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Abstract. In concerned article, we investigate a class of boundary value problem of non-linear
fractional differential equations. The aforesaid work is committed to the existence, uniqueness and
stability analysis for boundary value problem of fractional differential equation. We used the tools
of analysis and fixed point theory to establish the conditions for deserted results. At the end, we
provided two examples to illustrate the concerned problem.

1. Introduction

The Fractional Calculus is known as the generalization of traditional calculus. In the last few
decades, the aforesaid field attended more attention of researchers due to its verity of application in
diverse field of social science and physical science, like physics, chemistry, economics and mechanics.
One of the important aspects of aforementioned field that attended the attention of large number of
researchers has existence of the solution for boundary value problems (BVPs) of fractional differen-
tial equations (FDEs). FDEs are widely applicable in image and signal processing, control theory,
model identification, optimization theory, optics, fitting of experimental data for further detail, we
refers [1, 2, 3, 4, 5, 6, 7, 8] to the readers. Furthermore, some other important applications of FDE
are found in diverts fields of engineering, such as fluid dynamic like statistical, electromagnetic,
statistical mechanics, fluid flow, polarization, colored noise, solid mechanics, traffic model, colored
noise, processes, diffusion, economics and bioengineering see[9, 10, 11, 12, 13, 14, 15, 16, 17, 18], in
references.
The researchers used various techniques and tools of analysis and fixed point theory to explored
the concerned theory, for more detail we refer the readers [30, 31, 35]. However, the conditions for
existence of solution of FDEs, in aforementioned articles needs the operator must be compactness,
which restrict the concerned area of research to some specific limitions. Meanwhile, the researchers
needs some weaker conditions for compactness of the operator. In order to resolve the aforesaid
problem, Mawhin [32] used the tools of topological degree theory, to developed the essential condi-
tion for existence of solution for BVPs of FDEs and IEs. Furthermore, Isais [33], used the degree
theory to established some useful conditions for existence of solutions of FDEs. Recently, Wang at
el [34], used the techniques of topological degree theory to developed the conditions for existence
of the following non-local cauchy problem given by

Dςv(t) = f(t, v(t)), t ∈ [0, T ],

v(0)− v0 = g(v),
(1)

where Dς represents the Caputo non integer order derivative, v0 ∈ R and f : R → R is continuous
function. Furthermore, Ali and Khan [36], study the following BVPs of FDEs with non-local

Key words and phrases. Arbitrary order differential equations, Topological degree theory, Condensing mapping,
Existence results, Stability analysis.
Mathematics Subject Classifications: 3408; 35R11.
Email Addresses: amjadalimna@yahoo.com, knabeela301@gmail.com, seemaisrar@gmail.com.

1



boundary conditions involving fractional integral is given by

cDςv(t) = f(t, v(t)), t ∈ J = [0, 1],

v(0) = g(v), v(1) =
δ

Γ(q)

T∫
0

(t− s)q−1v(s)ds,

where cDς represents Caputo fractional derivatives and g(v) is non-local function, f : J × R → R
is continuous function.
One of the important feature of concerned field, due to which the researchers paid more attention,
has the area devoted of stability analysis of BVPs of FDEs. There are various types stabilities
present in the literature of fractional calculus. Ulam in (1940) initiated an important type of
stability. Ulam [19], proposed a question that “Under what conditions does there exists an additive
mapping near an approximately additive mapping?”. In response to has question Hyers [20, 21],
replied that ”additive mapping in complete norm spaces”. Latter on it was tract out is a class of
stability as so called Hyers-Ulam stability. The aforementioned stability was very much explore for
conventional derivatives. However, for fractional differential equations the concerned stability was
very rarely investigate and need further exploration.
There are various class of stabilities present in literature of concerned field for FDEs and IEs. Such
as Lypunove stability [22], asymptotic stability [24], exponential stability [25, 26] and many more.
One of the interesting category of stability that was origination by Ulam and Hyres commonly
known as Hyres-Ulam stability in (1940). Rassias [27], initiated a particular kind of stability is
known as Generalized Hyers-Ulam-Rassias stability. Obloza [28], was the author who investigate
the concerned stability for DEs. Although the concerned stability was will studded for traditional
differential equations. Furthermore, for FDEs the area concerning to the stability analysis was at
its initial stages and a very few articles order had been published, we refers [29], in the references
therein. This area of research need more attention of researchers to furnished the theory further.
Motivated by the aforementioned importance of the concerned area, we consider the following non
integer order derivatives with boundary conditions involving conventional order derivative is given
by

