EXISTENCE OF ALMOST AUTOMORPHIC SOLUTION IN
DISTRIBUTION FOR A CLASS OF STOCHASTIC
INTEGRO-DIFFERENTIAL EQUATION DRIVEN BY LEVY
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MAMADOU MOUSTAPHA MBAYE AND SOLYM MAWAKI MANOU-ABI

ABSTRACT. We investigate a new class of stochastic integro-differential equa-
tions driven by Lévy noise. Particularly, based on Schauder’s fixed point theo-
rem, the existence of square-mean almost automorphic mild solution in distri-
bution is obtained by using some conditions which are weaker than Lipschitz
conditions. Our result can be seen as a generalisation of the result of [17] and
[28] based on the compactness of solution semigroup operators of our slightly
different stochastic model. We provide an example to illustrate ours results.

1. Introduction

The aim of this work is to study the existence and uniqueness of the square-mean
almost automorphic mild solutions in distibution to the following class of nonlinear
stochastic integro-differential equations driven by Lévy noise in a separable Hilbert
space H
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(LL)a/(t) = Aw(t) + g(t.a(t) + / Bi(t — 8)f(s,(s))ds
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where A : D(A) C H is the infinitesimal generator of a Cy-semigroup (T'(t)):>0,
By and B, are convolution-type kernels in L'(0,00) and L?(0,00) respectively.
g, f : Rx L*(PH) — L*(P,H) h : R x L*(P,H) — L(V,L*(P,H)) F,G : R x
L?*(P,H) x V — L?*(P,H); W and N are the Lévy-Ito decomposition components
of the two-sided Lévy process L (with assumptions stated in Section 2.).
Throughout this work, we assume (H, || -||) and (V,|-]) are real separable Hilbert
spaces. We denote by L(V, H) the family of bounded linear operators from V' to H
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and L?(P, H) is the space of all H-valued random variables z such that

Elof* = [ flodP < +oc.
Q

The concept of almost automorphic is a natural generalization of the almost
periodicity that was introduced by Bochner [6]. The basic aspects of the theory of
almost automorphic functions can be found for instance in to the book [23].

In recent years, the study of almost periodic, almost automorphic solutions as
well as some various extensions to some stochastic differential equations have been
considerably investigated in lots of publications [2, 3, 4, 5, 7, 8, 9, 10, 11, 13,
26, 18, 19] because of its significance and applications in physics, mechanics and
mathematical biology. The concept of square-mean almost automorphic stochastic
processes was introduced by Fu and Liu [14]. As indicated in [15, 16], it appears
that almost periodicity or automorphy in distribution sense is a more appropriate
concept relatively to solutions of stochastic differential equations. Recently, the
concept of Poisson square-mean almost automorphy was introduced by Liu and Sun
[17] to deal with some stochastic evolution equations driven by Lévy noise. For the
almost automorphy in distribution, its various extensions in distribution sense and
the applications in stochastic differential equations, one can see [12, 21, 28] for more
details.

One should point out that other slightly different versions of equation (1.1) have
been considered in the literature. In particular, Bezandry [3], Xia [27] and Mbaye
[20] investigated the existence and uniqueness of the solution of equation (1.1) in
the case when F' = G = 0 based on the classical Banach fixed point theorem.

The novelty of our paper is based not only on the slight different model (1.1), the
compactness of solution semigroup operators, but also conditions which are weaker
than Lipschitz conditions together with a Schauder fixed point theorem compared
with the model in [28] and [17].

The paper is organized as follows. In Section 2, we make a recalling on Lévy
process. In Section 3, we review some concepts and basic properties on almost au-
tomorphic and Poisson almost automorphic processes. In Section 4, by Schauder’s
fixed point theorem, we prove the existence of an square-mean almost automor-
phic mild solution in distribution of equation (1.1) under some weaker Lipschitz
conditions. In Section 5, we provide an example to illustrate our results.

2. Lévy process
Definition 2.1. A V-valued stochastic process L = (L(t),t > 0) is called Lévy
process if:
(1) L(0) = 0 almost surely;
(2) L has independent and stationary increments;
(3) L has cadlag trajectories.
Let L be a Lévy process. It can be described by its Poisson jump measure.

Definition 2.2. [17]
(1) A borel B in V — {0} is bounded below if 0 ¢ B, where B is the closure of
B
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(2) v(-) = E(N(1,-)) is called the intensity measure associated with L, where
AL(t) = L(t) — L(t—) for each t > 0 and

N(t,B)(w) := ﬁ{() <s<t:AL(s)(w) € B} = Z xB(AL(s)(w))
0<s<t

the number of jumps of L on the interval [0,¢] whose size lies in the set
B; with L(t—) = lim; »s L(s) and xp being the indicator function for any
Borel set B in V — {0}.

(3) N(t,B) is called Poisson random measure if B is bounded below, for each
t>0.

(4) For each t > 0 and B bounded below, we define the compensated Poisson
random measure by

N(t,B) = N(t, B) — tv(B).

Proposition 2.1. [1, 24] Let L be the V-valued Lévy process. Then there exist
a €V, V-valued Wiener process W with covariance operator Q, and an independent
Poisson random measure on RY x (V —{0}) such that for each t > 0

L(t) = at + W(t) +/

Jz|<1

aN(t,dz) + / xN(t,dz),

lz[>1

where the Poisson random measure N has the intensity measure v satisfying

(2.1) /V(|:1c|2 ALr(dz) < oo

and N is the compensated Poisson random measure of N.

