nonlinear partial differential equation
with integer derivative order, while the second type uses the fractional derivative order where the order of
the derivative is a fractional number. The second type of nonlinear partial differential equation is recently
discussed. There exist many fractional definitions that investigate and study this kind of nonlinear partial
differential equations such conformable fractional derivative, fractional Riemann–Liouville derivatives, Ca-
puto, Caputo–Fabrizio definition, and recently fractional derivative [2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 20, 28].
Schrödinger equation is one of these models that has many formulas, and there exist many researchers who
interested in mathematics or even in physics tried and did his best to get the closed-form of solutions for
this vital model for examples:
In 2010, Yang, Jianke investigated in his book the nonlinear wave in integrable and nonintegrable systems.
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Moreover he applied some numerical methods to this equation to get approximate solutions of these models,
in 2011, Fujioka, J., E. Cortés, R. Pérez–Pascual, R. F. Rodŕıguez, A. Espinosa, and B. A. Malomed inves-
tigated the chaotic solitons of our model [15], in 2006, Galaktionov, Victor A., and Sergey R. Svirshchevskii
applied some methods to this model to get exact and solitary traveling wave solutions [17], in 2017, Triki,
Houria, Anjan Biswas, Seithuti P. Moshokoa, and Milivoj Belic obtained optical soliton solutions of our
model by implement of utilizing the method of undetermined coefficients [37], in 2009, Khare, Avinash,
Avadh Saxena, and Kody JH Law tried to study the mapping between generalized nonlinear Schrödinger
equations and neutral scalar and also obtained exactly traveling wave solutions of this model,...and so on.
Through the last five-decade, those in the meantime succeeded in that purpose then located powerful dead
techniques to reap closed form of solutions and solitary traveling wave solutions regarding many one-of-a-
kind types on nonlinear partial differential equations. [1, 13, 25, 32, 34, 35, 36]
In this paper, we use two methods that are considered as two novel methods in this field, the generalized
exp(−φ(ϑ))-expansion method and the modified method. The generalized exp(−φ(ϑ))-expansion method
was discovered by M. G. Hafez, and Dianchen Lu [18] while the Khater method was discovered by Mostafa
M. A. Khater [26, 33]. We can see in [21, 22, 23, 24, 26, 30], the MK method is a natural extension of
many methods in this field and not only this, but it is one of the most productive methods for different
forms of solitary wave solutions. This feature gives strength to the method. The number of solutions en-
ables researchers interested in the physical properties of these models to discover more and more about the
properties and applications of these models.
The strategy of this paper is systematized as follows: Section 2 applies the modified Khater method and
the generalized exp- (−φ (ξ)) expansion method to get the exact solutions of the fractional NLS equation.
Section 3 illustrates our solutions and what is the difference between our results and that obtained by using
different methods and also what is new in this paper, which makes our paper is suitable for publication.
Section 4 gives a conclusion of our paper.

2 Application:

This part implements two different analytical methods and one semi–analytical scheme to obtain novel
forms of the exact traveling wave solutions and approximate solutions of the quadratic–cubic fractional NLS
equation which can be written in the following form :

i
Dα Y

D tα
+ a

D2α Y

D x2α
− h1 Y |Y |+ h2 Y |Y |2 = 0, (1)

where i =
√
−1, 0 < α < 1, h1, h2 are arbitrary constants. Additionally, Y = Y (x, t) is the dependent

variable such that t and x are the independent variables representing the temporal and spatial variables
respectively. While, the real-valued constant a represents group velocity dispersion (GVD) , b1 and b2 are
real–valued constants while non fractional form of Eq. (1) takes the same from of equation when α = 1
[12, 16, 31, 38]. The chaotic phenomenon of the equation was studied in [19]. In [29], the analytical self-
similar wave solutions of the equation were constructed. In [39], the method of undetermined clients was
adopted to extract the soliton solutions and the conservation laws of the equation were reported. In [40], the
He’s semi-inverse variational principle was adopted to study the equation. Applying the Atangana–Baleanu
fractional derivative that has the following definition [2, 3, 5, 6, 7, 10, 14? ]:

ABRDα
a+ f(t) =

B(α)

1− α
d

d t

∫ t

a
f(x)Eα

(
−α (t− α)α

1− α

)
dx, (2)

where Eα is the Mittag–Leffler function which is defined by

Eα

(
−α (t− α)α

1− α

)
=
∞∑
n=0

(
−α
1−α

)n
(t− x)αn

Γ(αn+ 1)
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and B(α) being a normalisation function. Thus

ABRDα
a+ f(t) =

B(α)

1− α

∞∑
n=0

(
−α

1− α

)n
RLIαna f(t), (3)

where a > 0, 0 < α < 1 and α is the order of the derivatives for the function Y (x, t) and implementation of
the wave transformation on (1)

Y (x, t) = ei ϕu(ϑ), ϕ =
(1− α)

B(α)
∑∞

n=0

(
−α
1−α

)n
Γ(1− αn)

[
− ρ x−αn + ω t−αn

]
,

ϑ =
η (1− α)

B(α)
∑∞

n=0

(
−α
1−α

)n
Γ(1− αn)

[
x−αn + % t−αn

]
,

where the term ϕ = ϕ(x, t) represents the phase component, η is the frequency, ω represents the wave
number, c represents the phase constant, k is the velocity while represents the width of the traveling wave
and separating the result into real and imaginary components, a pair of the equation is acquired where the
imaginary part yields, % = 2 ρ a, leads to a real part gives the following form:

a η2 u′′ − (a ρ2 + ω)u− h1 u
2 + h2 u

3 = 0. (4)

Balancing the highest order derivative term and nonlinear term in Eq. (4), gets N = 1.

2.1 Explicit wave solutions via MK method:

Based to the MK method, the general solution of Eq. (4) is given by:

u(ϑ) = a0 + a1K
Υ(ϑ) + d1K

−Υ(ϑ), (5)

where a0, a1, d1, K are arbitrary constants. Additionally, Υ(ϑ) is the solution function of the following

equation

[
Υ′(ϑ) = χ+δ K−Υ(ϑ)+ς KΥ(ϑ)

ln(K) ,

]
where χ, δ, ς are arbitrary constants. Substituting Eq. (5) and

its derivative into Eq. (4) lead to obtain a system of algebraic equations. Equating the coefficient of
KiΥ(ϑ), where {i = 3, 2, 1, 0} to zero, and solving the obtained system by Maple 16, yield
Family I [

a1 → −
√
a2

0χ
2 − 4δa2

0ς − a0χ

2δ
, b1 → 0, ω → a

(
η2
(
χ2 − 4δς

)
− ρ2

)
,

h1 → −
3aη2

(
χ
√
a2

0 (χ2 − 4δς) + a0

(
χ2 − 4δς

))
2a2

0

, h2 → −
aη2

(
χ
√
a2

0 (χ2 − 4δς) + a0

(
χ2 − 2δς

))
a3

0

]
Consequently, the solitary traveling wave solutions of Eq. (1) are given by:
When χ2 − 4 δ ς < 0 & ς 6= 0

Y1(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0 +

(√
a2

0(χ2−4δς)−a0χ
)

4δς

×
(
χ−

√
4δς − χ2 tan

(
(1−δ)η

√
4δς−χ2(%t−δ+x−δ)

2B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

))]
, (6)

Y2(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0 +

(√
a2

0(χ2−4δς)−a0χ
)

4δς

×
(
χ−

√
4δς − χ2 cot

(
(1−δ)η

√
4δς−χ2(%t−δ+x−δ)

2B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

))]
. (7)
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When χ2 − 4 δ ς > 0 & ς 6= 0

Y3(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0 +

(√
a2

0(χ2−4δς)−a0χ
)

4δς(√
χ2 − 4δς tanh

(
(1−δ)η

√
χ2−4δς(%t−δ+x−δ)

2B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
+ χ

)]
, (8)

Y4(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0 +

(√
a2

0(χ2−4δς)−a0χ
)

