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Abstract

We develop a novel approach to trophic metacommunities and use it to study the effect of

habitat loss on food webs. Our method assigns a spatially realistic Levins-type metapopula-

tion model to each species, then couples them by making species extinction rates depend on

the likelihood of the presence of species’ prey items via a Bayesian network representation

of the food web. The method yields general insights into metacommunity ecology, revealing

that metacommunity processes alone can restrict the maximum number of trophic levels to a

handful at most over fragmented landscapes, independent of energetic or other constraints. It

also allows one to repurpose known results of classical metapopulation theory for metacom-

munities, such as ranking the habitat patches of the landscape with respect to their importance

to the persistence of the metacommunity as a whole. Using these tools, we explore how

progressive habitat loss affects species extinction rates. The outcome depends on the order

of habitat removal: focusing on removing patches which are least crucial to persistence first

(best-case scenario) means the metacommunities can often tolerate the removal of more than

90% of their patches. Whereas removing the most crucial patches first (worst-case scenario)

leads to the collapse of metacommunities very quickly. Surprisingly, removing patches at

random is nearly indistinguishable in its effects from the worst-case scenario. In all cases,

species’ vulnerability to habitat loss is greater at higher trophic levels, stressing the risk of

network downsizing for food webs under progressive habitat loss.
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1 Introduction

Global biodiversity loss progresses at a rapid pace, with human-induced landscape changes such as

habitat fragmentation and habitat loss being one of the main drivers (Tylianakis et al. 2008, Haddad

et al. 2015). In order to accurately forecast species extinction rates and to develop efficient conservation

strategies, ecologists must understand how species respond to these changes in habitat. Changes in the

spatial configuration of a landscape drive species extinctions both directly but also through their effect on

the interactions among species (Tylianakis et al. 2008, Valiente-Banuet et al. 2015). The direction and

extent of this is difficult to predict however, especially when considering complex ecological communities

such as food webs.

In food webs species are inextricably linked, both directly and indirectly. Therefore, the extinction of

one species from the network can lead to a cascade of secondary extinctions which might affect the entire

network (Ebenman & Jonsson 2005, Dunne & Williams 2009). This can have unpredictable consequences

for the community as it might drastically change its structure and in the worst case lead to a highly

impoverished community (Eklöf & Ebenman 2006, Dunne & Williams 2009).

Theoretical studies in food web ecology typically consider secondary extinctions in non-spatial food

webs and thus do not take their spatial extent into account (Eklöf & Ebenman 2006, Dunne & Williams

2009, Staniczenko et al. 2010, Binzer et al. 2011, Curtsdotter et al. 2011, Brose et al. 2017). In non-spatial

food webs, the main approaches to model secondary extinctions are purely topological models, which

are solely based on the food web structure (Dunne & Williams 2009), and dynamical models, which

explicitly simulate population dynamics using a system of differential equations (Binzer et al. 2011,

Curtsdotter et al. 2011). A middle-ground approach between them are Bayesian networks (Eklöf et al.

2013; see Box 1 for more information on non-spatial food web models).

The predictions derived from these non-spatial studies are crucial for understanding how species

extinctions reverberate through food webs and how this affects food web persistence and stability. Yet, by

neglecting that food webs have a spatial context, they also neglect the potentially strong impact that spatial

aspects can have on (local) communities (Gibert & Yeakel 2019). Therefore, non-spatial food web models

might miss important ecological patterns and processes that play out at the landscape level such as spatial

rescue effects, the co-distribution of predators and their prey, species range limits and the restructuring of

food webs considering different spatial scales (see Guzman et al. 2018 and references therein). Using a

spatially-implicit model, Gravel et al. (2011a) for example showed that regional dynamics could promote

the persistence of species in complex food webs that were locally prone to extinctions.
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More recently, several advances in food web ecology address the effect of spatial changes on food

webs (Pillai et al. 2011, Eklöf et al. 2012), mostly however in small systems such as food chains or

small food webs and/or small landscapes. For example, Liao et al. (2016, 2017a,b) studied how the

loss of habitat patches and landscape fragmentation affect food chains and simple food web motifs. An

explicit population dynamical approach was taken by Ryser et al. (2019), who studied complex food webs

in differently fragmented landscapes and found that in their model habitat isolation drives top species

extinctions due to bottom-up energy limitation. Using a system of differential equations, Ryser et al.