Dςv(t) = f(t, v(t)), t ∈ P = [0, 1]

v(0) = D1v(0) = D2v(0) = 0, v(1) = h(v),
(2)

where 3 < ς ≤ 4 and ∀ s, t ∈ AC4[0, 1], f : J × R → R is continues and h(1) = v is non-
local function. In concerned work, we established necessary conditions for existence solutions and
stability analysis for the proposed problem. We justified the developed conditions with help of
some examples.

2. Axillary results and definitions

The concerned section, is devoted to some fundamental definitions and results of fractional
calculus, which are necessary for further investigation. For further detailed study, we refer to
readers [5, 6, 7, 8, 17, 18].

Definition 2.1. For all ς > 0, Gamma function is usually represented by Γ(ς) and given by

Γ(ς) =

1∫
0

e−t(t)ς−1dt.
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Definition 2.2. The fractional order (γ > 0) integral of a function u(t) : J → R is given by

Iγu(t) =
1

Γ(γ)

t∫
0

(t− σ)γ−1u(σ)dσ,

provided that integral at the right is defined on (0,∞) point wise.

Definition 2.3. The famous non integer order Caputo’s function u(t) on any closed interval [a, b]
is given by

cDγ
0+u(t) =

1

Γ(n− γ)

∫ t

a
(t− σ)n−γ−1u(n)(s) dσ,

where n = [γ] + 1, where [γ] is greatest integer function, but not greater then γ.

Lemma 2.3.1. The solution of non-integer order differential equation

(3) cDγu(t) = 0, γ ∈ (0,∞],

is given by
u(t) = u(t) + c0 + c1t+ c2t

2 + ...+ cn−1t
n−1,

where ci ∈ (−∞,∞), where i = 0, 1, 2, ...., n.

Lemma 2.3.2. For FDEs, the following result holds

IγDγu(t) = u(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for arbitrary ci ∈ (−∞,∞), where i = 0, 1, 2, ...., n.

Definition 2.4. Let us defined

X = {u(t) ∈ CJ : ∥ u ∥= max
t∈[0,1]

|u(t)|},

then (X, ∥u∥) is a Banach Space.

Definition 2.5. Let T : V → U be a mapping, which is bounded and continuous. Then T is
ς-Lipschitz, if ∃ K ≥ 0, such that

ς((B)) ≤ Kς(B), ∀B ⊂ V bounded.

We also recall that T : V → U is Lipschitz, if ∃ K > 0 such that

∥Fx− Fy∥ ≤ K∥x− y∥, ∀ x, y ∈ V,

and T is strict contraction, if K < 1.

Proposition 2.1. If T,G : V → U are both ς-Lipschitz mapings with constant K and K
′
, then

T +G : V → U is also ς-Lipschitz with K +K
′
constant.

Proposition 2.2. The mapping T is ς-Lipschitz, if T : V → ς is Lipschitz with constant K.

Proposition 2.3. If T : V → U is compact, then T is ς-Lipschitz with zero constant.

Theorem 2.6. Let E be a measurable set and Let {fn} be a sequence of measurable function such
that

lim
n→∞

fn(v) = f(v) ∈ E, and for every n ∈ N, |fn(v)| ≤ h(v) ∈ E,

where g is integrable on E, then

lim
n→∞

∫
E

fn(v)dv =

∫
E

f(v)dv
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Definition 2.7. The Banach space X is compact, if every sequence Sn contained a convergent
sub-sequence in X.

Definition 2.8. A space X, where every Cauchy sequence of elements of X converges to an element
of X is called a complete space.

Definition 2.9. If A ⊆ X is relatively compact, if every sequence of A contain a sub-sequence is
convergent in it.

