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Abstract24

There is a rich amount of information in co-occurrence data that could be used to un-25

derstand community assembly. This proposition first envisioned by Forbes (1907) and26

then Diamond (1975) prompted the development of numerous modelling approaches (e.g.27

null model analysis, co-occurrence networks and, more recently, joint species distribu-28

tion models). Both theory and experimental evidence support the idea that ecological29

interactions may affect co-occurrence, but it remains unclear to what extent the signal30

of interaction can be captured in observational data. The time is now ripe to step back31

from the statistical developments and critically assess whether co-occurrence data really32

is a proxy for ecological interactions. In this paper we present a series of arguments based33

on probability, sampling, food web and coexistence theories supporting that significant34

spatial associations between species (or the lack of) is a poor proxy for ecological inter-35

actions. We discuss appropriate interpretations of co-occurrence, along with potential36

avenues to extract as much information as possible from such data. Finally, we propose37

various avenues to better describe, understand and predict ecological interactions.38
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Introduction39

Co-occurrence analysis is the study of interactions between species distributions, and as40

such, it has been at the centre of community ecology for more than 100 years. Throughout41

this paper, we assumed an interaction occurs when the presence of a species has some form42

of influence on another. With the arrival of new statistical methods and the accumulation43

of observational data co-occurrence analysis recently attracted a lot of attention from44

different fields (e.g. ecology and microbiology) and for various systems (e.g. boreal forests45

and gut microbiome). We believe there is a rich amount of information in co-occurrence46

data but its interpretation should be done with care. There are several theoretical and47

statistical reasons explaining why there is only a weak relationship between co-occurrence48

and interactions. Here, we first review the rich literature on co-occurrence and then49

propose a set of arguments using probability, sampling, food-web and coexistence theories50

to support our claim that spatial associations (or lack of) between species should not be51

considered as a proxy for ecological interactions.52

A rich and long debate53

It is a truism of ecology that species must co-occur to directly interact. It is also a54

truism of population biology that interactions impact demography, which in turn must55

affect co-occurrence. This explains why early on ecologists have proposed and discussed56

statistical methods to infer relationships among species based on presence-absence data57

(Forbes, 1907; Michael, 1920; Pielou & Pielou, 1967, 1968; Diamond, 1975). As early as58

1907, Forbes proposed a systematic analysis of pairwise co-occurrences using the ratio59

between the number of observed and expected co-occurrences to determine the degree60

of association among pairs of fishes (Forbes, 1907; Alroy, 2015). Some 13 years later,61

in a modern ”plea in behalf of quantitative biology”, Michael (1920) highlighted several62

drawbacks of Forbes’s coefficient, notably he pointed out the importance of the spatial63

scale of sampling units to draw meaningful conclusion about the underlying ecological64
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relationship inferred from it. Hence, Forbes (1907) was likely the first ecologist to quantify65

ecological relationships with an index based on an incidence matrix, while Michael (1920)66

was among the first biologists to point out potential drawbacks of such indices.67

Forbes coefficient was forgotten for years and similar approaches, grounded on the68

same rationale, have been developed independently (Alroy, 2015; Arita, 2016). In 196769

and 1968, Pielou and Pielou developed two statistical methods to discriminate mecha-70

nisms of co-existence among Diptera species on a bracket fungus by determining whether71

the frequencies of certain assemblages departed from random expectations (Pielou &72

Pielou, 1967, 1968). A few years later, Diamond (1975) introduced his assembly rules to73

explain the checkerboard distributions of bird communities on archipelagos. Diamond’s74

assembly rules were quickly challenged by Connor & Simberloff (1979) who criticized the75

lack of random expectations thereof. This marked the beginning of a still ongoing debate76

about the link between co-occurrence data and species interactions (Gotelli & McCabe,77

2002; Connor et al., 2013; Diamond et al., 2015) and, as a side contribution, generated78

a number of new techniques aimed at improving the extraction of ecological information79

from co-occurrence data (e.g. Whittam & Siegel-Causey, 1981).80

The current array of methods available can be classified into three different categories.81

First, the matrix-level approaches aim at determining the main drivers of species’ distri-82

bution for a given community based on the entire incidence matrix properties (Stone &83

Roberts, 1990; Gotelli & Ellison, 2002; Sfenthourakis et al., 2006; Cardillo & Meijaard,84

2010; Arita et al., 2012; Ulrich & Gotelli, 2013). To do so, one or several indices are85

computed based on the observation data and compared to random expectations derived86

from null models. For instance, Patterson & Atmar (1986) used nestedness to support the87

hypothesis that selective extinctions occurred in the mammal community of the southern88

Rocky Mountains. More recently, following Leibold & Mikkelson (2002), Presley et al.89

(2010) proposed a hierarchical approach based on coherence, species turnover and clump-90

ing to characterize the spatial structure of the community and hence determine the role91

played by colonization and niche partitioning (D’Amen et al., 2018). The development of92

these techniques led to more sophisticated null models, and the successful inclusion of en-93
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vironmental variables (Gotelli & Ulrich, 2010) spurred enthusiasm for methods originating94

from research in species distribution modelling.95

The second category originates from developments in species distribution models96

(SDMs) that predict the geographic reparation of species from abiotic variables (Elith97

et al., 2006). Indeed SDMs, developed in the 90’ and early 2000’ were criticized for98

neglecting biotic interactions (Wisz et al., 2013) whereas it has been repeatedly shown99

that biotic interactions improve the accuracy of predictions (Leathwick & Austin, 2001;100