(2019) explicitly simulate feeding and dispersal dynamics which allows for greater biological realism but

also restricts the network sizes that are computationally feasible (Box 1).

To be able to explore much larger systems, here we develop a novel approach to studying trophic

metacommunities which is rooted in single-species metapopulation models on fragmented landscapes

(Hanski & Ovaskainen 2000, Ovaskainen & Hanski 2001, Hanski & Ovaskainen 2003, Grilli et al. 2015).

The essence of our method is that species’ extinction rates are calculated from a Bayesian network

representation of the food web (Eklöf et al. 2013), which allows us to model food webs with hundreds

of species and patches. Our approach can also be used for obtaining analytical solutions for simple

community modules (Supporting Information [SI], Section S4). Further, the method retains many known

properties of metapopulation theory, such as being able to rank the habitat patches of the landscape with

respect to their importance to the persistence of the metacommunity (Ovaskainen & Hanski 2001). We

make use of this ranking to study how progressive habitat loss affects species extinctions, depending on

whether one prioritizes the removal of valuable vs. non-valuable patches.

The article is structured as follows. After briefly presenting our modeling framework and its parame-

terization (Section 2), we use it to study the effect of habitat loss on community persistence—first on

model food webs (Section 3), then on an empirical example (Section 4). We finish by reflecting on the

advantages and limitations of our approach, and its place in the wider context of trophic metacommunity

theory (Section 5).

2 Methods

2.1 Model summary

Let there be S species distributed across N habitat patches, connected by dispersal. The probability pk
i

that species i is found in patch k (here and elsewhere, subscripts refer to species and superscripts to

patches) is governed by a spatially explicit Levins-type metapopulation model (Hanski & Ovaskainen
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2000, 2003, Ovaskainen & Hanski 2001, Grilli et al. 2015). Colonization rates of patch k by species

i, Ck
i = ∑

N
l=1 Mkl

i pl
i , are modeled using a species-dependent landscape matrix Mkl

i giving the dispersal

rate of species i from patch l to patch k. In turn, extinction rates are obtained from the probability δ k
i

that species i disappears from patch k. As metapopulation models assume that migration operates on a

slower time scale than local population dynamics (Hanski 1994), the extinction rate Ek
i is related to the

probability of extinction via the first term of the Poisson distribution: δ k
i = 1− exp(−Ek

i ), from which

Ek
i =− log(1−δ k

i ). With these colonization and extinction rates, the model reads (SI, Section S2):

dpk
i

dt
= (1− pk

i )
N

∑
l=1

Mkl
i pl

i + pk
i log(1−δ

k
i ) (i = 1, . . . ,S; k = 1, . . . ,N) (1)

Thus far, the model comprises of an independent metapopulation equation for each species. The

central idea of our approach is to couple them by making the extinction probabilities δ k
i depend on the

local persistence probabilities of species i’s prey items via a Bayesian network representation of the food

web (Eklöf et al. 2013). When modeling species extinctions using Bayesian networks, the probability of

a species going extinct is a function of its inherent risk of going extinct and the extinction probabilities

of its resources. Each species i in patch k has a baseline probability of extinction πk
i ; the species goes

extinct with this probability even if it has full access to its resources. Second, the conditional probability

of a species to go extinct in a patch depends on the fraction f of its resources that are locally absent.

This conditional probability increases monotonically with f , from the baseline probability πk
i to certainty

as f increases from 0 to 1. The marginal probability δ k
i is then obtained by substituting all conditional

probabilities into the law of total probability, and then weighting this result by the likelihoods that the

prey species are locally present in the first place (Box 1; SI, Section S1).

The approach retains many known results from the classic metapopulation theory on which it is

based. We can determine the persistence of any species i by its metapopulation capacity λi: this quantity

exceeding 1 means the metapopulation persists at equilibrium, otherwise all pk
i are zero. For Eq. 1, λi

is given by the leading eigenvalue of the matrix Akl
i = −Mkl

i / log(1− δ k
i ) (SI, Section S3). Also, the

relative patch value V k
i = (λi−λ

−k
i )/λi (where λ

−k
i is species i’s metapopulation capacity after patch k

is removed) can be obtained as the normalized product of the dominant left and right eigenvectors of Akl
i

(Ovaskainen & Hanski 2001). This quantity measures how important a patch is for the persistence of a

species. We use it to rank the patches of a landscape with respect to their importance to the persistence of

the metacommunity.
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2.2 Model parameterization

We first constructed four model food webs via the allometric method of Schneider et al. (2016) (SI,

Section S5.1). Each web has 400 species, but with a varying fraction of consumer to basal species

(200:200, 250:150, 300:100, and 350:50). To study how progressive habitat loss affects these webs, we

generated five landscapes, each with 300 uniformly distributed patches in the unit square. The landscape

matrices were constructed by making their entries decline exponentially with the distance dkl between

patches k and l: Mkl
i = exp(−dkl/ξi), where ξi is the characteristic dispersal distance of species i.

