REFERENCES
[1] Borges, P. A., Franke, J., Anunciação, Y. M. T., Weiss Bernhofer, H. “Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil,” Theor. Appl. Climatol. 123 (1–2), pp. 335–348, 2016. [2] Cecílio, R. A., Pruski, F. F. “Interpolação dos parâmetros da equaçãoo de chuvasintensas com uso do inverso de potências da distância,” Rev. Bras. EngenhariaAgrícola e Ambiental 7 (3), pp. 501–504, 2003. [3] Cressie, N. Statistics for spatial data. New York: Wiley, 1991. [4] Ebert, E.E., Janowiak, J.E., Kidd, C. “Comparison of near-real-time precipitation estimates from satellite observations and numerical models,” American meteorological society, pp. 47-64, 2007. [5] Foley, T. A. “Interpolation and approximation of 3-D and 4-D scattered data,” Comput. Math. Appl. 13 (8), pp. 711–740, 1987. [6] Fornberg, B., Larsson, E., Wright, G. “A new class of oscillatory radial basis functions,” Comput. Math. Appl. 51 (8), pp. 1209–1222, 2006. [7] Fox, D. G. “Judging air quality model performance,”Bull. Am. Meteorol. Soc. 62 (5), pp. 599–609, 1981. [8] Franke, R. “Scattered data interpolation: Tests of some methods,”Math. Comput.38 (157), pp. 181–200, 1982. [9] Hallak, R., Pereira Filho, A. J. “Metodologia para análise de desempenho de simulações de sistemasconvectivosnaregiãometropolitana de São Paulo com o modelo ARPS: sensibilidade a variações com osesquemas de adveção e assimilação de dados.” Rev. Bras. Meteorologia, 26 (4), 591–608, 2011. [10] Hardy, R. L. “Multiquadric equations of topography and other irregu-lar surfaces,” J. Geophys. Res. 76 (8), pp. 1905–1915, 1971. [11] Hernandez-Stefanoni, J. L., Ponce-Hernandez, R. “Mapping the spatial variability of plant diversity in a tropical forest: Comparison of spatial interpolation methods,” Environ. Monit. Assess, 117 (1–3), pp. 307–334, 2006. [12] Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., Wolff, D.B. “The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales,” Journal of hydrometeorology, 8, pp. 38- 55, 2007. [13] Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P. “CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution,” Journal of hydrometeorology, 5, pp. 487-503, 2004. [14] Kitanidis, P. K. “Introduction to geostatistics: Applications in hydro- geology,” London: Cambridge University Press, 1997. [15] Krause, P., Boyle, D., Bäse, F. “Comparison of different effi-ciency criteria for hydrological model assessment,” Adv. Geosci. 5, pp. 85–97, 2005. [16] Kravchenko, A., Bullock, D. G. “A comparative study of interpolation methods for mapping soil properties,” Agron. J.91 (3), pp. 393– 400, 1999. [17] Li, J., Heap, A. D. “A review of spatial inter-polation methods for environmental scientists,” Symonston, Australia: Geoscience Australia, 137, 2008. [18] Li, J., Heap, A. D. “A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and im-pact factors,” Ecol. Inf. 6 (3), pp. 228–241, 2011. [19] Luo, W., Taylor, M., Parker, S. “A comparison of spatial inter-polation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales,” Int. J. Climatol. 28 (7), pp. 947–959, 2008. [20] Mueller, T. G., Pusuluri, N. B., Mathias, K. K., Cornelius, P. L., Barnhisel, R. I., Shearer, S. A. “Map quality for ordinary kriging and inverse distance weighted interpolation,” Soil Sci. Soc. Am. J. 68 (6), pp. 2042–2047, 2004. [21] Nash, J., Sutcliffe, J. V. “River flow forecasting through conceptual models. Part i—A discussion of principles,” J. Hydrol. 10 (3), pp. 282–290, 1970. [22] Olea, R. A. “Geostatistics for engineers and earth scientists,” Tech-nometrics, 42 (4), pp. 444–445, 2000. [23] Paninatier, Y. “Variowin: Software for spatial data analysis in 2-D,” New York, Springer, 1996 [24] Shepard, D. “A two-dimensional interpolation function for regularly spaced data.” In Proc., 1968 23rd ACM National Conf., 517-524. New York: ACM, 1968. [25] Sironvalle, M. A. “The random coin method: Solution of the problem of the simulation of a random function in the plane,” Math. Geol. 12 (1), pp. 25–32, 1980. [26] Tabios, G. Q., Salas, J. D. “A comparative analysis of techniques for spatial interpolation of precipitation,” J. Am. Water Resour. Assoc. 21 (3), pp. 365–380, 1985. [27] Vicente-Serrano, S. M., Saz-Sanchez, S., Cuadrat, J. M. “Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature,” Clim. Res. 24 (2), pp. 161–180, 2003. [28] Wang, S., Huang, G. H., Lin, Q. G., Li, Z., Zhang, H., Fan. Y. R. “Comparison of interpolation methods for estimating spatial distribu-tion of precipitation in Ontario, Canada,” Int. J. Climatol. 34 (14), pp. 3745–3751, 2014. [29] Willmott, C. J. “Some comments on the evaluation of model perfor-mance,” Bull. Am. Meteorol. Soc. 63 (11), pp. 1309–1313, 1982. [30] Wong, S., Hon, Y., Golberg. M. “Compactly supported radial basis functions for shallow water equations,” Appl. Math. Comput. 127 (1), pp. 79–101, 2002.