Heikkinen et al., 2007; Meier et al., 2010; Leach et al., 2016; Barbaro et al., 2019). Conse-101

quently, the now so-called joint species distribution models (JSDMs; Pollock et al., 2014)102

were developed and can predict the distribution of set of species that are potentially inter-103

dependent based on abiotic factors using the entire incidence matrix (Özesmi & Özesmi,104

1999; Latimer et al., 2009; Clark et al., 2014; Kaldhusdal et al., 2015; Warton et al., 2015;105

Ovaskainen et al., 2010, 2016, 2017; Hui, 2016; Clark et al., 2017; Staniczenko et al.,106

2017). In most cases, these models provide individual species responses to the abiotic107

environment together with a covariance matrix whose elements capture the correlations108

in the incidence matrix that are not explained by the abiotic factors. Based on its math-109

ematical definition, this matrix has been suggested as a robust way of finding significant110

association in co-occurrence data while accounting for environment filtering (D’Amen111

et al., 2018) and hence JSDMs are now used to infer interactions from ecological data112

(Morales-Castilla et al., 2015; D’Amen et al., 2018; Barner et al., 2018).113

The methods in the last category directly infer ecological relationships based on the114

incidence matrix: for each pair of species, the two vectors of occurrence and an optional set115

of covariates (e.g. abiotic factors, species abundances) are combined to compute statistical116

associations (Veech, 2014; Morueta-Holme et al., 2016; Mandakovic et al., 2018). Several117

techniques have been used to obtain those scores, including Fisher’s tests (Veech, 2013;118

Arita, 2016), odd ratios (Lane et al., 2014), correlations (Steele et al., 2011; Faust & Raes,119

2012) and Markov networks (Harris, 2016; Clark et al., 2018; Popovic et al., 2019). In120

essence, those approaches are close to Forbes (1907) coefficient proposed a century ago121

(Veech, 2013; Arita, 2016, and some are actually very similar, e.g.), but recent approaches122
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are now focusing on the entire set of the significant co-occurrence associations, i.e. the123

co-occurrence network (Araújo et al., 2011; Tulloch et al., 2016; Kay et al., 2017). Among124

these methods, a dividing line must be drawn: while some approaches interpret variations125

in co-occurrence networks as evidence for changes in ecological interactions (Araújo et al.,126

2011; Tulloch et al., 2016; Kay et al., 2017), other treat them as a direct proxy for127

interactions (Zelezniak et al., 2015; Harris, 2016).128

From the first to the third category of methods, there is a major conceptual shift from129

the interpretation of significant spatial associations in co-occurrence data as a potential130

sign of biotic interactions towards the reconstruction of entire ecological networks derived131

from large presence absence datasets (Wisz et al., 2013; Faust & Raes, 2012; Berry &132

Widder, 2014; Zelezniak et al., 2015; Mandakovic et al., 2018). Although inferring eco-133

logical interactions from the easiest data to acquire (presence-absence data) holds a great134

appeal, one should bear in mind that this is feasible only if ecological interactions leave a135

signal in the presence-absence data that is regular enough to be detected and interpreted136

by adequate statistical methods. While some recent studies have unveiled such a regu-137

lar signal (e.g. Gotelli et al., 2010; Cardillo, 2011), other have shown that the signal is138

blurred and diluted in complex networks (Cazelles et al., 2016) or even absent (Brazeau &139

Schamp, 2019) and thus, the existence of a signal and properties thereof are still debated.140

In the past two years, no less than three examinations have been proposed of re-141

cent statistical approaches used to infer species associations from presence-absence data142

(Barner et al., 2018; Freilich et al., 2018; Thurman et al., 2019). Those studies focused on143

a specific set of species that met two criteria: (1) regional scale species presence-absence144

data were available and (2) biotic interactions among the species considered were docu-145

mented a priori. Using this information, the ability of existing statistical techniques to146

detect real interactions (covering the three categories described above) were evaluated.147

Interestingly, the three studies reached similar conclusions: current methods are gener-148

ally inaccurate, and thus, the spatial associations detected are poor proxies for biotic149

interactions. Even though these papers “cast doubts on studies that equate species co-150

occurrences to species interactions” (Barner et al., 2018), there are two major limits that151
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preclude general conclusions to be drawn from them. First, as these investigations were152

carried out on specific systems, the reasons behind the poor performances observed could153

be idiosyncratic. Second, it could be argued that the results obtained merely pinpoint154

shortcomings in statistical approaches employed that could be addressed by future techni-155

cal advances. Therefore, there is still a need for a critical examination of the assumptions156

under which (1) ecological interactions actually leave a signal in presence-absence data157

and (2) whether it is feasible to detect and interpret this signal properly; this is especially158

true given the enthusiasm around the promise of detecting interactions from presence-159

absence data, which may lead to infer ecological processes where there is none (Warren160

et al., 2014). In the following lines, we propose such an examination and develop seven161

arguments based on probability, sampling, food web and coexistence theories supporting162

that significant spatial associations between species (or lack thereof) is a poor proxy for163

ecological interactions.164

Interpretation of co-occurrences using conditional prob-165

abilities166

Through the eyeglass of probability theory, the distribution of each species can be under-167

stood as a stochastic variable (referred to as X) where the probability of occurrence of168

species A and B are respectively defined as probability events P (XA, XB). This can then169

be compared to the expectation assuming the two species were occurring independently170

from each other, i.e. P (XA) × P (XB), often obtained through randomization (Gotelli171