We assume homogeneous landscapes where all patches have the same abiotic conditions and each

patch can potentially harbour the full food web. This means that both the baseline extinction proabilities

πi and dispersal distances ξi are patch-independent. Their species-dependence may take one of two forms.

First, they can be constant across all species, with πi = 0.2 and ξi = 0.055. Second, they may be trophic

level-based. We calculated the trophic level Ti of each species i as a prey-averaged trophic level (Williams

& Martinez 2004; SI, Section S5.2). Denoting their arithmetic average by T , we set πi = 0.2Ti/T and

ξi = 0.055Ti/T . The numerical factors adjust the arithmetic average π and ξ to be equal to 0.2 and 0.055

respectively, for a better comparison with the constant case. Additionally, to explore the role of habitat

connectivity in general, we gradually increased ξi from 0.01 to 0.1 (keeping it equal across species), and

let πi be trophic level-based (SI, Section S6).

We also looked at how the functional form of a consumer’s response to the loss of resources affects

the response of a food web to habitat loss, by implementing four different forms of the response function.

All are are described by a regularized beta function B( f ;α,β ) of the fraction f of resource species lost,

with different shape parameters α and β :

1. α = β = 1 (linear function; see inset in top right corner of Figure 2C). Here a consumer’s probability

of extinction is simply proportional to the fraction of resources lost.

2. α = 5, β = 1 (Figure 2A). This is a convex function, meaning that consumer extinction probabilities

only start appreciably increasing after some fixed fraction of the resources have already been lost.

3. α = 1, β = 5 (Figure 2D). A concave function: consumer extinction probabilities attain high values

even after the removal of a small fraction of their prey.

4. α = β = 5 (Figure 2B). A sigmoidal function, combining properties of the convex and concave

cases.
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2.3 Implementing habitat loss

First, we obtain the equilibrium patch occupancies for each food web on each landscape. We do so

beginning with the basal species (for whom δ k
i = πk

i ), by solving for their equilibrium state in Eq. 1 (SI,

Section S3). We use these occupancy data and the Bayesian network representation of the food web

(Box 1) to obtain their δ k
i . With these parameters, we then solve Eq. 1 for all those species consuming

only basal ones. We then obtain their δ k
i in turn, and go on to solve for the patch occupancies of species

consuming only basal- and primary consumer species—and so on, until top predators are reached (SI,

Section S1-S2).

We start implementing habitat loss if at least one consumer species persists. We do this by gradually

removing patches from each landscape, always 10 at a time. The order of removal differs between three

habitat loss scenarios:

1. Best-case scenario: patches are removed in increasing order of patch value (least valuable patches

first). Since species at different trophic positions may differ in which patches are most valuable to

them, we rank the patches based on the patch values of basal species.

2. Worst-case scenario: as above, but removing patches in decreasing order of patch value (most

valuable first).

3. Random scenario: patches are removed at random.

The patch ranking formula only applies for small perturbations of the landscape. Therefore, after each

patch loss step (simultaneous removal of 10 patches), we recalculate the patch values to re-rank the order

in which we will remove patches next. We repeat this process until either all but basal species have gone

extinct, or less than two patches remain in a landscape. Figure 1 illustrates the habitat loss scenarios by

displaying the patch occupancies for a basal species and a top predator over a landscape.

For the linear functional form of predator response to prey loss (α = β = 1), we additionally looked at

removing patches based on the patch value rankings of top species, instead of basal ones (SI, Section S6.2).

This means that patch removal was stopped whenever the top species have gone extinct.