4δς

×
(√

χ2 − 4δς coth

(
(1−δ)η

√
χ2−4δς(%t−δ+x−δ)

2B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
+ χ

)]
. (9)

When χ2 + 4 δ2 < 0 & δ = −ς

Y5(x, t) = exp

 i(δ − 1)t−δx−δ
(
axδ

(
4δη2ς + ρ2

)
+ ρtδ

)
B(δ)

∑∞
n=0

(
− δ

1−δ

)n
Γ(1− δn)


a0 −

√
−δa2

0ς tan

(
(1−δ)η

√
δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
√
δς

 ,(10)

Y6(x, t) = exp

 i(δ − 1)t−δx−δ
(
axδ

(
4δη2ς + ρ2

)
+ ρtδ

)
B(δ)

∑∞
n=0

(
− δ

1−δ

)n
Γ(1− δn)



√
−δa2

0ς cot

(
(1−δ)η

√
δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
√
δς

+ a0

 .(11)

When χ2 + 4 δ2 > 0 & δ = −ς

Y7(x, t) = exp

 i(δ − 1)t−δx−δ
(
axδ

(
4δη2ς + ρ2

)
+ ρtδ

)
B(δ)

∑∞
n=0

(
− δ

1−δ

)n
Γ(1− δn)


a0 −

√
−δa2

0ς tanh

(
(1−δ)η

√
−δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
√
−δς

 ,(12)

Y8(x, t) = exp

 i(δ − 1)t−δx−δ
(
axδ

(
4δη2ς + ρ2

)
+ ρtδ

)
B(δ)

∑∞
n=0

(
− δ

1−δ

)n
Γ(1− δn)


a0 −

√
−δa2

0ς coth

(
(1−δ)η

√
−δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
√
−δς

 .(13)

When χ = 0 & δ = −ς

Y9(x, t) =

exp

(
i(1−δ)(at−δ(4δ2η2−ρ2)−ρx−δ)
B(δ)

∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)(
δa0 −

√
δ2a2

0 coth

(
(1−δ)δη(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

))
δ

, (14)

When χ = δ
2 = κ& ς = 0

Y10(x, t) = exp

(
i(1−2κ)(at−2κ(ηκ−ρ)(ηκ+ρ)−ρx−2κ)
B(2κ)

∑∞
n=0 2n(− κ

1−2κ)
n

Γ(1−2κn)

)[
a0 +

(
a0κ−
√
a2

0κ
2
)

4κ

×
(

exp

(
η(1−2κ)κ(%t−2κ+x−2κ)

B(2κ)
∑∞
n=0 2n(− κ

1−2κ)
n

Γ(1−2κn)

)
− 2

)]
. (15)
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When χ = 0 & δ = ς

Y11(x, t) = exp

(
i(δ−1)t−δx−δ(axδ(4δ2η2+ρ2)+ρtδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)[
a0 −

√
−δ2a2

0

δ

× tan

(
(1−δ)δη(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

+ C

)]
, (16)

When ς = 0 &χ 6= 0 & δ 6= 0

Y12(x, t) = exp

(
i(1−δ)(at−δ(χη−ρ)(χη+ρ)−ρx−δ)
B(δ)

∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)[
a0 −

(√
a2

0χ
2−a0χ

)
2δ

×
(

exp

(
(1−δ)χη(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
− δ

χ

)]
. (17)

When χ2 − 4δς = 0

Y13(x, t) =

2a0B(δ)tδxδ
∑∞

n=0

(
− δ

1−δ

)n
Γ(1− δn) exp

(
i(δ−1)ρt−δx−δ(aρxδ+tδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
(δ − 1)χη (tδ + %xδ)

. (18)