Definition 2.10. The linear operator T : V → U continuous at v0, if for any ε > 0, ∃ δ > 0 such
that

|Tv − Tv0| < ε, ∀ |v − v0| < δ.

OR T is continuous, if vn → v, then
Fvn → Fv.

OR
lim
n→∞

|vn − v| → 0,

⇒ lim
n→∞

|Fvn − Fv| → 0.

Definition 2.11. The linear operator T : V → U is said to be uniformly continuous, if for ε > 0,
∃ δ > 0 such that

|Tv − Tv0| < ε, ∀ |v − v0| < δ.

OR T is continuous, if vn → v, then
Fvn → Fv.

OR
lim
n→∞

|vn − v| → 0,

⇒ lim
n→∞

|Fvn − Fv| → 0.

Definition 2.12. The linear operator T : V → U is said to be uniformly continuous, if for ε > 0,
∃ δ > 0 such that

|Fv − Fv∗| < ε ∀ |v − v∗| < δ.

Definition 2.13. A family T in C(I,R) is called uniformly bounded, if ∃ a constant, where |f(t)| <
k ∀ t ∈ P and f ∈ T .
A family T is equi-continuous, if

|f(v)− f(v∗)| < ε forall v, v∗ ∈ J,

with
|v − v∗| < δ.

Theorem 2.14. If a family T=(f(v)) in C(I,R) is uniformly bounded and equi-continuous on P ,
then F has a uniformly convergent sub-equence (fn(v))=1. Thus a subset T in C(I,R) is relatively
compact, iff T equi-continuous and uniformly bounded on J.

Theorem 2.15. Let X be a Banach space and T : X → X is function, which is completely contin-
uous, then either
(1) v=λTv has a solation, if λ=1. OR
(2) { v ∈ X: v=λTv, for λ ∈ (0, 1)) } has a solution.
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Definition 2.16. The solution of FDEs is Hyers-Ulam stable, if ∃ Kf > 0 and we can find
Lf > 0, such that for each solution v(t) to the system there exists a another solution v∗(t), such
that

|v(t)− v∗(t)| ≤ Kf Lf .

3. Existence and Stability Analysis of FDEs

The concerned section, is devoted to the investigation of solutions and stability results of the
following PVBs for FDEs with conditions contains the conventional derivatives is given by

Dςv(t) = f(t, v(t)), t ∈ P = [0, 1]

v(0) = D1v(0) = D2v(0) = 0, v(1) = h(v),
(4)

where 3 < ς ≤ 4 and ∀ s, t ∈ AC4[0, 1], f : P × R → R is continues and h(1) = v is non-local
function. In the following theorems, we provides the integral representation and the Green function
for the concerned problem (4).

Theorem 3.1. If 3 < ς ≤ 4 and ∀ σ, t ∈ [0, 1], then the solution to fractional differential equation
subject to the condition involving ordinary derivatives

Dςv(t) = f(t, v(t)), t ∈ P = [0, 1]

v(0) = D1v(0) = D2v(0) = 0, v(1) = h(v),
(5)

is Given by,

v(t) = t3h(v) +

1∫
0

H(t, σ)ω(σ)dσ,

(6)

where H(t, σ) is represents the Green’s function and given by ,

H(t, σ) =
1

Γ(ς)

{
(t− σ)ς−1 − t3(1− σ)ς−1, 0 ≤ σ ≤ t ≤ 1,
−t3(1− σ)ς−1, 0 ≤ t ≤ σ ≤ 1.

Proof. Consider f(t, v(t))=ω(t), then (5) become,

Dςv(t) = ω(t), 3 < ς ≤ 4

v(0) = D1v(0) = D2v(0) = 0, v(1) = h(v).
(6)

Then in veiw of Lemma 2.3.2, we have

(7) v(t) = γ0 + γ1t+ γ2t
2 + γ3t

3 + Iςω(t),

By using the boundary conditions v(0) = 0 in (7) , we get

γ0 = 0.

Therefore equation (7), becomes

(8) v(t) = γ1t+ γ2t
2 + γ3t

3 + Iςω(t).