3 Results

Our approach can be used to obtain analytical approximations for the metapopulation capacities in simple

food web structures (SI, Section S4). One such structure is a linear food chain (species 1 is the basal

species eaten by species 2, which is in turn eaten by species 3, and so on, until the top species) over a
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homogeneous landscape (baseline extinction probabilities are patch-independent, πk
i = πi). In this case

the following recursion equation approximates the metapopulation capacities λi:

λi+1 ≈
λMi+1

λMi/λi− log[(1−πi+1)(1−1/λi)]
(2)

for all i > 1, and λ1 =−λM1/ log(1−π1) for the basal species. λMi is the dominant eigenvalue of species

i’s landscape matrix Mkl
i , which we do not assume to be generated by any particular kernel form here. We

can simplify this expression further by assuming πi = π and λMi = λM are constant across species:

λi+1 ≈
λM

λM/λi− log[(1−π)(1−1/λi)]
(3)

One can show that Eq. 3 implies strictly decreasing metapopulation capacities with increasing trophic

level, eventually dropping them below 1 (SI, Section S4.2). This imposes a limit on the maximum length

of the trophic chain, because species persistence requires λi > 1. The following simple approximation

can be derived for the maximum number of trophic levels T :

T =−λM log(π) (4)

Empirical estimates of λM from three different butterfly metapopulations (Hanski 1994) gave 3.9, 0.97,

and 0.74 (SI, Section S4.2). If these are indeed typical values, then Eq. 4 reveals that trophic chain length

is quite restricted unless π is quite low (Figure 3). For instance, with λM = 2 and π = 0.1, the number

of trophic levels is already limited to 5 at most. The upshot is that, quite apart from energetic or other

constraints, the simple realities of metacommunity structure alone can restrict the maximum possible

number of trophic levels to a handful.

Beyond such simple food web structures, one can rely on numerical solutions to Eq. 1, which we have

done to explore our four large model food webs. Since they produce similar trends, we present results for

the one with 300 consumer and 100 basal species (Figure 2; see SI, Section S6 for the others). The extent

to which habitat loss threatens species persistence differs significantly between patch removal scenarios.

In the best-case scenario, unless consumer response to prey absence is described by a strongly concave

function, species have a high chance to persist even if a large fraction of habitat patches are lost. This

applies to species at all trophic levels, though metapopulation capacities are generally higher at lower

levels. By contrast, in the random and worst-case scenarios, species across all trophic levels have a much

higher risk of extinction even after moderate levels of habitat removal. Interestingly, it makes almost no
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difference whether habitat loss starts with the most valuable patches or occurs randomly. This means that

random patch removal is practically as harmful to a metacommunity as if one intentionally tried to cause

the greatest damage. This pattern was observed for all food webs, landscapes, and parameterizations,

and highlights the importance of planned landscape alterations whereby only patches of low value are

removed.

Both the baseline extinction probability πi and dispersal distance ξi affect the described outcomes,

but in most cases do not change the overall trends (Figure 2). If πi (but not ξi) increases with trophic

level, differences in metapopulation capacity across trophic levels are elevated compared to the constant

case, with higher values for lower trophic levels. When both πi and ξi increase with trophic level (a likely

scenario if trophic level and body mass are correlated, since larger-bodied organisms disperse faster and

also tend to have lower population sizes, increasing extinction risk), these differences are reduced, and

metapopulation capacities start decreasing even after moderate habitat loss. Finally, when ξi but not πi

increases with trophic level, we find a reversed relationship between metapopulation capacity and trophic

level for low to moderate habitat loss, with higher trophic levels now also having higher metapopulation

capacities. In line with our Bayesian network approach which neglects top-down effects, species at the

top of the food web generally have lower metapopulation capacities and are more likely to go extinct than

species at lower levels. The reason we do not see this here is that the stronger landscape connectivity

gained by faster dispersal at higher trophic levels offsets the increased risk of extinction due to local prey

absence.

Changing the functional form of a consumer’s response to the loss of its resources alters the overall,

absolute scaling of the metapopulation capacities, with little effect on their relative values (compare

Figure 2 A-D). For functional forms leading to reduced metapopulation capacities, this means extinctions

happen at lower numbers of removed patches. In the case of a concave response function for instance, we

find that the highest trophic levels are often unable to persist even on a fully intact landscape. This is

because their persistence probabilities are disproportionately reduced by the absence of even a few of

their prey items.

Predictably, an overall increase in habitat connectivity, emulated by gradually increasing ξi from 0.01

to 0.1 (keeping it equal across species, and letting πi be trophic level-based), acts as a general buffer

against species extinctions up until habitat loss becomes too severe (SI, Section S6). Finally, removing

patches based on the patch value rankings of top species instead of basal ones does not alter the general

patterns we observed, at least for the linear consumer response to prey loss we tested (α = β = 1). The
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only difference is that, since patch removal is stopped whenever the top species go extinct, there is no

information on metapopulation capacities beyond that point (SI, Section S6.2).