Let L1 (¢) and Lao(t), t > 0 be two independent and identically distributed Lévy
processes. Let
| Li(t) for ¢t>0,
L) = { —Lo(—t) for t<0
Remark 2.1. By (2.1), it follows that flfv
denote

>1 v(dr) < oo. For convenience, we

bim /@ V(dz).

Then L is a two-sided Lévy process defined on the filtered probability space
(Q, F,P,(Fi)ter). We assume that @ is a positive, self-adjoint and trace class
operator on V, see [25] for more details. The stochastic process L = (L(t),t € R)
given by L(t) := L(t + s) — L(s) for some s € R is also a two-sided Lévy process
which shares the same law as L. For more details about the Lévy process, we refer
to [1, 17, 24].

3. Square-mean almost automorphic process

In this section, we recall the concepts of square-mean almost automorphic process
and there basic properties.

Definition 3.1. Let 7 : R — L%(P, H) be a stochastic process.
(1) « is said to be stochastically bounded if there exists M > 0 such that
E|z(t)||> < M forall tcR.
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(2) z is said to be stochastically continuous if

%imEHx(t) —x(s)|>=0 foral seR.
—s

Denote by SBC (R, L?(P, H)) the space of all the stochastically bounded and con-
tinuous processes. Clearly, the space SBC(R, L?(P, H)) is a Banach space equipped
with the following norm

1
|]loc = sup(E[|z(t)][*)2.
teR

Definition 3.2. [17] Let J : R x V — L?(P, H) be a stochastic process.

(1) J is said to be Poisson stochastically bounded if there exists M > 0 such
that

/ E|J(t,z)||*v(dz) < M for all t€R.

1%

(2) J is said to be Poisson stochastically continuous if
lim [ E||J(t2) — J(s,2)|*v(dz) =0 forall scR.
t—=s [y,

Denote by PSBC(RxV, L?(P, H)) the space of all the stochastically bounded
and continuous processes.

Definition 3.3. [14] Let # : R — L?*(P,H) be a continuous stochastic process.
x is said be square-mean almost automorphic process if for every sequence of real
numbers (£,), we can extract a subsequence (t,), such that, for some stochastic
process y : R — L%(P, H), we have

. . 2 _
ngr}rlooIEHx(t +itn) —yt)]c=0 forall te€R

and
nhrf E|y(t —tn) —z(@)||*=0 forall ¢teR.

We denote the space off all such stochastic processes by SAA(R, L*(P, H)).

Theorem 3.1. [14] SAA(R, L?(P, H)) equipped with the norm || - ||o is a Banach
space.

Definition 3.4. [17] Let D : R x V. — L?(P, H) be stochastic process. D is
said be Poisson square-mean almost automorphic process in ¢ € R if D is Poisson
continuous and for every sequence of real numbers (¢,), we can extract a subse-
quence (t,), such that, for some stochastic process D : R x V' — L?(P, H) with
[ ElD(t, 2)|]*v(dx) < oo such that

lim [ E|D(t+t,,x) — D(t,z)||*v(dz) =0 forall teR

n—+oo Jy,

and

lim [ E|D(t —tn,z) — D(t,z)||>v(dz) =0 forall teR.

n—+oo v
We denote the space off all such stochastic processes by PSAA(R x V, L?(P, H)).
Definition 3.5. [17] Let F': R x L?(P,H) x V — L?(P, H) be stochastic process.

F' is said be Poisson square-mean almost automorphic process in ¢ € R for each
Y € L?(P,H) if F is Poisson continuous and for every sequence of real numbers
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(]5‘,”)” we can extract a subsequence (t,)n such that, for some stochastic process
F:Rx L*(P,H)xV — L*(P,H) with [, E|F(t,Y,z)|?v(dx) < co such that

n—-+o0o

lim [ E|F(t+t,,Y,z) — F(t,Y,z)|*v(dz) =0 forall teR
14
and

lim [ E|F(t—t,,Y,z) — F(t,Y,z)|?v(dz) =0 forall teR.
n—-+4o0o Y
We denote the space off all such stochastic processes by PSAA(R x L?(P,H) x
V,L*(P, H)).

Let P(H) be the space of all Borel probability measures on H with the 5 metric.

B(u, v) = sup{| / fu— / fav|fllsL <1}, v € PUH),

where f are Lipschitz continuous real-valued functions on H with

I£l32 = £ + 1l 171z = sup L =W

azy [T =Y

» fllee = sup [f(z)].
r€H

Definition 3.6. [17] An H-valued stochastic process Y'(t) is said to be almost
automorphic in distribution if its law p(t) is a P(H)-valued almost automorphic
mapping, i.e. for every sequence of real numbers (s/,),, there exist a subsequence
(sn)n and a P(H)-valued mapping fi(t) such that

lim B(u(t + 5,). (1) =0 and lim Bt — 0, p(t)) = 0
hold for each ¢t € R.

To study the existence of mild solutions to the stochastic evolution equations
(1.1). we will need the following assumptions,

(H.1) The semigroup T'(¢) is compact for ¢ > 0 and is exponentially stable, i.e.,
there exists constants K,w > 0 such that

(3.1) IT(t)] < Ke™" forall t>0.