& Graves, 1996; Ulrich & Gotelli, 2013; Presley et al., 2010). In this respect, it is com-172

mon for observations significantly larger or smaller than the random expectation to be173

interpreted as evidence of an ecological interaction. This is the rationale behind classical174

approaches such as the C-score (Stone & Roberts, 1990; Gotelli et al., 2010); we refer to175

this departure from a random expectation as ‘co-occurrence signal’.176

An interaction is inferred when the presence of a species at a given location has177
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an influence (regardless of its nature) on the probability of observing another species178

at that same location. This can be presented formally by stating that the conditional179

probability P (XA|XB = 1) is significantly different from P (XA|XB = 0) (see section I180

of Supplementary Information for further details). This definition of interaction differs181

from the conventional definition of interactions used in community ecology, which states182

that an interaction is the effect of a species on the per capita growth rate of another one183

(Berlow et al., 2004). In the following lines, we present arguments explaining in detail184

why co-occurrences does not imply interactions using the conditional and joint probability185

formalism.186

Argument 1 – Species occurrences depend on the environment187

Rationale188

Let’s assume that the occurrence of species A and B are both conditional on an environ-189

mental variable E. In other words, the occurrence probability of A and B varies along an190

environmental gradient. Assuming that neither species interact, we may still observe a191

strong signal in their co-occurrence profile due to the similarity (or dissimilarity) in their192

environmental requirements. Figure 1a illustrates an example of how such situations193

occur in nature (on Mont Mégantic, Canada).194

From a mathematical standpoint, this argument is based on the fundamental difference195

between the probability of co-occurrence of A and B over the entire environmental gradient196

P (XA, XB) (1)

and the expected co-occurrence of the two species for a given environmental condition197

P (XA, XB|E). (2)

Note that equation 2 could also have been written P (XB, XA|E).198

In the context of SDMs, independence among species is assumed, and the general199
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interpretation is that ecological interactions do not influence species distribution (Jeschke200

& Strayer, 2008). In this respect, independence should be mathematically defined as201

P (XA, XB|E) = P (XA|E)P (XB|E), (3)

where P (XA|E) and P (XB|E) explicitly state that the probability of occurrence of each202

species is conditional on the environment. Graphically, Figure 1bc depicts conceptually203

how typical deciduous and conifer species co-occur along an elevation gradient. However,204

the assumption of independence is often treated in the absence of environmental pressure,205

thus defined as:206

P (XA, XB) = P (XA)P (XB). (4)

The critical issue here is that Equation (3) does not imply Equation (4) (we explain207

why in the “The problem of abiotic factors” section of SI). If interactions are inferred208

from spatial associations over an environmental gradient, the variation in the probability209

of presence for one (or both) species along the gradient could generate false positives and210

more rarely false negatives. We illustrated such a situation in Figure 1 where we show211

how the distribution of the environment E (Panel d) dramatically influences the observed212

co-occurrence (Panel e) even though the species are independent (Panel c).213

Conclusion214

This argument suggests that any environmental condition influencing the distribution of215

two species may cause a strong co-occurrence signal that could be misinterpreted as eco-216

logical interactions. Further, the sampling design could lead to different interpretations.217

Although it could make the use of multivariate models that accounts for environmen-218

tal filtering (e.g. JSDMs, Ovaskainen et al., 2010; Warton et al., 2015; D’Amen et al.,219

2018) appropriate, this is not the case. The co-occurrence signals (e.g. a significant220

positive or negative correlation value) estimated from these models could originate from221

any abiotic factors that impact species differently. Therefore, this correlation cannot be222
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systematically interpreted as a signal of biotic interactions, as it could rather express223

potential non-measured environmental drivers (or combinations of them) that influence224

species distribution and co-distribution.225

A potentially interesting way to approach this problem is to use latent variable mod-226

els (e.g., Warton et al., 2015; Ovaskainen et al., 2017) because latent variables may be227

able to capture some unmeasured environmental variables. However, no distinctions are228

made about the type of information captured by latent variables making the use of such229

technique far from optimal. This difficulty of discriminating between interaction and230

environment using species distribution data has been shown by Godsoe et al. (2017) for231

simple interactions using simulations.232

Argument 2 – The detection of the interaction between two233

species vanishes if either of these species interact with other234

species235

Rationale236

We focus here on the interaction among three species and assume that no other factors237

(biotic, environmental or others) influence their occurrence. What we show through this238

argument is that ecological interactions can influence the presence of a species in a specific239

location in unexpected ways. As species are embedded in complex networks, it becomes240

problematic to define a specific association without accounting for other ones. Cazelles241

et al. (2016) have already discussed this issue and showed that the higher the degree of a242

species (i.e. the number of interactions between this species and any other) the weaker is243

its statistical association with them. In other words, if an interaction between two species244

exists, the existence of another interaction hampers the detection of the former.245

This problem is illustrated in Figure 2 with an artificial system of three species (a246

predator (P) and two consumers (C1 and C2)). We assumed here that the two consumers247

occur independently and that the conditional co-occurrences of the predator with the two248

consumers reflect interaction strengths. Based on these assumptions, we examine how249
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increasing the interaction strength between P and C2 while keeping the strength of the250

interaction between P and C1 constant affects the perceived relationship between P and251

C1 (see SI section“Simulations” for computational details).252

In mathematical terms, the problem highlighted in this argument is that P (XP ) de-253

pends on both P (XC1) and P (XC2):254

P (XP ) = P (XP |XC1)P (XC1) + P (XP |XC2)P (XC2) (5)

but the detection of the signal in the co-occurrence data of P and one of the consumers,255

say C1, based on the departure from random expectation: P (XP , XC1)− P (XP )P (XC2)256

does not account for the third species. As a consequence, the association profile between257