4 An empirical example

We demonstrate that our framework can be readily applied to empirical systems using, as an example,

the plant-mammal Serengeti food web dataset (Baskerville et al. 2011). This is a species-rich web with

the plant species mostly associated with particular habitats and mammals often tightly associated with

well-defined plant groups (Baskerville et al. 2011). Although the Serengeti ecosystem is a protected

area, there are nevertheless threats towards the habitat types within the system. First, the rapidly growing

human population outside the park borders increase livestock grazing within the park, resulting in habitat

degradation that is particularly severe near the borders (Veldhuis et al. 2019). Second, climate change has

recently caused warmer and longer dry season as well as more powerful rains, resulting in soil erosion

and washouts (Ritchie 2008). As such, assessing the effects of habitat loss is relevant for the system.

This, together with the data set’s species richness and organization into well-defined trophic levels, make

it a good empirical example for demonstrating our method.

The Serengeti food web data set (Baskerville et al. 2011) contains a total of 161 species and 592

feeding links across three distinct trophic levels, with 9 carnivore species feeding on 23 herbivore species

feeding on 129 plant species. Apart from a single cannibalistic link (belonging to Panthera leo, the

lion), the web is completely acyclic. Since the Bayesian network approach requires acyclic networks, we

removed this self-link from the data.

In their work, Baskerville et al. (2011) used a modified version of the group model (Allesina &

Pascual 2009) and showed that the web contains functionally distinct groups of plants strongly associated

with habitat types, connected to distinct groups of primary consumers that in turn are connected to distinct

groups of secondary consumers. The nested network structure coupled to a spatial component, together

with a high species richness, make the Serengeti food web a good empirical example to apply our method

to. However, since there are only three distinct trophic levels in this system (with a strong bias towards

basal species), we use the groups to parameterize our model in addition to the constant and trophic

level-based parameterizations we relied on earlier (SI, Section S6). We follow the group labeling in

Baskerville et al. (2011) and assign carnivores to groups 1-2, herbivores to groups 3-6, and basal species to

groups 7-14. Since group labels decrease with trophic level but we would like both the baseline extinction

probabilities πi and dispersal distances ξi to increase with them, we define πi = 0.2(15−Gi)/G and
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ξi = 0.055(15−Gi)/G, where Gi is the group index and G their arithmetic average. While this particular

parameterization of groups within a trophic level does not have any specific ecological relevance, it

demonstrates how parameter values can be assigned if, for example, ecological information on dispersal

properties for certain groups of species is available.

The original dataset does not contain any explicit spatial arrangement of the food web in a landscape.

Therefore we use the same approach here as for our model food webs and construct a landscape of 300

patches uniformly placed in the unit square. In the best- and worst-case habitat loss scenarios, we ranked

patches for removal based on their contribution to the metapopulation capacity of a basal species. This

species was chosen to be the Gum arabic tree (Acacia senegal), the sole member of spatial group 12.

The patterns we obtain for the Serengeti food web when πi and ξi are constant or trophic level-based

are consistent with the results found for the model food webs (SI, Section S6), with one exception. We

find that the negative effect of a concave predator response on metacommunity persistence is strongly

mitigated, with the metacommunity persisting even under severe habitat loss and a worst-case patch

removal scenario. This is in contrast to the pattern seen in the model food webs, where the concave

form immediately leads to the loss of the topmost trophic levels. However, this result is an artifact of the

overabundance of basal species in the Serengeti dataset, and the low baseline extinction probability they

all receive under a strictly trophic level-based parameterization. When parameters are spatial group-based

(Figure 4), the better resolution of the parameterization leads to an outcome in line with those seen in the

model food webs when both πi and ξi are trophic level-based.