(H.2) The functions f, g and h are uniformly continuous on any bounded subset K
of L?(, H) for each t € R. F,G are uniformly continuous on any bounded
subset K of L?(Q, H) for each t € R and x € V. For each bounded subset
K c L*(Q,H), g(R,K), f(R,K), h(R,K) are bounded and F(R, K, V)
and G(R, K, V) are Poisson stochastically bounded. Moreover we suppose
that there exists r > 0 such that

2

wor
3.2 A < ———
(3:2) "= 200K2
where
A, = max sup f(t7 u)‘ ) Sup g(ta u)‘ ) sSup h(ta U)H )
teR||ull 2 <r L% teR|ul| 2 <r L2 teR|ul| 2 <r L

sup / HF(t,u,w)‘ v(dz), sup / HG(t,u,x)H v(dx)
teRl|ull 2 <r Jlylv <1 L teR||ull 2 <r Jlyly 1 L
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and
0 = max (1, 1B 12 .00y A1 Bell om0 2b||BQ||il(o,oo)>

(H.3) we suppose that there exist measurable functions mg, my my, mp, me :
R — [0, 00) such that

(3-3) E|gt,Y)—g(t,Z) [P<my(t) E||Y - Z |?
(3-4) E|ft.Y) = f(t,2) [P<myt) - E|Y - Z ]|

1
(3.5) E || (h(t,Y) = h(t, 2))Q* [ (v.2pary< mun(t) -E|| Y = Z |2

(3.6) /|  BIF(LY.0) — F(t.Z,2) *v(ds) < me() - B]Y = 2]

(3.7) /| . E||G(t,Y,z) — G(t, Z, 2)||*v(dz) < ma(t) -E||Y — Z|?

for all t € R and for any Y, Z € L?(P, H).

(H4) If (un),.Ny € SBC(R,L?(P,H)) is uniformly bounded and uniformly
convergent upon every compact subset of R, then g(-,u,()), f(-,un(+)),
h(-yun(+)), and F(-,un(+), ), G(-, un(+), -) are relatively compact in SBC(R, L?(P, H)),
PSBC(R x V, L*(P, H)), respectively.

Definition 3.7. An F;-progressively measurable process {z(t)}+cr is called a mild
solution on R of equation (1.1) if it satisfies the corresponding stochastic integral
equation

(38) o) = T(t—a)a(a)+ / Tt — )g(s, 2(s))ds
+ /: T(t - o) /: Bi(o — )/ (s, 2(s))dsdo
+ /at T - o) /: Ba(o — s)h(s, (s))dW (s)do
+ /atT(t—a) /"a Ba(o — s) /ylv<1F(s,x(s—),y)N(ds,dy)da
4 /aT@—a)/a Bg(o—s)/y|V21G(s,m(s—),y)N(ds,dy)da
for all ¢ > a.

Remark 3.1. If we let « — —oo in the stochastic integral equation (3.8), by the
exponential dissipation condition of (T'(t)):>0, then we obtain the stochastic process
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z: R — L?(,H) is a mild solution of the equation (3.8) if and only if x satisfies
the stochastic integral equation

(3.9)
o= [ " T gl x(s))ds + / ; 7(t-0) [ OO By(o — 5)f(s, 1(s))dsdo
+ /too T(t—o /; Bsy(o — s)h(s,z(s))dW (s)do
+/;T b o) /OO Ba(o — s) /yv<1F(s,x<s) y)N(ds, dy)do
+ /; T(t—o /; By(o — s) /yv>1 G(s,z(s—),y)N(ds,dy)do.

4. Square-mean almost automorphic solutions

This section is devoted to the existence and the uniqueness of the square-mean
almost automorphic mild solution in distribution on R of Eq. (1.1).
Define the following integral operator,

(Az)(t) = / T(t—s)g(s,z(s))ds + / T(t—o0) /U Bi(o — s)f(s,z(s))dsdo

— 00 — 00 — 00

+ /; T(t—o0) /; Bo(o — s)h(s,z(s))dW (s)do
v [ 1e-o) [ By [ Fleatsn) )N dyyir

— 00 — 00

+ /t T(t— o) /U By(o — s) /y|v>1 G(s,z(s—),y)N(ds,dy)do.

— 00 — 00
We have

Lemma 4.1. If the semigroup T(t) verifies (3.1) in assumption (H.1) and if the
functions f,g and h are uniformly continuous on any bounded subset K of L*>(Q2, H)
for eacht € R. F,G are uniformly continuous on any bounded subset K of L*(Q, H)
for each t € R and x € V. For each bounded subset K C L*(Q,H), g(R, K),
fR,K), h(R, K) are bounded and F(R, K,V) and G(R, K, V) are Poisson stochas-
tically bounded., then the mapping A : SBC(R, L?(P, H)) — SBC(R, L*(P, H)) is

well-defined and continuous.