Family II: [
a1 → 0, b1 → −

√
a2

0χ
2 − 4δa2

0ς − a0χ

2ς
, ω → a

(
η2
(
χ2 − 4δς

)
− ρ2

)
,

h1 → −
3aη2

(
χ
√
a2

0 (χ2 − 4δς) + a0

(
χ2 − 4δς

))
2a2

0

, h2 → −
aη2

(
χ
√
a2

0 (χ2 − 4δς) + a0

(
χ2 − 2δς

))
a3

0

]
Consequently, the solitary traveling wave solutions of Eq. (1) are given by:
When, χ2 − 4 δ ς < 0, ς 6= 0

Y14(x, t) = exp

(
(i(1−δ))((at−δ)(η2(χ2−(4δ)ς)−ρ2)−x−δρ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−nδ)

)
×
[
a0

+

√
(χ2−(4δ)ς)a2

0−χa0

χ−
√

(4δ)ς−χ2 tan

(
(((1−δ)η)(%t−δ+x−δ))

√
(4δ)ς−χ2

2(B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−nδ))

)], (19)

Y15(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

+

√
a2

0(χ2−4δς)−a0χ

χ−
√

4δς−χ2 cot

(
(1−δ)η

√
4δς−χ2(%t−δ+x−δ)

2B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)]. (20)

When, χ2 − 4 δ ς > 0, ς 6= 0

Y16(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

+

√
a2

0(χ2−4δς)−a0χ

√
χ2−4δς tanh

(
(1−δ)η

√
χ2−4δς(%t−δ+x−δ)

2B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)
+χ

]
, (21)

Y17(x, t) = exp

(
i(1−δ)(at−δ(η2(χ2−4δς)−ρ2)−ρx−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

+

√
a2

0(χ2−4δς)−a0χ

√
χ2−4δς coth

(
(1−δ)η

√
χ2−4δς(%t−δ+x−δ)

2B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)
+χ

]
. (22)
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When, δς > 0 & ς 6= 0 & δ 6= 0 &χ = 0

Y18(x, t) = exp

(
i(δ−1)t−δx−δ(axδ(4δη2ς+ρ2)+ρtδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)[
a0

−

√
−δa2

0ς cot

(
(1−δ)η

√
δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)
√
δς

]
, (23)

Y19(x, t) = exp

(
i(δ−1)t−δx−δ(axδ(4δη2ς+ρ2)+ρtδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

+

√
−δa2

0ς tan

(
(1−δ)η

√
δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)
√
δς

]
. (24)

When, δς < 0 & ς 6= 0 & δ 6= 0 &χ = 0

Y20(x, t) = exp

(
i(δ−1)t−δx−δ(axδ(4δη2ς+ρ2)+ρtδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

+

√
−δa2

0ς coth

(
(1−δ)η

√
−δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)
√
−δς

]
, (25)

Y21(x, t) = exp

(
i(δ−1)t−δx−δ(axδ(4δη2ς+ρ2)+ρtδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

+

√
−δa2

0ς tanh

(
(1−δ)η

√
−δς(%t−δ+x−δ)

B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)

)
√
−δς

]
. (26)

When, χ = 0 & δ = −ς

Y22(x, t) =

exp

(
i(1−δ)(at−δ(4δ2η2−ρ2)−ρx−δ)
B(δ)

∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)(√
δ2a2

0 tanh

(
(1−δ)δη(%t−δ+x−δ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
+ δa0

)
δ

. (27)

When χ = 0 & δ = ς

Y23(x, t) = exp

(
i(δ−1)t−δx−δ(axδ(4δ2η2+ρ2)+ρtδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)
×
[
a0

−

√
−δ2a2

0 cot

(
(1−δ)δη(%t−δ+x−δ)

B(δ)
∑∞
n=0(− δ

1−δ )
n

Γ(1−δn)
+C

)
δ

]
. (28)

When, χ2 − 4δς = 0

Y24(x, t) = exp

(
i(δ−1)ρt−δx−δ(aρxδ+tδ)

B(δ)
∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn)

)[
a0

− (δ−1)a0χ3η(tδ+%xδ)
4δς((δ−1)χη(tδ+%xδ)−2B(δ)tδxδ

∑∞
n=0(−

δ
1−δ )

n
Γ(1−δn))