P and C1 changes markedly (Figure 2a-d). This argument also highlights the necessity of258

having accurate knowledge of the probability of occurrence of all species considered as well259

as the strength of interaction between P and C1 in the absence of C2, to correctly interpret260

the values of the association. Even for well-known species, gathering this information can261

be challenging.262

Conclusion263

Even though two species may interact strongly, the corresponding association values may264

be very low because of the interactions with other species (Cazelles et al., 2016). It thus265

becomes important to find adequate approaches to characterize independent interactions266

while controlling for all the other interactions a species may have. A way to overcome267

this issue would be to keep exploring partial correlations using Bayesian (Staniczenko268

et al., 2017) and Markov networks (Harris, 2016; Clark et al., 2018). Paradoxically,269

to benefit from such tools and accurately detect interactions (e.g. to meaningfully use270

partial corrections), the full topology of the network needs to be known beforehand. In271

a recent study, Popovic et al. (2019) proposed a generalization of the ideas proposed272

by Harris (2016) that can combine different data types (e.g. presence-absence, count,273

biomass, ordinal, etc.) in a single model using Gaussian copula. This is an interesting274
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development because it focuses on studying relations among species using data more275

informative than presence-absence data. However, the ideas proposed by Popovic et al.276

(2019) and Harris (2016) suffer from the same pitfalls when used on co-occurrence data.277

Argument 3 – Species associations could arise indirectly278

Rationale279

In ecological networks, indirect interactions may generate non-random associations among280

species. For instance, if a top predator feeds on a predator that in turn feeds on a281

consumer, the top predator and the consumer may co-occur more frequently than expected282

even though they do not interact directly. Using simulated (co-)occurrence data, Cazelles283

et al. (2016) have shown a decrease of the co-occurrence signal with an increase of the284

shortest path between two species within the same ecological network.285

In order to illustrate how indirect association can emerge from a chain of direct in-286

teractions, we consider a chain of four trophic levels where each species feeds solely on287

the one directly below it in the chain (Figure 3b). Using conditional probabilities and288

assuming that a predator cannot survive without its prey, we obtain289

P (XC) = P (XC |XR)P (XR) (6)

P (XP ) = P (XP |XC)P (XC) = P (XP |XC)P (XC |XR)P (XR) (7)

P (XT ) = P (XT |XP )P (XP ) = P (XT |XP )P (XP |XC)P (XC |XR)P (XR). (8)

With this example, we examined how increasing the strength of association between C290

and R affects the co-occurrence signal between R and the other species. In this case, the291

signal is computed as the difference between the observed co-occurrence and the expected292

one under the assumption that species are independent (see section “Simulation” in SI293

for further details).294

Figure 3a shows an increase in the co-occurrence signal for R-P and R-T as the295
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association strength between R and C increases, meaning that the signal propagates296

through the network. On the other hand, this illustration also shows that the signal297

weakens along the chain. While the results are direct consequences of the assumption298

and the equations above, it also points out the difficulty to interpret the co-occurrence299

signal without prior knowledge of the network (which we have in our illustration, Figure300

3b). Indeed, the sole examination of the co-occurrence signal would not allow us to301

determine whether the interactions T-R and P-R are direct but weak, or indirect.302

Conclusion303

Indirect interactions can generate non-random associations that can be interpreted sim-304

ilarly to the ones resulting from direct interactions. While in some cases, revealing the305

presence of an interaction, be it direct or indirect, is enough (e.g. to predict species distri-306

butions in the case of JSDM), this argument constitutes a major obstacle to the accurate307

inference of complex networks based on co-occurrence data alone. Also, because it is308

rarely obvious whether a particular association is direct or indirect from co-occurrence309

studies, such interactions could be misinterpreted. To further confound us, species may310

modify their interactions solely in the presence of another particular species. Study on311

invasive species are rich in examples of this particularity of nature (Zavaleta et al., 2001,312

for a review). That being said, graphical models (Popovic et al., 2019) may be an inter-313

esting starting point to approach this problem because they were shown to be efficient314

in capturing direct association among species. However, the associations measured by315

Popovic et al. (2019) are not, and have never been considered, interactions.316

Sampling is a key to making correct inference317

In this section, we focus on the role played by different characteristics of the sampling318

design in the inference of species interactions from presence-absence data. To assess319

whether a co-occurrence is not spurious, it is important to sample enough, to sample320

properly and to integrate the metadata pertaining to it (e.g. size of the sampling unit,321
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spatial location, etc.) Assuming that the data gathered is well sampled and in large322

enough quantities, one can then give an interpretation to the estimated co-occurrence.323

In particular, the choice of the spatial scale at which to sample and the sampling effort324

have important impacts on the co-occurrence computed signal.325

Argument 4 – Sampling scale influences measures of co-occurrence326

Rationale327

It has repeatedly been argued that interactions must be a major determinant of the328

broad geographic distribution of species (Holt & Barfield, 2009; Benning et al., 2019),329

but also that, as a local process (acting at the individuals scale), their impact may not be330

discernible at coarser spatial scales (Pearson & Dawson, 2003; Russell et al., 2006; McGill,331