Proof. 1t is easy to see that S is well-defined. To complete the proof it remains
to show that A is continuous. Consider an arbitrary sequence of functions u, €
SBC(R,L?(P, H)) that converges uniformly to some u € SBC(R, L*(P, H)), that
is, |un —uHoo — 0 as n — oo. There exists a bounded subset K of L?(Q2, H) such
that u,(t),u(t) € K for each t € R and n = 1,2, .... By assumptions, given € > 0,
there exist 6 > 0 and N > 0 such that E|u,(t) — u(t)||?> < § imply that

(JJ2€

25K2

E || g(t,un(t)) — g(t,u(t)) ||*<
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w26

E || f(t, un(t)) — f(t,u(t)) H2 25K2(||B1||2 Jr 1)

OJ2€

% 2
E || A(t,un(t)) — h(t, u(t)Q* |I*< 25K2(|| Ba[|2 (0 ) T 1)

wQe

/|w<1E”F(t’“"(t)’x)_F“’“(t)’x)” ) S R Bl ey + 1)

w2e

E|G(t, u,(t), z)—G(t, u(t Zu(dr) <
/| 161 unt). =Gt (0 2) 1) < S )

Hence

B (Aun) (- ()0 = B [ T(t—s>(g<s,un<s>> g<s,u<s>>)ds

< 5E

) = gl u(s) ) s

= st
+5E / / Bi(o —s) (f(s,un(s)) — f(s,u(s))>d3d0
+ 5E / T(t—o0) /

+5E / T(t — a/ Balo — s)/lyl B <F(su (5— )y)—F(s,u(s—),y)))N(ds,dy)da

2

2

4 5E /_th o) / Ba(o — s)/ll . <G(s tn(5—), y)—G(s,u(s—),y)))N(ds,dy)da

<5+ I + I3+ Iy + Is).
Using Cauchy-Schwartz’s inequality, we get

For I3, using Cauchy-Schwartz’s inequality and Ito’s isometry property, we obtain
2 t o
I3 < i/ e*W(t*U)/ E
w —00 —0o0

2

dsdo < ?5

(o = ) (s u,(5) = Al u(s) ) 04
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As to I and I5, by Cauchy-Schwartz’s inequality and the properties of the integral
for the Poisson random measure, we have
2

Q::E’/iwzxt_a)/i;zggy_s)/év<l(p«aun@—yy)—waJKS—%y»)AMd&dmda
B eeon] [ mioo [ (Pt - Fsateo) ) Sas i) a0
B o [ [ 8] Fsintonan - st vanis
<L

=g [ ta-a) [ oo [ (Feweon- F<s,u<5_),y>>)N<ds,dy)da 2
§2EH/¢ T@——UX/U Bﬂa—wﬂ/;W>I(FK&un@—%y)— > dsdyda
+QE”/ t—at/ B20—$A;wﬂ( (5, un(5—),y) — )ydymy
< e 1Bl <5OK2(|32|| T +€b||BQ||L1 o 1))
w0 f ; 05| [ o) /M (om0 = Flssuts=).00) )i o

<252 .
O\ B0K2([Ba 7 0,00) T blIB2 7 0,00) T 1)

2 t o
+2£/ e_“(t_“)</ ds/ v(dy)
W J oo —0o0 lylv>1

/; /ylv>1EHF(s,un(s),y) — F(s,u(s—),y)

< 2B -
=72 211L2(0,00) 50K2(HB2” Ooo)+b||B2||L10cx: +1)

’on—g

2

u(dy)ds>(ﬂ7

‘Bﬂa$

2

2

K? w?e
+ 20— || B |7
w B2l (0’°°)<50K2(|BQ 2(000)+b||32|| Ooo)+1)>

<7
25

Thus, by combining Iy — I5, it follows that for each t € R and n > N
E[|(Aun)(t) — (Au)(t)]* < €
This implies that A is continuous. The proof is complete. ([l

Theorem 4.1. Assume that assumptions (H.1) — (H.4) hold and
1- g,f € SAA(R x L?(P,H),L*(P, H)),
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2- he€ SAAR x L?*(P,H),L(V,L*(P,H))),

3- Fe PSAAR x L?(P,H) x V,L*(P,H))

4- G € PSAAR x L*>(P,H) x V,L*(P, H)).
then Eq. (1.1) has at least one almost automorphic in distribution mild solution on
R provided that

t t
L,= sup/ et (s)ds < 0o, L= sup/ | B1(t — s)|lmy(s)ds < oo,
teR J —oc0 teR J —oco

t t
Ly = sup/ | Bz2(t—s)||*mp(s)ds < oo, Lp = sup/ | Ba2(t—s)||*mp(s)ds < oo,
teR

—o0 teER J —c0

t
Lg = sup/ | Bz(t — s)||*ma(s)ds < oo
R

te —0o0
and

K2
(4.1) 9:= 10; |:WL9+Lf||Bl||L1(0,oo)+Lh+LF+2<1+bBQ|L1(0,00)>LG:| < 1.

Proof. Let B = {u € SBC(R,L*(P,H)) : ||ul|* < r}. By Lemma 4.1 and (3.2),
it follows that B is a convex and closed set satisfying AB C B. To complete the
proof, we have to prove the following statements:
a) That V = {Au(t) : u € B} is a relatively compact subset of L?(P, H) for
each t € R;
b) That U = {Au:u € B} C SBC(R, L?>(P, H) is equi-continuous.
¢) The mild solution is almost automorphic in distribution.