]
. (29)
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2.2 Explicit wave solutions via generalized exp (−φ (ϑ))- expansion method:

Based to the generalized exp- (−φ (ϑ)) expansion method, the general solution of Eq. (4) takes the following
formate:

u(ϕ) = a0 + a1 e
−φ(ϑ), (30)

where a0, a1 are arbitrary constants. Additionally, φ(ϕ) is the solution function of the following equation[
φ′(ϑ) = L1 + L2 e

φ(ϑ) + L3

eφ(ϑ)

]
, where L1, L2, L3 are arbitrary constants. Substituting Eq. (30) and its

derivative into Eq. (4), collection the coefficient of the e−iφ(ϑ), where {i = 0, 1, 2, 3} and equating them by
zero, give a system of algebraic equations. Solving this system of equations by any computer software, yields:[

a1 →
a0L1 − a0

√
L2

1 − 4L2L3

2L2
, ω → aη2

(
L2

1 − 4L2L3

)
− aρ2,

h1 → −
3aη2

(
L1

(√
L2

1 − 4L2L3 + L1

)
− 4L2L3

)
2a0

, h2 → −
aη2

(
L1

(√
L2

1 − 4L2L3 + L1

)
− 2L2L3

)
a2

0

]
Consequently, the solitary traveling wave solutions of Eq. (1) have the following form:
Case I. ⇒ (L3 = 1)
When, L2

1 − 4L2 > 0 &L2 6= 0:

Y25(x, t) = a0 exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)

×

 √
L2

1−4L2−L1

L1−
√
L2

1−4L2 tanh

(
1
2

√
L2

1−4L2

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(− α

1−α)
n

Γ(1−αn)
+ϕ

)) + 1

 , (31)

Y26(x, t) = a0 exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)

×

 √
L2

1−4L2−L1

L1−
√
L2

1−4L2 coth

(
1
2

√
L2

1−4L2

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(− α

1−α)
n

Γ(1−αn)
+ϕ

)) + 1

 . (32)

When L2
1 − 4L2 = 0 &L2 6= 0

Y27(x, t) = 1
2a0 exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)

×

 (
L1−
√
L2

1−4L2

)
L1

L2

(
exp

(
L1

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(− α

1−α)
n

Γ(1−αn)
+ϕ

))
−1

) + 2

 . (33)

When L2
1 − 4L2 = 0 &L1 6= 0 &L2 6= 0

Y28(x, t) = 1
4a0

((√
L2

1−4L2−L1

)
L2

1((α−1)η(tα+%xα)−ϕB(α)tαxα
∑∞
n=0(−

α
1−α)

n
Γ(1−αn))

L2(xα((α−1)ηL1%−B(α)tα(L1ϕ+2)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn))+(α−1)ηL1tα)

+ 4

)

× exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)
. (34)
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When L2
1 − 4L2 = 0 &L1 = 0 &L2 = 0

Y29(x, t) = 1
2a0

 L1−
√
L2

1−4L2

L2

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(− α

1−α)
n

Γ(1−αn)
+ϕ

) + 2


× exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)
. (35)

When L2
1 − 4L2 < 0 &L2 6= 0

Y30(x, t) = a0 exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)

×

 √
L2

1−4L2−L1

L1−
√

4L2−L2
1 tan

(
1
2

√
4L2−L2

1

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(− α

1−α)
n

Γ(1−αn)
+ϕ

)) + 1

 , (36)

Y31(x, t) = a0 exp

(
i(1−α)(t−α(aη2(L2

1−4L2)−aρ2)−ρx−α)
B(α)

∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)

×

 √
L2

1−4L2−L1

L1−
√

4L2−L2
1 cot

(
1
2

√
4L2−L2

1

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(− α

1−α)
n

Γ(1−αn)
+ϕ

)) + 1

 . (37)

Case II. ⇒ (L1 = 0)
When, L3 &L2 > 0:

Y32(x, t) = 1
L3

[
a0 exp

(
i(α−1)t−αx−α(axα(ρ2+4η2L2L3)+ρtα)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)
×
(
L3 −