2010). While the problem of sampling scale in co-occurrence studies has been raised early332

in the literature (Michael, 1920), biogeographers still investigate this technical but central333

topic (Araújo & Rozenfeld, 2014; Bar-Massada et al., 2018; Thuiller et al., 2015; Belmaker334

et al., 2015). For instance, using simulations, Araújo & Rozenfeld (2014) demonstrated335

that while negative interactions quickly vanish as the spatial extent of sampling unit336

increases, the imprint of positive interactions scales up. Such findings emphasize that337

sampling resolution needs to be carefully chosen so that the true underlying co-occurrence338

signal can be extracted from the data.339

To illustrate this aspect of the sampling design, we considered two independent species340

A and B, that either poorly overlap (Fig. 4a) or strongly overlap (Fig. 4b). For these341

two scenarios, we simulated sampling and then computed co-occurrence signals along the342

gradient for a moving window increasing in size (see section “Simulation” in the SI for343

more details). What is striking about the results obtained is that for two negatively344

associated species (Figure 4a,c), a sampling area that encompasses most (but not all) of345

the distributional range of both species tends to overemphasize the negative association346

between the species. Conversely, when two species are positively associated (Figure 4b,d),347

the co-occurrence signal varies widely, especially for a sampling area that includes between348
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roughly 30% and 50% of the distributional range of both species. Thus, the associations349

detected highly depend on the portion of the environmental gradient considered.350

Conclusion351

In addition to the crucial importance of sampling resolution (Araújo & Rozenfeld, 2014;352

Bar-Massada et al., 2018; Thuiller et al., 2015), the portion of the environmental gradient353

sampled should also be carefully examined to avoid erroneous conclusions (Bar-Massada354

& Belmaker, 2017). To infer ecological interactions from co-occurrence data, the full355

distributional range of both species needs to be considered. In more colloquial terms,356

there are no free lunches when assessing co-occurrence through observational data.357

Argument 5 – Appropriate statistical inference requires a very358

large sample size359

Rationale360

Species co-occurrence is a relatively rare phenomenon to document. To contextualize,361

it is already challenging to gather a large enough number of samples to estimate how362

a single species relates to the environment. Although there is no specific sample size363

prescription for species distribution models, studying model significance (e.g. through364

the use of confidence intervals), we generally have a good idea of whether a sample was365

large enough to obtain reliable results. However, to estimate a co-occurrence, many366

samples are required, much more than what is typically used to measure co-occurrence367

structure.368

How many samples is enough samples?369

Let’s consider a simple situation with two relatively common species. If we assume that370

species A occurs in 40% (P (XA) = 0.4) of samples and species B in 60% (P (XB) = 0.6),371

probability theory tells us that the null expectation of co-occurrence between the two372

species will be P (XA)×P (XB) = 0.24. Of course, this probability will increase (decrease)373
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as the co-occurrence signal between the two species also increases (decreases). However,374

it is not readily obvious how many samples would be required to assess whether the375

association between species A and B is different from a null expectation or to evaluate376

if both species co-occur with a particular correlation level, say, 0.9, 0.5, -0.5, -0.9. This377

question can be approached using the multivariate Bernouilli distribution (Teugels, 1990)378

and binomial confidence intervals (DasGupta et al., 2001, compares different techniques379

to calculate confidence intervals on binomial data).380

The results in Figure 5 show that in the best case scenario, over 500 samples are381

required to reach a 95% confidence limit. Note that this example is actually conservative382

because when the probability of occurrence of each pair of species is either higher or lower,383

the number of samples increases to many thousands of samples.384

What is even more worrying is that the results presented in Figure 5 assume that385

the pair of species are solely influencing each other, a rare case in nature. Species often386

interact with a group of other species which will, in most cases, reduce the probability of387

co-occurrence on the considered species pair (see Argument 2 ) and in turn require that388

an even larger number of samples be gathered to efficiently measure the co-occurrence389

between the two species.390

Conclusion391

The number of samples required to accurately measure co-occurrence among species is392

impractical for most studies. As a comparison, it is common for studies in ecology focusing393

on co-occurrence to have a small sample size compared to what is discussed in this section.394

For example, of the 294 datasets gathered in Atmar & Patterson (1995), only four had395

more than 100 samples, the largest having 202 samples. This is not unique to ecology,396

environmental microbiology (Rocca et al., 2019) and microbiome research (e.g. Levy &397

Borenstein, 2013) suffers from the same problem. Granted, in the last twenty years larger398

datasets are becoming increasingly available (see, e.g. the datasets used by Ovaskainen399

et al., 2017). That being said, studies with a sample size that meet the requirements400

highlighted in this argument are still extremely rare.401
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The results of this section suggest that no statistical approach, regardless of its level402

of sophistication, can be used to assess spatial associations between species accurately403

and this even for reasonably large sample size.404

The imprint of ecological interactions on co-occurrence405

data406

In this section we discuss the relationships we should expect from co-occurrence data407

based on current ecological theory. Whether it is from foodweb or coexistence theories,408

we have learned that there are different types of interactions with different strengths.409

In this section, we discuss how what we know of ecological interactions is expressed in410

co-occurrence data.411

Argument 6 – Asymmetry of associations between species can412

blur co-occurrence signal413

Rationale414

Different types of interactions do not result in the same co-occurrence signal (Araújo415

& Rozenfeld, 2014). Most co-occurrence analyses are, however, derived from the joint416

species distribution (as defined above), which is a symmetric measure of spatial associa-417

tion. There is, however, no reason why two species should have exactly the same effect on418

each other and we should therefore expect species-specific variation in the co-occurrence419

signal. Further, some interactions such as predation, herbivory or parasitism could even420

lead to opposing signals, making the expectation for the joint species distribution in-421

determinable. This is noteworthy because these types of interactions have traditionally422

been the most studied ones in community ecology and are now increasingly inferred from423

proxies (Morales-Castilla et al., 2015), including co-occurrence.424

This argument is best understood with a decomposition of the joint probability of425

occurrence. Using the product rule (and ignoring the effect of the environment E), we426
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find that the joint distribution of species A and B can be decomposed into the product427

of conditional and marginal probabilities428

P (XA, XB) = P (XA|XB)P (XB) (9)

and inversely429

P (XA, XB) = P (XB|XA)P (XA). (10)