To prove a), fix t € R and consider an arbitrary ¢ > 0. Then

(Aex)(t)

/t_e T(t—s)g(s,xz(s))ds + /t_GT(t —0) /U Bi(o — 8)f(s,2(s))dsdo

— 00 — 00 — 00

+ / - o) / " Ba(o — $)h(s, 2(s))dW (s)do

— 00 — 00

o f : 1t-0) [ Balo—s) /|1 F(s,2(s—),y)N(ds, dy)do
o f :T@ ~o) [ Baio-9 /| G(s,x(s—),y)N(ds, dy)do

_ T(e)/7€T(tfefs)g(s,:v(s))ds+/%T(tfefa) /U By(o — 8)f(s,2(s))dsdo

— 00 — 00 — 00

+ /%T(t—e—a) /U Balo — s)h(s, x(s))dW (s)do

—0o0 —0o0

. / T - e—o) / " Ba(o—s) /ylmF(s,us—),y)N(ds,dy)da

— 00 — 00

o T (—e—o) R /ylv>le<s,z<s>,y>N<ds,dy>do

— 00 — 00



EXISTENCE FOR A ALMOST AUTOMORPHIC SOLUTION 11

and hence V. := {(A.)z(t) : z € B} is relatively compact in L?(P, H) as the
semigroup family T'(¢) is compact by assumption. Now

E|(Au)(t) — (Acu)(t)]|* = E’ /t T(t— s)g(s,u(s))ds + / T(t—o0) /0 Bi(o — s)f(s,u(s))dsdo

—e€ t—e —o0

w [ 1) [ Bt =) (sualo) — s u(s) i (5o

— 00 —00

N / " o) / " Ba(o - s) /yNF(s,u<s—>,y>N<ds,dy>do

—e€ —00
2

+ /t: T(t—o) /U By(o — s) /yv>1 G(s,u(s—),y)N(ds,dy)do.

— 00

2

<se | T gl uls))ds

g 5EH /t: Tt - o) /; Bu(o — 5)f (s, u(s))dsdo
2

+5E /t T(t—o0) /_U Ba(o — s)h(s,u(s))dW (s)do

—€

2

+5E /;T(t—a) /_; By(o —3) /|y|v<1F(s,u(s—),y)N(ds,dy)da

2

+5E /tt T(t—o0) /_; Bsy(o —s) /lylv21 G(s,u(s—),y)N(ds,dy)do

—€

t 2 t 2
< 5{&1{2( / e“’(t”)da> +ATK2||B1||2LI(O7OO)( / 6w<ta>d0)
t—e t—e

t 2 n 2
+ATK232||%2(0,00>( / e‘“““”da) +ATK2||BQ||%2(O’OO)( / e—wu—o)d(,)
t—e ¢

—€

t 2
+ <2ATK2||32||%2(0700) +2bATK2||B2||%1(07w)) < / ew(t")d0> ]
t—e

<5A,K? [1 + 1B1llZ1(0,00) + 41 B2l 2(0,00) + 2b||B2||2Ll(0,oo):| ¢

from which it follows that V' = {Au(t) : w € B} is a relatively compact subset
of L?(P, H) for each t € R. We now show that b) holds. Let u € B and t;,t, € R
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such that t; < t5. Similar computation as that in Lemma 4.1, we have

t2 o

T(tg —s)g(s,z(s))ds + /_2 T(ty — O’)/ Bi(o — s)f(s,z(s))dsdo

— 00

E[|(Au)(t:) — (Au)(t2)] E

T(ta — o) / Bsy(o — s)h(s,z(s))dW (s)do

Ttg—a/ B, U—s)/l <1F(s ,z(s—),y)N(ds, dy)do

o0

T(t 2—0/ By U—S)/ >1G(s ,x(s—),y)N(ds,dy)do

T(t1 — s)g(s,x(s))ds +[1 T(t; — 0)/ Bi(o — s)f(s,x(s))dsdo

\ 8

— 00

Tt —o / Bo(o — s)h(s, 2(s))dW (s)do

“8

Tty — o) Bs(o—s F(s,z(s Ndsdd
) / >/|yv<1( (5=),9)N (ds, dy)

t1 2

[n
/
/.
- (/.
[
[
/

T(t; — o) / By(o — s) /yv>1 G(s,z(s—), )N(ds,dy)da)

o
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IE’ (T(t2 — ) — I) Ut T(t: — 5)g(s, 2(s))ds + /tl T(ty — o) /_; Bi(o — 5)f(s, z(s))dsdo

