Calculation of time-dependent orientation correlation and MSDs
of moving cells
We computed the average temporal correlation as follows:\(\left\langle\cos{\theta}\right\rangle\left(t\right)\equiv\left\langle\hat{\mathbf{v}}\left(t+t\right)\bullet\hat{\mathbf{v}}\left(t\right)\right\rangle\),
where \(\hat{\mathbf{v}}\) is the unit vector of velocity and calculated
the mean square displacement via\(\text{MSD}(t)=\left\langle\left|\mathbf{r}\left(t+t\right)-\mathbf{r}(t)\right|^{2}\right\rangle\).
References
1. P. M. López, V. O. Sadras, W. Batista, J. J. Casal, A. J. Hall,
Light-mediated self-organization of sunflower stands increases oil yield
in the field. Proc. Natl Acad. Sci. U.S.A. 114 ,
7975-7980 (2017).
2. C. Darwin, The Power of Movement in Plants (Cambridge Univ.
Press, 2009).
3. K. G. V. Bondoc, J. Heuschele, J. Gillard, W. Vyverman, G. Pohnert,
Selective silicate-directed motility in diatoms. Nat. Commun.7 , 10540 (2016).
4. K. G. V. Bondoc, L. Christine, N. L. Stefan, G. Sebastian, S. Stefan,
V. Wim, P. Grorg, Decision-making of the benthic diatom Seminavis
robusta searching for inorganic nutrients and pheromones. ISME
J. 13 , 537-546(2019)
5. A. A. Biewener, Animal Locomotion (Oxford University Press,
2003).
6. I. G. Ros, L. C. Bassman, M. A. Badger, A. N. Pierson, A. A.
Biewener, Pigeons steer like helicopters and generate down- and upstroke
lift during low speed turns. Proc. Natl Acad. Sci. U.S.A.108 , 19990 (2011).
7. M. de Jager, F. J. Weissing, P. M. J. Herman, B. A. Nolet, J. van de
Koppel, Lévy Walks evolve through interaction between movement and
environmental complexity. Science. 332 , 1551-1553
(2011).
8. G. M. Viswanathan, The Physics of Foraging: An Introduction to
Random Searches and Biological Encounters (Cambridge Univ. Press,
2011).
9. S. Vogel, Life in Moving Fluids: The Physical Biology of Flow(Princeton Univ. Press, 1994).
10. I. A. Houghton, J. R. Koseff, S. G. Monismith, J. O. Dabiri,
Vertically migrating swimmers generate aggregation-scale eddies in a
stratified column. Nature. 556 , 497-550 (2018).
11. G. A Parker, J. M. Smith, Optimality theory in evolutionary biology.Nature. 348 , 27-33 (1990).
12. L. Lehmann, F. Rousset, When do individuals maximize their inclusive
fitness. The American Naturalist , in press, 2020.
13. G. Ariel, R. Amit, B. Sivan, D. P. Jonathan, M. H. Rasika, B.
Avraham, Swarming bacteria migrate by Lévy walk. Nat. Commun.6, 8396 (2015).
14. R. Stocker, Reverse and flick: hybrid locomotion in bacteria.Proc. Natl Acad. Sci. U.S.A. 108, 2635-2636 (2011).
15. H. C. Berg, D. A. Brown, Chemotaxis in Escherichia colianalysed by three-dimensional tracking. Nature. 239, 500
(1972).
16. B. Gutierrey-Medina, A. J. Guerra, A. I. P. Maldonado, Y. C. Rubio,
J. V. G. Meza, Circular random motion in diatom gliding under isotropic
conditions. Phys. Biol. 11, 066006 (2014).
17. V. Zaburdaev, S. Denisov, J. Klafter, Lévy walks. Rev. Mod.
Phys. 87, 483-530 (2015).
18. E. P. Raposo, S. V. Buldyrev, M. G. E. da Luz, G. M. Viswanathan, H.
E. Stanley, Lévy flights and random searches. J. Phys. A-Math.
Theor. 42, 434003 (2009).
19. M. V. Chubynsky, G. W. Slater, Diffusing diffusivity: a model for
anomalous, yet Brownian, diffusion. Phys. Rev. Lett.113, 098302 (2014).
20. K. Chen, B. Wang, S. Granick, Memoryless self-reinforcing
directionality in endosomal active transport within living cells.Nat. Materials. 14, 589-593 (2015).
21. N. E. Humphries, H. Weimerskirch, N. Queiroz, E. J. Southall, D. W.
Sims, Foraging success of biological Lévy flights recorded in situ.Proc. Natl Acad. Sci. U.S.A. 109, 7169-7174 (2012).
22. D. del-Castillo-Negrete, Truncation effects in superdiffusive front
propagation with Lévy flights. Phys. Rev. E. 79, 031120
(2009).
23. M. de Jager, B. Frederic, K. Andrea, J. W. Franz, M. H. Geerten, A.
N. Bart, M. J. H. Peter, J. van de Koppel, How superdiffusion gets
arrested: ecological encounters explain shift from Lévy to Brownian
movement. Proc. Roy. Soc. B. 281, 20132605 (2014).