Now differentiating equation (8), w.r.t ”t” and using the boundary condition D1v(0) = 0, so we get

γ1 = 0.

Therefore equation(8), becomes

(9) D1v(t) = γ1 + 2γ2t+ 3γ3t
2 + Iς−1ω(t).
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Again differentiating equation (9), w.r.t ”t” and using the boundary condition D2v(0) = 0, we get

γ2 = 0.

Now using the boundary conditions v(1) = h(v) and putting the values of γ1, γ2, γ3 in equation (7),
we get

(10) γ3 = h(u)− 1

Γ(ς)

1∫
0

(1− σ)ς−1ω(σ)dσ,

Putting these values in equation (7), we get

v(t) = t3h(v) + 1
Γ(ς)

1∫
0

H(t, σ)ω(σ)dσ,

(11)

where

H(t, σ) =
1

Γ(ς)

{
(t− σ)ς−1 − t3(1− σ)ς−1, 0 ≤ σ ≤ t ≤ 1,
−t3(1− σ)ς−1, 0 ≤ t ≤ σ ≤ 1.

In view of the established results for linear BVP (5), which is equivalent to the following integral
equation as

(12) v(t) = t3h(v) +

1∫
0

H(t, σ)f(σ, v(σ))dσ.

The equation (12) is integral representation of our proposed problem (5). �
Lemma 3.1.1. The function H(t, σ) satisfies the following properties
(i) H(t, σ) is continuous ∀ s, t ∈ [0, 1],

(ii) max
t,s∈[0,1]

H(t, σ) ≤ 6Γ(ς)
Γ(4+ς) .

max
t,s∈[0,1]

H(t, σ) = H(σ, σ)

max
t,s∈[0,1]

1∫
0

H(t, σ)dσ = max
t,s∈[0,1]

1

Γ(ς)

1∫
0

σ3(1− σ)ς−1dσ,

(13) =
6Γ(ς)

Γ(4 + ς)
.

Equation (13), is deserted value of constructed Green function.

4. Existence, uniqueness and Data Dependence Results

In this section, we produced some results for existence, uniqueness and data dependence. We
also provides the following assumption must holds, which are need for further investigation in this
work.

(H1) For arbitrary v, u ∈ X, ∃ a constant Kh ∈ [0, 1), such that

|h(v)− h(u)| ≤ Kh ∥ v − u ∥;
(H2) For arbitrary v ∈ X, there exist Ch,Mh > 0, b1 ∈ [0, 1) such that

|h(v)| ≤ Ch ∥ v ∥b1 +Mh;
6



(H3) For arbitrary (t, v) ∈ X, ∃ Cf ,Mf > 0, b2 ∈ [0, 1), such that

|f(t, v)| ≤ Cf |v|b2 +Mf .

(H4) To derive uniqueness of solution the following assumption holds true for. Lf > 0, such that
is |f(t, v)− f(t, v∗)| ≤ Lf |v − v∗|.

4.1. Operator equations. In this section, we convert our obtained integral equation into operator
equation. For which we define T : C(P × R,R) → C(P × R,R),

T (v) = v, v ∈ X,

where Tv = Fv+Gv, F : C(P ×R,R) → C(P ×R,R) and G : C(P ×R,R) → C(P ×R,R). Where

Fv = t3h(v),

Gv =

1∫
0

H(t, σ)f(σ, v(σ))dσ.

Hence the proposed problem gained the of a operator equation Tv = Fv + Gv = v. The fixed
points of the constructed operator equation are the deserted solutions of concerned BVP (5).

Theorem 4.1. The “operator F : C(P × R,R) → C(P × R,R) is Lipschitz with constant Ch < 1
and satisfies the condition”

∥Fv∥ ≤ Ch∥v∥b1 +Mh.