5 Discussion

Understanding how habitat loss affects complex communities such as food webs remains a major challenge

in ecology (Guzman et al. 2018, Leibold & Chase 2018). Due to indirect effects present in ecological

networks, the extinction of one species can set in motion an entire cascade of secondary extinctions

(Ebenman & Jonsson 2005, Dunne & Williams 2009). Here we have studied the effect of habitat loss

on food webs by developing a novel approach to trophic metacommunities, combining the methods of

classic metapopulation models on fragmented landscapes (Hanski & Ovaskainen 2000, 2003, Ovaskainen

& Hanski 2001, Grilli et al. 2015) with a Bayesian network representation of trophic interactions (Eklöf

et al. 2013) for calculating local extinction rates. The approach has much of the flexibility of explicit

dynamical models (Ryser et al. 2019), but is close in tractability and computational efficiency to simple

topological methods (Dunne & Williams 2009). This allows one to apply it to much larger food webs and
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landscapes than would be feasible with fully-fledged dynamical models. It thus provides an alternative,

complementary way of analyzing spatial food webs.

Thanks to its origins in well-studied metapopulation models, the method inherits many of their

useful analytical properties, such as the ability to rank habitat patches with respect to their value to the

community as a whole (Ovaskainen & Hanski 2001). We demonstrated the importance of this ranking

by simulating the patch removal process, taking away patches in sequence based on their value. This

has revealed that trophic metacommunities can tolerate substantial habitat loss if the least valuable

patches are removed first. However, starting with the most important ones greatly accelerates collapse.

Surprisingly, random removal of patches is almost indistinguishable in its effects from the worst-case

scenario of removing patches in decreasing order of importance, leading to similar landscapes in which

habitat is scattered randomly (Figure 1). In contrast to this, removing less valuable patches first in the

best-case scenario preserved habitat islands in which species were able to persist even under severe habitat

loss. This highlights the need to estimate patch rankings in real-life conservation efforts, and to either

prioritize conserving high-value patches, or else to improve the value of others—e.g., by increasing habitat

connectivity. Land use strategies which take these considerations into account can then substantially

promote food web persistence, and especially prevent top species extinctions.

Our metacommunity approach is similar to some trophic models of island biogeography (Holt 2009,

Gravel et al. 2011a,b). In fact, our work can be seen as an extension and a change of focus from these

works. It is an extension in two ways. First, our model is spatially explicit. Second, it replaces the strict

dichotomy of a predator either being able to colonize a patch or not at all (depending on whether at least

one of its prey items are locally present) with a more gradual approach using Bayesian networks, in which

the presence of a predator is a smoothly increasing function of the likelihood of its prey items being

present. And it is a change of focus in that we have concentrated on the effects of habitat loss in closed

metacommunities, instead of species-area relationships and the effect of network metrics on regional

persistence in an island-mainland setting.

Our framework characterizes each species by (i) their position in the food web; (ii) their patch-specific

baseline extinction probabilities πk
i ; and (iii) their dispersal kernel (which, in our case, was always chosen

to be exponential with a species-specific dispersal distance ξi). In the literature, an increased risk of

extinction has been related to various indicators such as high trophic level, large body size, and low

abundance (Gaston & Blackburn 1995, Purvis et al. 2000, Cardillo et al. 2005, Davidson et al. 2009,

Lee & Jetz 2011). In agreement with several previous studies (Kondoh 2003, van Nouhuys 2005, Eklöf

& Ebenman 2006, Curtsdotter et al. 2011, Liao et al. 2017b, Ryser et al. 2019), we found that species
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at higher trophic levels indeed tend to suffer elevated extinction risks. Differences in other indicators

can be accounted for through their effects on the species-level parameters πk
i and ξi. For instance, if

a patch can only support a small number of individuals of a given species, it has a higher chance of

disappearing due to demographic stochasticity even when all its resources are present. Such a situation

can be represented by increasing the species’ patch-specific baseline extinction probability. While this

can and should be done whenever adequate data are available to characterize each patch on the landscape,

here we deliberately assumed all habitat patches to share the same abiotic conditions (Leibold et al. 2004)

and thus baseline extinction probabilities to be independent of patch identity. This allowed us to focus on

the general effects of habitat loss.

Similarly, dispersal ability is crucial for persistence in fragmented landscapes; all other things equal,

species that are good disperses are at an advantage. In our model, we can integrate different assumptions

for the dispersal abilities of species by assigning species-specific dispersal distances and dispersal kernel

forms. We have looked at constant dispersal distances across species, and also ones that increase with

trophic level (and, in case of the Serengeti food web, scale with the spatial guild of a species). Ideally,

detailed information on species-specific dispersal would be used to construct realistic dispersal kernel

functions in conjunction with realistic habitat structures, as the combination have profound consequnces

for species persistence (Årevall et al. 2018). However, regardless of such details, it follows from the

structure of our model that habitat destruction likely affects species at the highest trophic levels the most,

since apart from having fewer available patches for colonization in the landscape, they must also cope

with the problem of reduced prey availability. In line with this expectation, we found that habitat isolation

deconstructed food webs from top to bottom, with species at higher trophic levels going extinct first