√
L3
L2

√
−L2L3 cot

(√
L2L3

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

+ ϕ

)))]
, (38)

Y33(x, t) = 1
L3

[
a0 exp

(
i(α−1)t−αx−α(axα(ρ2+4η2L2L3)+ρtα)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)
×
(
L3 −

√
L3
L2

√
−L2L3 tan

(√
L2L3

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

+ ϕ

)))]
. (39)

When, L2 L3 < 0:

Y34(x, t) = 1
L2

[
a0 exp

(
i(α−1)t−αx−α(axα(ρ2+4η2L2L3)+ρtα)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)
×
(√
−L2
L3

√
−L2L3 tanh

(√
−L2L3

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

+ ϕ

))
+ L2

)]
, (40)

When, [δ χ < 0]:

Y35(x, t) = 1
L2

[
a0 exp

(
i(α−1)t−αx−α(axα(ρ2+4η2L2L3)+ρtα)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

)
×
(√
−L2
L3

√
−L2L3 coth

(√
−L2L3

(
(1−α)η(%t−α+x−α)

B(α)
∑∞
n=0(−

α
1−α)

n
Γ(1−αn)

+ ϕ

))
+ L2

)]
. (41)
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2.3 Numerical Simulation

Applying the Adomian decomposition method to Eq. (4) enables rewriting it to take the following form:

Lu(ϑ) +Ru(ϑ) +N u(ϑ) = 0, (42)

where (L&R&N ) represent a differential operator, a linear operator and nonlinear term, respectively.
Using the inverse operator L−1 on (42), gets

∞∑
i=0

ui(ϑ) = u(0) + u′(0)ϑ+
a k2 + ω

a η2
L−1

( ∞∑
i=0

ui

)
+

b1
a η2
L−1

( ∞∑
i=0

Ai

)
− b2
a η2
L−1

( ∞∑
i=0

Ai

)
. (43)

Under the following condition:

Table 1: Initial conditions for both analytical methods

−−−−−− Modified Khater method Generalized exp (−φ (ϑ))– method

Sol. Num. Eq. (8) Eq. (40)

Arbitrary Constants

[
a0 = −1 &χ = 5 & δ = 6 & ς = 1

] [
a0 = −1 &L2 = −4 &L3 = 1 &L1 = 0

]
Exact solution

[
−1
24 + 5

24 tanh
(
ϑ
2

) ] [
tanh(2ϑ) + 1

]

Using above conditions and applying the Adomian decomposition method on Eq. (4), lead to the following
data in table 2

Table 2: Absolute Error between semi–analytical and exact solution which obtained by using the modified
Khater method and generalized exp (−φ (ϑ))– method

Value of ϑ Abs. Error of MK method Abs. Error of the generalized exp (−φ (ϑ))– method

0.001 2.34793 × 10−8 4.44799 × 10−6

0.002 9.37949× 10−8 1.78061 × 10−5

0.003 2.10764 × 10−7 4.00955 × 10−5

0.004 3.74203 × 10−7 7.13372 × 10−5

0.005 5.83929 × 10−7 0.000111552

0.006 8.3976 × 10−7 0.00016076

0.007 1.14151 × 10−6 0.000218983

0.008 1.48901 × 10−6 0.000286241

0.009 1.88206 × 10−6 0.000362554

0.01 2.32048 × 10−6 0.000447941

3 Discussion

Necessary steps of the methods and the relation between these two methods and the Riccati
equation:
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0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0 8 0 . 0 1 0

2 . 3 4 7 9 3 * 1 0 ^ - 8
9 . 3 7 9 4 9 * 1 0 ^ - 8
2 . 1 0 7 6 4 * 1 0 ^ - 7
3 . 7 4 2 0 3 * 1 0 ^ - 7
5 . 8 3 9 2 9 * 1 0 ^ - 7