Proof. We defined F : C(P × R,R) → C(P × R,R) is given by

Fv = t3h(v),

to prove F is Lipschitz, we have

∥Fv − Fu∥ = max
t∈[0,1]

|t3h(v)− t3h(u)|,

using assumption of (H1), we have

∥Fv − Fu∥ ≤ ∥k∥v − u∥. where k = Kh < 1,

For growth condition we consider
∥Fv∥ = max

t∈[0,1]
|t3h(v)|,

using assumption of (H2), we get

∥Fv∥ ≤ Ch∥v∥b1 +Mh.

The above result shows that F satisfies the Lipschitz condition with constant Ch. �
Theorem 4.2. The operators G : C(P × R,R) → C(P × R,R) → is continuous and satisfies the
following

∥Gv∥ ≤ 2

(
Cf∥v∥b2 +Mf

Γ(ς + 1)

)
, for every v ∈ AC4[0, 1].

Proof. As G : C(P × R,R) → C(P × R,R) is given as

Gv =

1∫
0

H(t, σ)f(σ, v(σ))dσ,

To prove that G is continuous. We will prove as,

∥Gvn −Gv∥ → 0 as n → ∞
7



Let {vn} is a sequence in bounded set such that

BK = {∥v∥ ≤ K : v ∈ X)

Now as f is continuous, so f(σ, vn(σ)) → f(σ, v(σ)) as n → ∞.

t3(1− σ)ς−1|f(σ, vn)− f(σ, u)| ≤ t3(1− σ)ς−1{2Cf +Mf},
is also integrable for all s ∈ [0, 1].
By convergent theorem (Lebesgue), we have

t∫
0

(t− σ)ς−1[f(σ, vn(σ))− f(σ, v(σ))]dσ → 0,

and

t3
1∫

0

(1− σ)ς−1[f(σ, vn(σ))− f(σ, v(σ))]dσ → 0 as n → ∞,

so

∥Gvn −Gv∥ → 0 as n → ∞.

Hence G is continuous.
Now to derive growth condition, we do the following

||Gv|| = max
t∈[0,1]

∣∣∣ 1

Γ(ς)

t∫
0

(t− σ)ς−1f(σ, v(σ))dσ − t3

Γ(ς)

1∫
0

(1− σ)ς−1f(σ, v(σ))dσ
∣∣∣,

Hence by assumption (H3) we get

||Gv|| ≤
Cf∥v∥b2 +Mf

Γ(α+ 1)
(1 + 1), ∥Gv∥ ≤ 2

(
Cf∥v∥b3 +Mf

Γ(ς + 1)

)
.

Thus G is satisfy the define growth condition. �

Theorem 4.3. The operator G : C(P × R,R) → C(P × R,R) is Compact and α-Lipschitz with
constant zero.

Proof. As G : C(P × R,R) → C(P × R,R), is given by

Gv =
1

Γ(ς)

 t∫
0

(t− σ)ς−1f(σ, vn(σ))dσ + t3
1∫

0

(1− σ)ς−1f(σ.vn(σ))dσ

 ,

in order to prove G Compact. We have to show that G is both equi-continuous and uniform
bounded.
Let us consider D ⊆ Bk ⊆ X, for this is sufficient to show that G(D) is relatively compact in X,
Let vn in D ⊆ Bk, ∀ vn ∈ D,
in the light of Theorem 4.2 that

∥Gvn∥ ≤ 2

(
Cf∥v∥b2 +Nf

Γ(ς + 1)

)
.

So G is bounded.
For equi- continuous.
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Consider 0 < t < τ < 1.

Gvn(τ) =
1

Γ(ς)

 τ∫
0

(τ − σ)ς−1f(σ, vn(σ))dσ + τ3
1∫

0

(1− σ)ς−1f(σ, vn(σ))dσ

 ,

|Gvn(τ)−Gvn(t)| ≤
∣∣∣ 1

Γ(ς)

( τ∫
0

(τ − σ)ς−1f(σ, vn(σ))dσ −
t∫

0

(t− σ)ς−1f(σ, vn(σ))dσ
)∣∣∣

+
∣∣∣ 1

Γ(ς)
−

1∫
0

(
τ3(1− σ)ς−1 − t3(1− σ)ς−1

)
[f(σ, vn(σ))]dσ

∣∣∣,
Now by using assumption (H3), we have

|Gvn(τ)−Gvn(t)| ≤
Cf∥v∥b2 +Mf

Γ(ς + 1)

(
τ ς − tς + (τ3 − t3)ς

)
.