(Ryser et al. 2019, McWilliams et al. 2019). Dispersal ability can also be seen as a measure of habitat

connectivity, i.e., how well species can access habitat patches in general. This is particularly important

as human land use practices causing habitat loss often also decrease the quality of the habitat matrix in

which the patches are embedded (Bonte et al. 2012). A decrease in matrix quality manifests itself in

overall reduced dispersal likelihoods, whereby the kernel yields a lower dispersal rate for all distances,

reducing the chance of successful colonization between habitats (Eklöf et al. 2012).

Despite its tractability, computational efficiency, and straightforward parameterizability, our meta-

community approach also has important limitations. First, the food web structure must be acyclic (no

“A eats B eats C eats A” scenarios), because the Bayesian network formalism can only be used for such

webs. Fortunately, while real food webs are not perfectly acyclic, they are generally close, and there

are ways of removing cyclic links from food webs in a robust way that has minimal effect on the rest
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of the web (Allesina et al. 2009, Eklöf et al. 2013). A more problematic limitation is that species’

dynamics depend only on the persistence probabilities of their prey, not their predators. In real food

webs, secondary extinctions can emerge bottom-up (if consumers lose their resources), and top-down, by

resources responding to the loss of their consumers. Species may, for example, be locally predated to

extinction (Huffaker 1958, Schoener et al. 2001), and the loss of a predator can release a prey species

which then grows to the point of eliminating other species in the web (Paine 1966, 1974, Lafferty &

Suchanek 2016). However, since Bayesian networks operate on a strict bottom-up principle whereby prey

influence their predators but not vice versa (from the perspective of prey, their predators might as well not

even be present), extinctions resulting from top-down effects cannot be implemented in our framework.

This is a severe limitation; moreover, it is unlikely that it can be eliminated without fundamentally altering

our approach. This has to be considered when interpreting its results and applying the method to empirical

systems: if, in a given system, top-down effects are deemed important, other methods should be used

instead.

The current consensus within community ecology is that new ways of thinking about trophic meta-

communities are needed to move the field forward (Leibold & Chase 2018, Guzman et al. 2018, Hirt

et al. 2018). Here we offered one possible approach to this problem, rooted in classic metapopulation

theory and the method of Bayesian networks. Due to its flexibility and ability to handle large systems, we

see our approach as a stepping-stone along the way to a fuller understanding. Our numerical experiments

demonstrate that preserving high-value patches increases the likelihood of community persistence, even

under severe habitat loss. Increasingly isolated landscapes, on the other hand, accelerate species extinc-

tions and particularly drive top species towards extinction, reducing trophic complexity. Using a different

methodology, similar trends have been observed by Ryser et al. 2019. Our findings reinforce that trophic

interactions, dispersal ability, and the spatial configuration of patches are crucial when assessing the

extinction risk of species in fragmented landscapes. We hope that our method will be of use to ecologists

interested in metacommunity processes and to provide useful insights for real-life conservation efforts to

preserve trophic complex communities.
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Box 1: Secondary extinctions in non-spatial food web models

Topological models provide the simplest approach to understanding secondary extinctions in food

webs: a species undergoes secondary extinction once all its resources go extinct, otherwise it is

extant. This method only requires the network structure as input, so it can be used to model very

large networks (Dunne & Williams 2009). However, the assumption that species’ extinction risks do

not respond at all to either the identity or the number of resource species lost until the last of them is

gone (at which point the extinction probability suddenly jumps to certainty) is rather crude.

Dynamical models are on the other end of the spectrum and offer a highly detailed description

of trophic communities. They explicitly model population dynamics using a system of coupled

ordinary differential equations (Berlow et al. 2009, Binzer et al. 2011, Curtsdotter et al. 2011, Riede

et al. 2011). They depend on a large number of parameters and specific model assumptions, and

are computationally expensive. Furthermore, while these models have the potential to be the most

realistic of all, this potential is only realized if all model parameters are realistically represented.

Although the rise in computational power promoted their use, the explicit modelling of population

dynamics limits the food web size (and, in a spatial context, landscape size; Ryser et al. 2019) that

they can be applied to.