8 . 3 9 7 6 * 1 0 ^ - 7
1 . 1 4 1 5 1 * 1 0 ^ - 6
1 . 4 8 9 0 1 * 1 0 ^ - 6
1 . 8 8 2 0 6 * 1 0 ^ - 6
2 . 3 2 0 4 8 * 1 0 ^ - 6  A b s .  E r r o r  b y  K h a t e r  m e t h o d

 A b s .  E r r o r  b y  e x p .  e x p a n s i o n  m e t h o d

V a l u e  o f  ϑ
0

2

4

6

8

1 0

 

 
 A b s .  E r r o r  b y  K h a t e r  m e t h o d
 A b s .  E r r o r  b y  e x p .  e x p a n s i o n  m e t h o d

V a l u e  o f  ϑ

Figure 1: Relation between absolute error between Adomian decomposition method and the two used
analytical schemes based on table 2. It shows the superiority of modified Khater method on the another
used method.

• Basic steps of the methods:
In this paper, two analytical techniques were employed to find novel traveling wave solutions formulas
of the quadratic-cubic fractional NLS equation. The main idea of these methods (the modified Khater
method and generalized exp (−φ (ϑ)) expansion method) is to convert the nonlinear partial differential
nonlinear PDE to ordinary nonlinear differential nonlinear ODE by using the traveling wave transfor-
mation then using the homogeneous balance rule between the highest derivative term and nonlinear
term in obtained nonlinear ODE then using the general solution that suggested by methods themselves
as following:

Y (ϑ) =



N∑
i=0

ai k
iΥ(ϑ) ⇒ The modified Khater method,

N∑
i=0

ai exp (−i φ(ϑ))⇒ Generalized exp (−φ (ϑ)) expansion method.

These solutions depend on the following auxiliary equations, respectively: f ′(ϑ) =
1

ln(K)

(
δ k−Υ(ϑ) + χ+ ς kΥ(ϑ)

)
,

φ′(ϑ) = δ exp(−φ(ϑ)) + χ exp(φ(ϑ)) + ς.

Using the solutions of these auxiliary equations under specific conditions and submit these solutions
into the exact traveling wave solution lead to the solitary traveling wave solutions of the suggested
model.

• The similarity between both methods:
The solitary solutions of both methods depending on the solutions of auxiliary equations for each of

them. By careful look for both equations, we can find that both equations are same when

[
K = e =

2.7183, Υ(ϑ) = φ(ϑ)

]
that leads to same solutions. The exp-function properties are used for both

methods to get many forms of solutions that help many researchers who do not have backgrounds in
mathematics. This similarity not limited to these three ways, but it applies to most of the schemes in
this area [19],[27].
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• Comparison between our solutions and that obtained in previous work:
We give a comparison between our solutions and that obtained by Aslan, Ebru Cavlak, and Mustafa
Inc In [4] as follows:
Aslan, Ebru Cavlak, and Mustafa Inc applied the Jacobi elliptic functions to the quadratic-cubic NLS
equation when (δ = 1). They obtained bright and dark optical soliton solutions (15), (28). We obtain
many different forms of solutions that are completely different from that obtained in [4] that makes
our solutions are novel and considerable for publication.

• Numerical solutions of quadratic-cubic fractional NLS equation:
The Adomian decomposition method applied to this model under the specific boundary conditions
obtained by using the result solutions of the analytical used methods. Fig. 1 shows the difference
between absolute error for both used analytical schemes (modified Khater method and generalized exp
(−φ (ϑ)) expansion method). This shows the accuracy of solutions which obtained by the modified
Khater method than the second method.

4 Conclusion

In this research, We succeeded in the implementation of the modified Khater method and generalized exp-
(−φ(ξ))-expansion method for the quadratic-cubic fractional NLS equation. We obtained different formulas
of solitary traveling wave solutions of this model. The modified Khater method has been considered as one
of the few generalization methods to get exact and solitary method as it can cover most of solitary traveling
wave solutions that obtained by some of the methods. We gave a comparison between our solutions and
that obtained by another researcher who used a different method [4]. We also gave a numerical study of
our obtained to show the accuracy of our exact solutions. We showed this convergence between exact and
numerical solutions in Figure 1.
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