24. L. Xie, T. Altindal, S. Chattopadhyay, X.-L. Wu, Bacterial flagellum
as a propeller and as a rudder for efficient chemotaxis. Proc.
Natl Acad. Sci. U.S.A. 108, 2246-2251 (2011).
25. F. Zhang, C. Hui, Recent experience-driven behaviour optimizes
foraging. Anim. Behav. 88 , 13-19 (2014).
26. D. W. Sims, N. E. Humphries, R. W. Bradford, B. D. Bruce, Lévy
flight and Brownian search patterns of a free‐ranging predator reflect
different prey field characteristics. Journal of Animal Ecology .81 , 432-442 (2012).
27. N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, D. W. Sims,.
Environmental context explains lévy and brownian movement patterns of
marine predators. Nature. 465 , 1066-1069 (2010).
28. H. C. Berg, Random Walks in Biology (Princeton Univ. Press,
1993).
29. J. E. Johansen, J. Pinhassi, N. Blackburn, U. L. Zweifel, Å.
Hagtrӧm, Variability in motility characteristics among marine bacteria.Aquatic Microbial Ecology. 28, 229-237 (2002).
30. M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, A bacterial
swimmer with two alternating speeds of propagation. Biophys. J.105, 1915-1924 (2013).
31. Y. L. Wu, A. D. Kaiser, Y. Jiang, M. S. Alber, Periodic reversal of
direction allows Myxobacteria to swarm. Proc. Natl Acad.
Sci. U.S.A. 106, 1222-1227 (2009).
32. B. Avraham, S. K. Strain, R. A. Hernández, B.-J. Eshel, E.-L.
Florin, Periodic reversals in Paenibacillus dendritiformisswarming. Journal of Microbiology. 195, 2709-2717
(2013).
33. S. T. Bramwell The distribution of spatially averaged
critical properties. Nature Physics 5 : 444 (2009).
34. D. Takagi, A. B. Braunschweig, J. Zhang, M. J. Shelley, Dispersion
of self-propelled rods undergoing fluctuation-driven flips. Phys.
Rev. Lett. 110, 32-44 (2013).
35. M. Doi, S. F. Edwards, The Theory of Polymer Dynamics (Oxford
Univ. Press, 1988).
36. P. Turchin, Quantitative Analysis of Movement: Measuring and
Modeling Population Redistribution in Animals and Plants (Sinauer
Associates, Sunderland, MA, 1998).
37. F. Bartumeus, D. Campos, W. S. Ryu, R. Lloret-Cabot, V. Méndez, J.
Catalan, Foraging success under uncertainty: search tradeoffs and
optimal space use. Ecol. Lett. 19 , 1299-1313 (2016).
38. Hauert, Christoph, Cooperation, Collectives formation and
specialization. Advances in Complex Systems. 9, 315-335
(2006).
39. K. Amin, J. M. Huang, K. J. Hu, J. Zhang, L. Ristroph, The role of
shape-dependent flight stability in the origin of oriented meteorites.Proc. Natl Acad. Sci. U.S.A. 116, 16180-16185 (2019).
40. K. G. V. Bondoc, C. Lembke, W. Vyverman, G. Pohnert, Searching for a
mate: pheromone-directed movement of the benthic diatom seminavis
robusta . Microbial Ecology. 72, 287-294 (2016).
41. O. H. Shapiro, E. Kramarsky-Winter, A. R. Gavish, R. Stocker, A.
Vardi, A coral-on-a-chip microfluidic platform enabling live-imaging
microscopy of reef-building corals. Nat. Commun. 7,10860 (2016).
42. K. Son, F. Menolascina, R. Stocker, Speed-dependent chemotactic
precision in marine bacteria. Proc. Natl Acad. Sci. U.S.A.113, 8624-8629 (2016).
43. K. Son, J. S. Guasto, R. Stocker, Bacteria can exploit a flagellar
buckling instability to change direction. Nature Phys.9, 494-498 (2013).
44. Y. Magariyama, L. Makoto, N. Kousou, B. Kensaku, O. Toshio, K.
Seishi, G. Tomonobu, Difference in bacterial motion between forward and
backward swimming caused by the wall effect. Nat. Commun.88, 3648-3658 (2005).
45. T. Shashi, S. Mingzhai, B. Filiz, P. Kannappan, J. W. Shaevitz,
Directional reversals enable Myxococcus xanthus cells to produce
collective one-dimensional streams during fruiting-body formation.J. Roy. Soc. Interface. 12, 20150049 (2015).
46. P. J. Molino, R. Wetherbee, The biology of biofouling diatoms and
their role in the development of microbial slimes. Biofouling24 , 365–379 (2008).
47. A. Leynaert, S. N. Longphuirt, P. Claquin, L.Chauvaud, O. Ragueneau,
No limit? The multiphasic uptake of silicic acid by benthic diatoms.
Limnol. Oceanogr. 54 , 571–576 (2009).