— 00 — 00

/ L T(0-0) / " Bao — s)h(s.2(s))dW (s)do

— 00 — 00

/tl T(t; — o) /g Ba(o — s) /Iyv<1F(s,x(s—),y)N(ds,dy)dg

— 00 — 00

/t1 T(t; — o) /a Ba(o — s) /vazl G(S7,’L‘(S—)7y)]\[(d8’dy)da:|

—0o0 —o0
to

/ " Dty — gl 2(s))ds + /

t1 t1

/t T / " Ba(o — 9)h(s.2())dW (s)do

1 — 00

T(ty — o) /_(7 Bi(o — 8)f(s,z(s))dsdo

/tt Ttz = o) /_; By(o = 5) /|yv<1 F(s,2(s—),y)N (ds, dy)do

/tt T(2-0) /U By(o — ) /lylv>lG(5,x(s),y)N(ds,dy)dg

— 00

(120~ 1)y

6E /tt T(ts — o) /_; Bu(o — ) f(s, 2(s))dsdo

2
+ 6

2

6sup E
yev

/t ’ T(t2 — s)g(s,x(s))ds

2

2

6E /tQT(tg—a) /U Ba(o — )h(s, 2(s))dW (s)do

—00

2

6 /tt T(ty — o) /U By(o — s) /ylv<1F(s,x(s—),y)](/'(d&dy)do

— 00

2

2

to o
6E / T(2— 0)/ By(o — s)/ G(s,z(s—),y)N(ds,dy)do
ty —0o0 lylv>1
to 2
6 sup JEH (T(tg —t1) — I)y +6 [ATK2 (/ e_w(t"‘_”)da)
yev t1
t 2
ATKZHBln%l(o,w( / e‘w““’)do)
t—e
t 2 t
ATKQHBZ”QL?((),oo) (/ ew(ta)dg) + ATK2||B2||%2(O,DO) (/ ew(to)dg>
t—e t—e

t 2
(28 K21 Bl 0.0y + 208, K2 Bl ) ([ 00 |
t—e

2

2

6 sup IEH <T(t2 —t1) — I)y
yev

tz 2
6A, K2 {1+|Bl||2Ll(07oo)+4||B2||%2(0700)+2bBQ||2LI(O7OO)] </t ew(tQU)dg) :
1
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The right-hand side tends to 0 independently to u € B as to — t; which implies that
U is right equi-continuous at ¢. Similarly, we can show that U is left equi-continuous
at t.

Denote the closed convex hull of AB by coAB. Since coAB C B and B is a
closed convex, it follows that

A(ecoAB) C AB C co AB.

Further, it is not hard to see that co AB is relatively compact in L?(P, H). Using
Arzela-Ascoli theorem, we deduce that the restriction of co AB to any compact
subset I of R is relatively compact in C'(I, L?>(P, H)). Thus condition (H.4) implies
that A : ©0AB — ¢o AB is a compact operator. In summary, S : coAB — coAB
is continuous and compact. Using the Schauder fixed point it follows that A has a
fixed-point.

To end the proof, we have to check this the fixed-point is almost automorphic
in distribution. Since g, f, h are almost automorphic and F', G are Poisson al-
most automorphic, then for every sequence of real numbers (t;)n we can extract a
subsequence (t,), such that, for some stochastic processes g, f, E F , G

. o~ 2: . ~. . 2: A
(42) T Blgls+t, X)=g()IP =0, lim Elg(s—ta, X)—g(s X)|* = 0;

(4.3)
) 7 2 _ . /s _ 2 _ .
Jdim BI|f(s 10, X) = F(s, X0)1P =0, lim E[f(s — ta, X) = (s, X)[ = 0;
. 7 1
o i B (A ) B0 )@ vy = O
@) i Bt X) = 56X )@ sy = O
lim E||F(s + tn, X,y) — F(s, X, y)|*v(dy) = 0,
n—-+o0o \y|v<1
(4.6) lim E||F(s — tn, X,y) — F(s, X,y)|>v(dy) = 0
n—+o0 lylv <1
and
(4.7) lim E||G(s + tn, X, y) — G(s, X, )| Pv(dy) = 0,

n—-+oo lylv>1

lim E||G(s — tn, X, y) — G(s, X, )| Pv(dy) = 0

oo Jlyly >1

hold for each s € R and X € L?(P, H).
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For t € R, we define

X(t) = / T(t—s)ﬁ(s,)?(s))der/ T(t—o)/g Bi(o — s)f(s, X (s))dsdo

— 00 — 00 — 00

T [ :o T(t—-o) [ ; By(o — s)h(s, X (s))dW (s)do
+ /;T(ta) /; By(o — s) /|y|v<1ﬁ(s’)?(s)vy)N(dSady)dff

v [ e Balo) [, ., 6K p) N dyio

— 00

Let Wy (s) = W(s+t,) —W(tn), Nu(s,y) = N(s+tn,y) — N(tn,z) and N, (s,y) =
N(s + tn,y) — N(tn,x) for each s € R. Then W, is also a Q-Wiener process
having the same distribution as W and N,, have the same distribution as N with
compensated Poisson random measure N,,.

Consider the process define as follows

t

X, (1) = / T(t—s)g(s+tn,Xn(s))ds+/

— 00 — 00

Tt - o) [ Bu(0 — 8)f (5 + tn, Xo(s))dsdo

+

/ T - o) [ " By(o — $)h(s + th, X (5))dW (s)do

— 00

+

/ " T(t-o) / Oo Ba(o — 5) /| F(5+ ta, Xo(5-), y)N (ds, dy)do

— 00

— 00 — 00

+ /t T(t—or)/(I By(o —s) /y|v>1 G(s+ tn, Xn(s—),y)N(ds, dy)do.

