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Abstract

Time-consuming is one of the main bottlenecks in the SCAPS-1D simulations in the case of more computational
data set. In this regard, we are achieving outputs data in SCAPS-1D and repeat this simulation by employing a neural
network as a cost or target function for the evolutionary particle swarm optimization (EPSO) algorithm to decrease
the computational expensiveness of SCAPS-1D simulation. Optimization and numerical simulation tools pave the way
for having a better insight into the designing of perovskite solar cells. Also, it allows finding a relation between artificial
intelligence and device physics.
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I. Introduction

Based on statistics, energy consumption had increased by around 100% from 1972 to 2004 [1]. To preventing further
irreversible damage, it is essential to look for clean, diverse, and affordable energy solutions. One of the most promising
candidates for renewable energy is solar energy because of a more cost-effective solution with faster installation and more
predictive energy outputs [2]. Solar energy is one of the green clean energy sources with a wide range of applications.
Perovskite solar cells (PSCs) caught great attention because of their remarkable rapid growth, possessing satisfying
stability, low cost, and a simple fabrication process of PCE in the photovoltaic industry [3]-[5]. At first, the efficiency
of PSCs was around 3.8% but recently increased enormously to a record to 24.2% in single-junction perovskite solar
cells [6] and 25.2% in the perovskite/silicon tandem solar cells [7]. High carrier mobility, fitting bandgap, and long
diffusion length are promising properties of perovskite materials. [8]-[11].

II. Perovskite solar cell Structure

The typical structure of PSCs consisting of a perovskite layer as an absorber sandwiched between two layers as
an electron transfer layer (ETL) and hole transfer layer (HTL). In the typical structure of PSCs, the conduction
band in the HTL must be above that in the perovskite, and the valence band in the ETL must be below that in the
perovskite and According to this materials are chosen [12]. In the perovskite structure for leading holes and electrons
towards HTL and ETL respectively, could be employed a generated built-in electric field arising from the discrepancies
in the band energies of the different layers, and these make a potential barrier that exists to the entry of electrons
into HTL and holes into ETL from perovskite [13]. Generally, methylammonium lead tri-iodide (CH3;NH;Pbl3) is
using as a perovskite absorbing material in PSCs [14]. According to [15], [16], CH;NH;3Snl; has a narrower bandgap
(1.3[eV]) than CH3NH3PblIs.in which it can increase the electric field inside the semiconductor region [17], leading to
the carrier generation rate in solar cells. According to [18], the PCE of CH;NH;Pbl; PSC consisting of CH3;NH;Snl;
layer, increased from 14.32% to 15.32%. In this work, we present a PSC simulation based on the SCAPS-1D. We
are employing PCBM as ETL and Cu,O as HTL, and a layer of the CH3NH;3Snl; is added between PCBM and
CH;NH;3PbI; layers, as shown in Fig. 1. The simulation parameters of PSC structure are shown in Table I [11], [18]
and there are seven variable inputs series for neural network in up to 3000 iteration for sweep parameters, including
the thickness of CH3;NH;Snl;, CH;NH3;Pbl;, PCBM, Cu,O, the bandgap of CH3;NH;SnI3, and CH3;NH;Pbl; and hole
mobility of Cu,O.and there are four outputs including V., Jy, FF, eta. One of the main bottlenecks in the simulation
is that obtaining outputs is very time-consuming. Based on the structure mentioned earlier, we were swiping our inputs
data to achieving outputs data in SCAPS-1D to repeat this simulation by employing neural network for decreasing the
computational expensiveness of SCAPS-1D simulation. the main issue with this simulation based on neural networks



TABLE 1
Simulation Parameters of the structure.

Material Quantity PCBM CH3NH3;Pbl; CH3NH3Snl; CuyO
Bandgap (eV) 2 1.55 1.3 2.24
Electron mobility (cm?/V.s) 2 x107! 10 1.6 30

Hole mobility (cm?/V.s) 2 x107! 10 1.6 30
Acceptor concentration (1/cm?) 0 10*° 3 x10*10 1.5 x10*13
Donor concentration (1/cm?) 293 x 1017 10%° 0 0
Dielectric permittivity 3 10 8.2 7.5
Conduction Band DOS (1/em?®)  2.5x 10+?! 2.5x 10%20 10*18 10*19
Valence Band DOS(1/cm?) 2.5 % 10+ 2.5 % 10%20 10718 1019
Electron affinity (eV) 3.9 3.9 4.17 34

is that this technique is reliable just in the structure that mentioned it earlier. However, it is undeniable that the
approach and provided code is flexible to calculate expected values in any perovskite solar cell structure in further
study.
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Fig. 1: Device structure cartoon.

III. Optimization Results

In this work, we utilized a neural network with two hidden layers so that the first hidden layer has nineteen neurons,
and the second layer has five neurons. Evolutionary Particle Swarm Optimization (EPSO) algorithm employed for
the training of this neural network [19]. In here to prediction outputs, there are four neural networks for every four
outputs. Inside of these layers, there is one neuron with a linear activation function. All data becoming to 3 parts,
so that first part includes train data around 70% of all data, and the second part includes test data around 15% of
all data, and the third part comprises validation data around 15% of all data to tuning hyperparameters. For loss
function, the Mean squared error (MSE) function utilized. Initial weights have been initialized Randomly. For the
regression problems, a factor defined R? has been utilized typically. The value of R? would be between 0 and 1; if this
value was closest to one, it means the network is trained right and yields a better fit for data. if the R? factor of the
train is much more than the R? factor of the test means the neural network is overfitting on the training. Overfitting
is the case where the overall cost is really small, but the generalization of the model is unreliable. This is due to the
model learning “too much” from the training data set. if the R? factor of the train is closest to 0.5 means, the neural
network is underfitting on the inputs. Underfitting is the case where the model has “not learned enough” from the
training data, resulting in low generalization and unreliable predictions. If R? value was closest to one, it means the
network is trained right and yields a better fit for data. In Fig. 2, Fig. 4, Fig. 6, and Fig. 8 that the R? factor of the
train is much more than the R? factor of the test means the neural network is overfitting on the training. In Fig. 3,



Eta train data fit by personaIEpso: R=0.77588
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Fig. 2: Plotregression of train data of eta vs fit.

FF train data fit by personaIEpso: R=0.58253
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Fig. 3: Plotregression of train data of FF vs fit.

Fig. 5, Fig. 7, and Fig. 9 that the R? factor of the train is closest to 0.5 means, the neural network is underfitting on
the inputs.

IV. Conclusion

In this work, we employed a structure mentioned earlier. One of the main bottlenecks in the simulation is that
obtaining outputs is very time-consuming in the terms of more sweep data. The main issue with this simulation based
on neural networks is that this technique is reliable just in the structure that mentioned it earlier. We repeat this
simulation by employing neural network as a cost function for optimization via EPSO for decreasing the computational
expensiveness of SCAPS-1D simulation and further calculation accuracy. The future works could be extending this
work to a neural network with more data set and expanding to more different structures for PSCs.
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Fig. 4: Plotregression of train data of J,. vs fit.
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Fig. 5: Plotregression of train data of V,. vs fit.
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