In the previous equations, the conditional occurrence probability P (XA|XB) is the mea-430

sure of the effect of species B on the occurrence of species A. Unless the marginal prob-431

abilities are exactly the same, the conditional occurrence probabilities must absolutely432

differ from each other to equal the joint occurrence probability. This means that the433

joint occurrence probability masks the variability in the strength of associations between434

species.435

The decomposition presented above may have unexpected and far-reaching impact.436

For example, strong negative and positive associations, such as between a predator and a437

prey, may cancel each other and result in a joint occurrence probability not different from438

the null expectation. A numerical example best illustrates this point. Let’s consider a439

predator A with marginal occurrence P (XA) = 0.2 and a prey with marginal occurrence440

P (XB) = 0.5. We know from probability theory that their random expectation is P (XA)×441

P (XB) = 0.1. Let’s further assume that their realization is P (XA, XB) = 0.15, so slightly442

above the expectation. Using these values and equations 9 and 10, we can calculate the443

probability of finding the predator given the presence of the prey P (XA = 1|XB = 1) = 0.3444

or its absence P (XA = 1|XB = 0) = 0.167. These results states that it is almost twice as445

probable for a predator and a prey to be found together then separated. Conversely,using446

the same approach, we find the conditional occurrence of the prey in the predator’s447

absence to be P (XB = 1|XA = 0) = 0.5625, which is more than two times larger than in448

the presence of the predator, P (XB = 1|XA = 1) = 0.25. This simplistic example shows449

how variable the conditional probabilities can be and how they can have opposite effects,450
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even if the joint occurrence is not much different from the null expectation.451

Conclusion452

Analysis of joint distribution of presence-absence data is not appropriate to assess in-453

teractions because not all asymmetric interactions can be identified. This particularity454

of co-occurrence data may lead to bias interpretation of interactions towards symmetric455

interactions. In this respect, conditional probabilities are more relevant to document vari-456

ance in association strength as well as asymmetric associations. There are four conditional457

probabilities associated with a pair of co-occurring species and their comparison reveals458

the direction and strength of effects of one species on another. While conditional prob-459

abilities are very promising and could be extended to an entire network using Bayesian460

networks (Staniczenko et al., 2017), they may be challenging to solve, especially when461

cycles are present in the network.462

Argument 7 – Coexistence theory predicts that strong interac-463

tions may lead to exclusion before leaving a significant signal464

Rationale465

In a competition system, stable coexistence, whether it is at the local or regional scale,466

requires interspecific interactions to be weaker than intraspecific interactions (Chesson,467

2000). The weaker competitor tends to get excluded when interaction strength increases.468

This narrows down the range where interactions can actually be detected using co-469

occurrence data: if interactions are too weak, the imprint left in co-occurrence data470

may be undetectable but if interactions are strong it may prevent coexistence to happen.471

This assertion can be explored using a multi-species adaptation of the Levins (1969)472

metapopulation model. Such a model was presented by Hanski (1983) to illustrate the473

patch dynamics between a strong (species A) and a weak (species B) competitor as well474

as to quantify the proportion of patches occupied solely by either or both of the two475

species. Using this model, we can vary colonization competition (corresponding to pre-476
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emptive competition) or extinction competition (corresponding to competitive exclusion),477

(Gravel & Massol, 2019). In doing so, we can investigate the proportion of patches where478

species co-occurrences vary while interaction strength increases. Intuitively, the stronger479

pre-emptive competition and competitive exclusion are, the smaller the co-occurrence480

will be relative to marginal occurrence (species will avoid each other). This is indeed481

what the model predicts. In addition, it also shows that marginal occurrences of the482

weak competitor rapidly decline when the interaction strength increases, resulting in483

very small absolute co-occurrence (Figure 6). Given Argument 5, based on this result,484

we would need a very large sample size to document such rare phenomena. As such, it is485

unlikely that spatial repulsion may be detected when interaction strength is strong.486

Conclusion487

Strong negative interspecific interactions are incompatible with coexistence. Species may488

be excluded by competition before the interaction signal can be captured in co-occurrence489

data. In other words, a species absent regionally cannot generate any interaction signal490

because it will never be sampled. Although this may not be for all types of interactions,491

if not opposite for positive interactions (see Gravel & Massol, 2019), it nonetheless leads492

to the paradox that the strong interactions we want to document with co-occurrence may493

be impossible to measure.494

Concluding Remarks495

The seven arguments we present paint a rather grim picture of the problems related to496

the inference of interactions from co-occurrence data. There are two broad conclusions497

to be drawn from them. First, the various layers of complexity inherent to ecological498

systems (e.g. environmental variability, diversity of biotic interactions, etc.) blur the499

link between interactions and co-occurrence. This is not even accounting other more500

specific aspects of ecological systems that can generate additional complications. For501

example, it is inherently challenging to measure interactions among rare or transient502
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species, regardless of the approach used. Similarly, particular species may interact only503

in specific situations, making their assessment difficult because the context influencing504

these interactions may be difficult to evaluate. Also, most co-occurrence analysis considers505

species distribution to be at equilibrium, which could be dynamic (e.g. metapopulation)506

or not, a constraining assumptions especially in the context of environmental changes507