Note that X (¢ + t,) and X,, have the same law and since the convergence in L?
implies convergence in distribution, then we have

E| X (t) =X ()|

<58 [ ; (e =) (905 + X, (6) = 6 K5 ) s

2

+5E /t Tt - o) /; Bi(o —s) (f(s b, Xo(s)) — f(s,f((s))> dsdo

— 00

2

+5E /t T(t—a)/_;BQ(a—s)(h(s+tn,Xn(s))—E(s,i(s))>dW(s)da

— 00

2

ws5| [ 100 [ Balo o) /|| (FGst X670 = s, X(6).0) ) N dy)o

—00

2

— 00

ws5| [ 100 [ " Balo- /Wl (664 s Xa(s-).0) = G, K=, ) ¥, i

§5(J1+J2+J3+J4+J5>.
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For J;, we have

2

5= [ =9 (ot 00, X060~ 5 K60 s
g?EH/;T(ts (g S+ by Xon( ))g(ertn,X'(s)))ds i

2

t
+2EH/ T(t—s) (g S+ tn, X (s §(S,X(s)))ds
—o0
2K2 [t SN
< T[ e‘*’(ts)mg(s+tn)E‘Xn(s)X(s) ds
2K2 t ) _ _ _ 2
+T/ e_w(t_é)EHg(s'i‘th(S))_9(87X(S)) ds
—0o0
oK [T N
<2 [ ey 00 - X0 ds

2
ds. Since X (-) is bounded

where f = 25 supseREHg@ T b, () 55, X(5))

in L2(P, H), it follows by (4.2), that ¢} — 0 as n — co.
For Js, we have

2

Jg]EH/t T(tfa)/a Bl(as)(f(sﬂn,xn(s))f(s,f((s))>dsda

2

<2EH/ t—a/ Bi(o —s) (fs+tn,X ))—f(s+tm)~((s))>dsda

2

+2]EH/ t—cr Bla—s<fs+tn,X ) — f(s,i(s))>dsda

2

2K2 t Cw(t—o) o
<7||BIHL1(0 oo)/ € / | Bi(o — s)[|my(s+ tn)E|| X ( — X(s)|| dsdo

— 00

2 t o ~ ~ ~
+ 2B 0 / emelt=0) / 1By(o — S)EF(s + t, X()) — Fls, X (s))[2dsdo

2
dsdo + (7,

2K2 ! —w(t—0o) 7 v
< — Bz e [B1(o = s)|lmy(s + tn)E|| X (s) — X(s)

— 00

where ¢ i= 25 [By[[2, .., SWDucx E|f(s+ta, X (5)) = F(s, X (5))]%. For the same
reason as for Cl , (3 — O as n — o0.
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For J3, using Cauchy-Schwartz’s inequality and the Ito’s isometry, we have

2

o
—0o0

Jg,:]EH/_tOOT(t—a)/ BQ(a—s)<h(s+tn,Xn(s))—E(s,)}‘(s)))dW(s)da

2

SQEH/_tOOT(t—a) /;32(0—5)<h(s+t,,,xn(s))—h(s+tn,)?(s)))dW(s)da

2

o
— 00

+2EH/; T(tfa)/ Bg(as)<h(s+tn,)?(s))E(sj(s)))dvv(s)da

2K?2 [t g SN
< —/ e_“’(t_“)/ ||Bg(a—s)||2mh(s+tn)EHXn(s)—X(s) dsdo
w — 00 — 00
2K? [t g . ~ |2
+—/ e*w@*fﬂ/ ||B2(as)||2E’<h(s+tn,X(s))h(s,X(s))>Q2 dsdo
W J-co —oc0 L(V,L2(P,H))
2K2 [t g SN
< 7/ e*w“*ff)/ ||BQ(Js)||2mh(s+tn)EHXn(s)X(s) dsdo + (3,
w —00 — 00
, _ _ _ 2
where € i= 25 1Bl cys0pac B (st K(00) (s, (01 ) @2 |
L(V,L2(P,H))

By(4.4), it follows that (§ — 0 as n — oo, like (]
For Jy, using Cauchy-Schwartz’s inequality and the properties of the integral for
the Poisson random measure, we have

2

Ja = ]EH /; T - o) /; Ba(o — 5) /ylv<1 (F(s bt Xon(5=),y) — Fls, X(s—), y)))N(ds, dy)do

SQEH/_;T(t—U) /_; Ba(o — s) /|y|v<1 (F(s+tn,xn(s—),y)—F(s+tn,)~((s—),y)))ﬁ(ds,dy)da 2

2

+ QIEH /; T(t — o) /; By(o — s) /yv<1 (F(s + by, X (5—),9) — F(s, X (5—), y))> N(ds, dy)do

2K2 i o - 2
< — / et / | Ba(o — 8)||*Pmp(s + tn)]EHXn(s) — X (s)|| dsdo
w —o0 —o0
2 t o 2
2K —w(t—0o) 2 v - v
4+ — e |B2(o — s)|| E(|F(s+tn, X(s—),y) — F(s,X(s—),y)|| v(dy)dsdo
w —00 —00 lylv <1
2K2 t o . 2
< 7/ e~wlt=0) / Ba(o — 8)2mm(s + tn)]EHXn(s) ~ X(s)| dsdo +cn,
w —o0 —o0
) B o 2
where (f := %HBzH%Q(Om) SUp, R <f|y|v<1 E ‘F(s—l—tn, X(s=),y)—F(s,X(s—),y) y(dy)).