Bayesian network models (Eklöf et al. 2013) provide a middle-ground between the two methods

above. Bayesian networks allow extinction probabilities to increase gradually with resource loss, and

let them be nonzero even when species have full access to their resources (quantifying the probability

of species going extinct for causes other than those represented by the network). The numerical

evaluation of Bayesian networks is highly efficient. This greatly reduces computation times and

permits analysis of large food webs with hundreds or even thousands of species (and, in a spatial

context, habitat patches).

Modeling the probability P(¬C| f ) of a species C going extinct as a function of just the fraction

f (and not the identity) of its resources that are absent:

P(¬C| f ) = πC +(1−πC)B( f ) (B1)

where πC is species C’s baseline extinction probability (the likelihood of extinction despite all its

resources being present), and B( f ) is a monotonically increasing function of f such that B(0) = 0
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and B(1) = 1. For any basal species A, P(¬A) = πA is simply its baseline extinction probability. For

a non-basal species C, one obtains P(¬C) by using P(A) = 1−P(¬A) and the law of total probability.

For instance, if C has two prey items A and B, we write

P(¬C) = P(¬C|AB)P(A)P(B)+P(¬C|¬AB)P(¬A)P(B)

+P(¬C|A¬B)P(A)P(¬B)+P(¬C|¬A¬B)P(¬A)P(¬B)
(B2)

where P(¬C|A¬B) is the probability of C being extinct given that A is extant and B is extinct, and so

on. Knowing P(¬A) and P(¬B) (either because they are basal species, or the same formula has been

already used to derive their values), we can then calculate P(¬C) from Eq. B2. Thus, determining

the extinction probabilities of all species in a food web is a bottom-up calculation process: we start

with basal species, then move on to species only consuming those basal species, and so on.

This also means that the Bayesian network approach has two important limitations. First, the

food webs must be acyclic, otherwise this bottom-up approach would not work. Second, since

predators are influenced by their prey but prey dynamics do not depend on the presence of their

predators at all, the method cannot capture any top-down effects.
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Figure 1: Patch occupancies along a habitat loss gradient, for a basal species (blue) and a top predator
(red) in a model food web with 300 consumer and 100 basal species. Axes are coordinates of the
landscape, circles are patches, and their shading is proportional to local persistence probabilities (dark
blue/red: 100% persistence; empty circle: 0%). In the best-case scenario (A), we first remove patches
that contribute the least to the metapopulation capacity of the basal species; in the worst-case scenario
(B), we start with patches that contribute the most; and in (C) we remove patches randomly. The dispersal
distance ξi is 0.055 for all species, and baseline extinction probabilities πi increase linearly with trophic
level.
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Figure 2: Effect of habitat loss on species persistence in a model food web with 300 consumer and 100
basal species. A-D are for different functional forms of a consumer’s response to the loss of resources
(top right insets). Species are grouped into trophic levels (color legends); lines show the mean and the
bands around them the one standard deviation range of the metapopulation capacities of species in the
corresponding trophic level. Rows indicate patch-removal scenario (best-case, worst-case, and random);
columns the parameterization method: baseline extinction probabilities πi and dispersal distances ξi can
either take on one value across all species, or increase with trophic level (trophic level-based, TLB).
Horizontal dashed lines highlight a metapopulation capacity of 1, the threshold for long-term species
persistence. Vertical dashed lines show when the metapopulation capacity of the top species in the food
web drops below this threshold.
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Figure 2: Figure continued.
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Figure 3: The maximum number of trophic levels in trophic chain metacommunities, as a function of a
common baseline extinction probability π and the leading eigenvalue of a common landscape matrix λM .
Unless π is low and λM simultaneously high, the metacommunity structure itself puts a cap on the number
of possible trophic levels. This color map was generated by iterating Eq. 3 until metapopulation capacities
dropped below the persistence threshold of 1. However, the same result obtains by approximating the
maximum number of trophic levels simply with −λM log(π) (Eq. 4; see also SI, Figure S3).
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Figure 4: Effect of habitat loss on species persistence in the Serengeti food web. Layout as in Figure 2,
except color legends show spatial group instead of trophic level, and columns show different functional
forms of a consumer’s response to the loss of resources (top insets). We show the results for the spatial
group-based parameterization (SGB), whereby both the baseline extinction probabilities πi and dispersal
distances ξi decrease with spatial group. In the color scheme, green colors are groups whose species are
primary producers, blue colors are groups with secondary consumers, and brown colors are groups with
top predators.
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