(e.g. climate change). Second, because the relationship between interactions and co-508

occurrence is rarely clear, there are several technical and theoretical challenges to infer509

ecological interactions from co-occurrence data that still remain to be tackled.510

One aspect of ecological interactions that was not discussed in this paper was the511

importance of temporal variations and its impact on species and their interactions. Ac-512

counting for time when assessing ecological interactions is undoubtedly important and has513

potentially far-reaching consequences. For example, hibernation, migration, phenology514

are all temporal drivers of change for ecological interactions. However, assessing interac-515

tions from temporal co-occurrence raises a number of additional issues that are outside516

the scope of this paper.517

Independently and together, the arguments we developed illustrate the diversity of518

those challenges. Even if statistical/sampling/theoretical solutions can be found for some,519

it is difficult to contemplate a solution that would solve all problems raised, while still520

using presence-absence data. The minimal amount of information these data carry is521

indeed at the core of most of the challenges we pointed out in this study. Even JSDMs,522

which have been seen by some as an appealing new modelling framework to efficiently523

study ecological interactions, are not able to tackle most of the arguments we presented524

above. The correlation matrix (estimated from JSDMs) describing the association among525

pairs of species, now often used as illustration to represent species association, is likely526

what triggered the interest of using JSDMs to infer species interactions. Using such a527

representation, it is extremely tempting to make the intellectual jump to infer ecological528

interactions. In this respect, we advocate that such representation should never be used529

when the underlying data used to construct the model is presence-absence data.530

Our perspective of the problems related to co-occurrences and its use to study inter-531
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actions has far-reaching implications for some historical debates in community ecology.532

Among others, it suggests the importance of revisiting the long-standing debates on null533

models initiated by Diamond (1975) and Connor & Simberloff (1979). The arguments534

we raised have implications for the ability to detect significant signal with null models.535

Scale and sampling effort problems have been debated for a while in this ‘null model536

war’. Yet, the other arguments also need considerations. For example, even the most537

recent developments to analyse co-occurrence data using null models (e.g. D’Amen et al.,538

2018) still assume species influence each other the same way. More fundamentally, all539

the arguments we present show that the observation of spatial associations (or the lack540

thereof) may be impossible to accurately assess and interpret. We do not suggest here541

that the whole field pertaining to null models should be discarded. Rather, researchers542

should be more critical of the limits of their tools when interpreting their results. With543

null models, what is tested is whether pairs of species are spatially associated or not, this544

is what is tested with null models.545

Presence-absence data undoubtedly remain central to ecology and ecologists must cer-546

tainly keep collecting them in order to broaden our knowledge on species distributions547

and our understanding of the factors that determine the presence of a specific community548

in a particular area. But it is also crucial to identify what can be inferred from such data549

and what cannot. Some avenues deserve to be explored bearing that in mind. A con-550

ceptually simple but technically challenging solution would be to derive interactions from551

abundance (count) data instead of presence-absence data. From a modelling perspective,552

tools exist that can be used to assess relationships among species using abundance data553

and infer interactions (Poisot et al., 2015; Faisal et al., 2010; Popovic et al., 2019). From554

an empirical perspective, a few studies have used different ways to infer interactions from555

abundance (or plant cover) data both in ecology (le Roux et al., 2013) and microbiology556

(Levy & Borenstein, 2013). Hopefully, using ecological data carrying more information557

that presence-absence data (such as abundance data) would provide reliable proxies for558

biotic interactions.559

Another direction worth investigating is to study interactions through the eyeglass of560
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conditional probabilities. Through this approach, we can get a much more direct interpre-561

tation of how a species react in the presence of other species by being more mathematically562

explicit about how species relate to each other. Networks of conditional probabilities may563

directly solve some of the above arguments (e.g. 1,2,3 and 6), especially if accounting564

for covarying environmental variables. From a statistical perspective, Bayesian networks565

and Markov networks offer appealing avenues to investigate. There are, however, several566

technical challenges that will need to be solved before these could be used. Among them,567

the presence of cycles (species A affect species B and vice-versa) is a fundamental prob-568

lem, large sample size cannot be avoided and some prior knowledge of interactions is also569

required. Yet another way to study species interactions is with mechanistic models where570

the known (or hypothesized) mechanisms of interactions are explicitly accounted for. By571

testing how close these mechanistic models represent data on species associations, we can572

then infer the underlying processes structuring species.573

Experiments are one avenue that needs to be further explored to understand how574

biotic interactions impact distribution. Although they are often time consuming and575

costly, they can increase our knowledge on interactions while remaining in the world of576

co-occurrences. As an example, Brazeau & Schamp (2019) have recently shown it is pos-577

sible to experimentally link competition and negative co-occurrence for flowering plants.578

Similarly, Kopelke et al. (2017) gathered a large dataset directly recording the interaction579

between willow tree species and sawflies, a group of parasites feeding on willow leaves.580

These studies are particularly interesting because they focus explicitly on interactions. A581

way forward would be to pursue the development of modelling approaches that can make582

full use of these datasets but also of theoretical ideas that can advance our understanding583

of ecological interaction.584

Early on ecologists recognized there is a large amount of unexplored information in585

co-occurrence data. New and powerful statistical tools are becoming available that allows586

ecologists to gain new insights from co-occurrence data and efforts should continue in that587

way. That said, although very tempting at first, with our current knowledge, interpreting588

significant co-occurrence signals between species as evidence of ecological interactions589
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should be avoided.590
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Box 1: Outstanding Questions597

• Is it possible to infer ecological interactions from distribution data? There

may not be a clear answer, there may be situations where it is possible and

other where it is not. Discriminating the former situation from the latter

would represent a major step forward and the relevant question will then be :

under which assumptions are co-occurrence signals good proxies for ecological

interactions?