As t → τ , the R.H.S in above relation tends to 0, that is

|Gun(τ)−Gun(t)| → 0 as t → τ.

Thus Gun is uniformly continuous.

Thus {Gun} is equi -continuous. Hence G(D) ⊂ G(D). Thus by Arzela Ascoli theorem G(D) is
relatively compact in X. Further G is α− Lipschitz with constant zero. �

4.2. Uniqueness of solutions of BVP (5) Of PFDE. In this section, we developed the condi-
tion for uniqueness and boundness of BVP (5).

Theorem 4.4. The consider BVP (5) has at least one solution and the set of the solutions is
bounded.

Proof. As the operators F,G, T : C(P×R,R) → C(P×R,R) are continuous and bounded. Further
F,G are α-Lipschitz with constant K and 0, and T is α Lipschitz with Lipshitz constant K. Since
Kh < 1 so T is a contraction mapping.
Consider the set of solution

S = {v ∈ X : 0 ≤ λ ≤ 1, v = λTv} is bounded.

For boundness, consider

∥v∥ = max
t∈[0,1]

|λTv| ≤ max
t∈[0,1]

λ|Tv| ≤ max
t∈[0,1]

λ|Fv +Gv|,

∥v∥ ≤ λ

(
Ch∥v∥b1 +Mh + 2

(
Cf∥v∥b2 +Mf

Γ(ς + 1)

))
From above it is clear that S is bounded. If not, let ς = ∥v∥ → ∞ as 0 < b1, b2 < 1,

∥v∥ = ∥λTv∥ ≤ λ∥Tv∥ ≤ λ∥Fv +Gv∥

1 ≤ λ

ς

(
Chς

b1 + 2

(
Cf ς

b2 +Mf

Γ(ς + 1)

))
,

as ς → ∞, which means 1 ≤ 0 is not possible. Hence a set S is bounded. �

Theorem 4.5. If δ = K +
2Lf

Γ(ς+1) and less then 1, then our proposed BVP 5 has a unique solution.

9



Proof. Consider u, v ∈ X, with Contraction principle

||Tv − Tu|| = max
t∈[0,1]

|Tv(t)− Tu(t)|,

= max
t∈[0,1]

|Fv(t) +Gv(t)− Fu(t) +Gu(t)|,

≤ max
t∈[0,1]

|Fv(t)−Gu(t)|+ max
t∈[0,1]

|Fv(t) +Gu(t)|,

≤ K|v − u|+ max
t∈[0,1]

∣∣∣ 1

Γ(ς)

t∫
0

(t− σ)ς−1(f(σ, v(σ))dσ

+
t3

Γ(ς)

1∫
0

(1− σ)ς−1(f(σ, u(σ))dσ
∣∣∣,

using assumption (H4), we have

|Tv(t)− Tu(t)| ≤
(
K +

2Lf

Γ(ς + 1)

)
|v − u|,

|Tv(t)− Tu(t)| = ∆|v − u| ≤ δ.

where

∆ = K +
2Lf

Γ(ς + 1)
,

there exist unique solution to BVP (5). �

5. Stability analysis of BVP of FDEs

In the concerned section of this work, we established condition for the Hyers-Ulam stability for
the BVP of FDE (5).

Theorem 5.1. If the assumption (H1)–(H4) holds, then the solution is Hyers-Ulam stable.

Proof. Let v and v∗ ∈ C4(I,R) be any two solution of BVPs 5. For stability

Dςv(t) = f(t, v(t)), t ∈ I, ς = [3, 4],

v(0) = D1v(0) = D2v(0) = 0, v(1) = h(v),
(14)

v(t) = t3h(v) +

1∫
0

H(t, σ)f(σ, v(σ))dσ,

v∗(t) = t3h(v∗) +

1∫
0

H(t, σ)f(σ, v∗(σ))dσ.

Consider

|u(t)− v(t)| = max
t∈[0,1]

|t3h(v) +
1∫

0

H(t, σ)f(σ, v(σ))dσ]− t3h(v∗) +

1∫
0

H(t, σ)f(σ, v∗(σ))dσ|,

≤ max
t∈[0,1]

|t3h(v)− t3h(v∗)|+ max
t∈[0,1]

|
1∫

0

H(t, σ)[f(σ, v(σ)− f(σ, v∗(σ))]dσ|,
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using assumption (H1) and (H4), we have

≤ Kh ∥ v − v∗ ∥ + max
t∈[0,1]

1∫
0

H(t, σ)dσLf ∥ v − v∗ ∥,

using maximum value of green function

∥ v(t)− v∗(t) ∥≤∥ v − v∗ ∥ [Kh +
6Γ(ς)

Γ(4 + ς)
Lf ],

(15) ∥ v(t)− v∗(t) ∥≤ K1 K2,

where K1 =∥ v − v∗ ∥ and K2 = [Kh +
6Γ(ς)
Γ(4+ς)Lf ].

Hence the solution of BVP 5, is Hyers-Ulam stable. �

6. Examples

In this section, we provide some examples which illustrate the our proposed problem of BVP of
FDEs.

Example 1. Consider the following BVP for FDEs

D7/2v(t) =
t3sinv(t)

40
,

v(0) = D1v(0) = D2v(0) = 0, v(1) =
cosv(t)

30
.

(16)

where ς = 7/2, Now where H(t, σ) is,

H(t, σ) =
1

Γ(7/2)

{
(t− σ)5/2 − t3(1− σ)5/2, 0 ≤ σ ≤ t ≤ 1,

−t3(1− σ)5/2, 0 ≤ t ≤ σ ≤ 1.

Now

|f(t, v)| ≤ Cf |v|b2 +Mf .

where

Cf = 1/40, Mf = 1/40, b2 = 1,

|f(t, v)| ≤ 0.05,

Now calculating

∆ = K +
2Lf

Γ(ς + 1)
,

where

K = 1/30, Lf = 1/40, ς = 7/2,

|Tv(t)− Tu(t)| ≤ 0.0376 < 1.

Assumption (H1)− (H2), holds, therefore solution of concerned problem has at least one solution.
For the stability of BVP 16 of FDE,

|v(t)− v∗(t)| ≤∥ v − v∗ ∥ [Kh +
6Γ(ς)

Γ(4 + ς)
Lf ].

Let

Kh = 1/30, Lf = 1/40andς = 7/2,

|v(t)− v∗(t)| ≤ 0.0045 < 1.

Hence the solution BVP 16 has a unique solution and the solution has stable.
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Example 2. Consider the BVP for FDEs

D5/2v(t) =
t+ sin1/2v(t)

50 + e−πt
,

v(0) = D1v(0) = D2v(0) = 0, v(1) =
cosv(t)

40
.

(17)

where ς = 5/2,
where H(t, σ) is

H(t, σ) =
1

Γ(5/2)

{
(t− σ)3/2 − t3(1− σ)3/2, 0 ≤ σ ≤ t ≤ 1,

−t3(1− σ)3/2, 0 ≤ t ≤ σ ≤ 1.

Now

|f(t, v)| ≤ Cf |v|b2 +Mf .

where Cf = 1/50,Mf = 1/50, b2 = 1/2,
(18)

Now calculating

∆ = K +
2Lf

Γ(ς + 1)
,

where
K = 1/40, Lf = 1/50, ς = 5/2,

|Tv(t)− Tu(t)| ≤ 0.03074 < 1.

The assumption (H1)− (H2) holds. Hence the proposed BVP is at least one solution.
For the stability of BVP 17 of FDE,

|v(t)− v∗(t)| ≤∥ v − v∗ ∥ [Kh +
6Γ(ς)

Γ(4 + ς)
Lf ],

Let
Kh = 1/40, Lf = 1/50andς = 5/2,

|v(t)− v∗(t)| ≤ 0.0011097 < 1.

Hence the solution BVP 17 has a unique solution and the solution has stable.
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