598

599

600

601

602

603

• How to interpret co-occurrence networks? Even though such networks are

more frequently used in the literature, from a theoretical point of view, it

remains unclear how they relate to ecological interaction networks.

604

605

606

• What are the relevant covariates required to infer ecological interactions from

species distributions? In case where distribution data are not enough to

conclude, is it possible to provide additional information to infer interactions?

607

608

609

• How strong are interaction signals in abundance data? This can be assessed

using data gathered on species known to interact. Statistically, many of the

methods currently available and applied on co-occurrence data can be used

(and compared) to approach this question.

610

611

612

613

• How important are detection errors when assessing interactions? There are a
621
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growing number of models that accounts for detection errors they were never

used to study the influence of detection error when measuring interactions.

614

615

616

• How can we account for cycles in network models? Currently, network models

cannot account for cycles which are an inherent part of trophic networks.

617

618

• How can we design experiments and data collection to better assess interac-

tions?

619

620

622
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Figure 1: Species co-occurrences may depend on the abiotic environment. (a) Picture
of Mont Mégantic taken in fall showing spatial repulsion between conifers (dark green)
and deciduous (red, orange and yellow) trees. The zone where tree species co-occurrence
is caused by the elevation gradient and does not represent interaction among species
per se Savage & Vellend (2015). (b) Occurrence probability of species A (orange) and B
(green) along an environmental gradient (abscissa). Assuming the environmental gradient
presents the full elevation of Mont Mégantic, A is a typical deciduous species while B is
a typical coniferous species, then panel b conceptually depicts an elevation transect of
the picture in panel a. (c) Co-occurrence probability of finding both A and B along the
elevation gradient. Recall that species A and B are assumed independent and as such
this is the conditional probability resulting from Equation (3). (d-f) Three contrasting
environmental gradients. (g-i) Product of the scenarios in panels d-f with the conditional
probability of co-occurrence presented in panel c for the two species of panel b. The
marginal probability of co-occurrence for A and B is at the top of each respective panel.
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Figure 2: Co-occurrence signal between a predator (P) and two consumers (C1 and
C2). The co-occurrence signal is the departure of the co-occurrence from random ex-
pectations, i.e. P (XP , XC1) − P (XP )P (XC1). It is computed along the gradient made
by the occurrence probabilities of consumer C1 (P (XC1)) while the occurrence proba-
bilities of consumer C2 remain constant at P (XC2) = 0.05 (dark blue), P (XC2) = 0.5
(light blue) and P (XC2) = 0.95 (orange). In (a) P and C2 are independent and thus
P (P |C2) = P (P )P (C2), for the three other panels, this probability increases: 0.2 (b),
0.75 (c) and 0.95 (d)). The interaction between P and C1 remains constant with a value
of 0.75 for all panels.
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Figure 3: Significant spatial associations can emerge from indirect interactions. Three
co-occurrence signals quantifying the association between species in the food chain and
the resource species are computed for an increasing association between a resource and
its consumer for a linear chain of four species (b) including a resource R, a consumer C,
a predator P and a top predator T. The co-occurrence signals are calculated as follows:
P (XR,C)−P (XR)P (XC) (blue line), P (XR,P )−P (XR)P (XP )(orange line) and P (XR,T )−
P (XR)P (XT ) (yellow line).
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Figure 4: Co-occurrence signal and sampling scale. Top panels describe the occurrence
probabilities along an environmental gradient of the independent species A and B in
two contrasting scenarios. In (a) species occur in different abiotic conditions whereas
in (b) they share very similar environmental requirements. The corresponding bottom
panels represent co-occurrence signals (measured a correlation between simulated occur-
rences) along the environmental gradient using moving windows of different sizes as the
sampling area considered to assess co-occurrence structure. Dotted lines represent the
correlation computed over the entire gradient. Note that correlations are used to measure
co-occurrence signals.
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Figure 5: Co-occurrence signal and sample size. Estimated confidence intervals (coloured
envelopes) given a specific sample size for a pair of species presenting different levels of
correlation. The probability of occurrence for the two species is 0.4 and 0.6. As such,
the probabilities of co-occurrence varied depending on the correlation levels. The true
probabilities of co-occurrence are illustrated by black vertical lines. The short horizontal
black lines in each envelope highlight the number of samples required to reach a 95% level
of confidence in the estimated co-occurrence. The calculation of the confidence intervals
were performed using the Wilson scores intervals, which have been shown to be accurate
and robust (DasGupta et al., 2001). To calculate the number of samples required to reach
a 95% level of confidence, we applied a Dunn-Sidak correction (Šidák, 1967) because two
species were used to compute the co-occurrence probability.
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Figure 6: Co-occurrence signal and interaction strength in a metacommunity model (see
Gravel & Massol (2019) for model specification). Competition for space between two
species in a metacommunity impact regional occurrence (a) and co-occurrence (b). In-
creasing interaction strength reduces the occurrence of both species, up to the point where
the weak competitor (species B, blue) is regionally extinct and the strong competitor
(species A, orange) reaches its regional capacity. The strength of co-occurrence relative
to the random expectation increases with interaction strength, but is hardly detectable
because of a coincident reduction in the frequency of co-occurrence.
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