Using (4.6), it follows that ¢} — 0 as n — oo, like (J.
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For Js5, using Cauchy-Schwartz’s inequality and the properties of the integral for
the Poisson random measure, we have

2

J5_]EH/t Tt - o) U Bg(a—s)/ylv>1 (G(s+tn,Xn(s—),y)—é(s,)?(s—),y)>1v(ds,dy)da

2

<2EH/ T(t— o) / Bs(o — s) (G s+ tn, Xn(s—), y)—G(s+tn,)~((s—),y)>N(ds,dy)da
y|v>1

2

+21EJH/ T(t—a) _U By(o — s) /yv>1 (Gs+tn,X —),y) — é(s,X(s—),y)>N(ds,dy)dg

2

< 4EH/ T(t—o / By(o —s) <G s+ tn, Xn(s—),y) — G(S+tn,)?(5—),y)>1§’(d8,dy)d0
|ylv>1

2

+4E /_OOT(t—U)/_ Bsy(o —s) mv>1 (G § 4 tn, Xn(s—), y)—G(S+tn,)~((s—)7y))u(dy)dsda

t o 2
+4E / T(t—a)/ BQU_S/
—oc0 — lylv>1

(c
+4E /;T(t—a)/;Bga—s/yv>1( (54 tn, X(5=),y) — G(s, X (s—), y)(dy)dsdo

2

G(s +tn, X(s—),y) — é(s,)?(s—),y)>N(ds,dy)dg

2

4K?

t o
< — / e w(t=o) / | Ba(o — 8)||*ma (s + tn)]EHXn(s) — X (9)|| dsdo
w —o0 —o0
4K? [* “
e ([ e -9l [ vtanas
W Jooo —oo lylv>1
o . 2
X / |B2(o — s)|| EHG(ertn,Xn(s),y)G(ertn,X(s),y) V(dy)ds>d0
—00 lylv>1
2K ! —w(t—o) 7 2 oy =~ > 2
+ — e |B2(o — s)|| E|G(s+ tn, X(s—),y) — G(s, X (s—),y)|| v(dy)dsdo
w —oo —0o lylv>1
4K? [ 7
S e ([ il [ vlanas
W J-oo —o0 lylv>1
. N o 2
X / | B2(o — s)|| EHG(S—I—tn,X(s—),y) —G(s,X(s—),y) V(dy)ds)da
—o0 lylv>1
4K? [t i UG
< 7/ e_"’(t_”)/ ||BQ(U—8)||2mg(s+tn)]E‘ X, (s) — X(s)|| dsdo
w —o0 —o0
4bK? ¢ o N 2
P Bl [0 [ Bl = it +10)8X(6) - K(o)| dsao
2K2 —w(t—o) 7 2 yd ~ i 2
+ — e |B2(o — s)|| E|\|G(s+ tn, X(s—),y) — G(s, X (s—),y)|| v(dy)dsdo
w —o0 —o0 lylv>1
4bK2 t Cw(t—o) o _ _ _ 2
+ B2 2(0,00) / e / [ B2(o — s)| ¥ E||G(s +tn, X(s—),y) — G(s,X(s—),y)|| v(dy)d:
—00 —00 ylv=>1
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2

4K?
dsdo

= ; ) [ st - 9)Pmas + tn>EHxn<s> - X(s)

w

4bK 2

2
dsdo + (5 (¢)

t o
Ballisone) [ e [ |Bz<a—s>||mc<s+tn>EHXn<s>—X(s)

2V(dy))
2If(dy)>

Using (4.7), it follows that (' — 0 as n — oo, like (7. By combining the estimations
J1 — Js5, we get for all t € R

where

2K*? ~ ~ o
& = 2B osup ([ G+ 00 K60 - Gl K50
w s€R lylv>1

4bK 2

+

1Ba 121 0,00 SUD ( / | EHG(wtn,fc(s—),y) ~G(s, X (5-).p)
ylv>1

seR

2 2
]E‘ X,(t) = X(t)|| <¢"+9supE ’Xn(s) — X(s)
seR
where (" = ¥?_, (™. It follows that
~ 7 cn
E||X,(t) — X(@)|| < .
[x0-x0| <5

Since ¥ < 1 and ("™ — 0 as n — oo for all ¢ € R then one has
2
—0 as n—0 foreach teR.

EHXn(t) ~X(t)

Hence we deduce that X (t+t,) converge to X (¢) in distribution. Similarly, one can
get that X (¢ — t,,) converge to X (¢) in distribution too. Therefore this fixed-point
solution of the equation (1.1) is square-mean almost automorphic in distribution.

which completes the proof.
O

5. EXAMPLE

Consider the following stochastic integro-differential equations
(5.1)
au(t z) _ x) + g(t,u(t,x)) + f e =9 f(s,u(s,x))ds + fioo e~ h(s, u(s,x))dW (s)
e=t=9)0 (s, u(s, 1’))Z(d$), (t,z) € R x (0,1),
u(t,0) =u(t,1)=0, teR
u(0, ) = up(z), €(0,1)
where W is a Q-Wiener process on L?(0,1) with Tr Q < oo and Z is a Lévy pure
jump process on L?(0, 1) which is independent of W and w > 0. The forcing terms
are follows:

g(t,u) = dsinu(sint 4+ sinvV2t), f(t,u) = dsinu(sint + sin v/3t),

= Zemull,
+

o0

h(t,u) = dsinu(sint + sinv/5t), O(t,u) = d sinu(sint + sin 7t)
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with § > 0. Denote H =V = L?(0,1). In order to write the system (5.1) on the
abstract form (1.1), we consider the linear operator A : D(A) C L?(0,1) — L?(0,1),
given by

D(A) = H*(0,1) N H}(0,1),
Az(§) =2"(§) for £€(0,1) and z € D(A).

It is well-known that A generates a Cp-semigroup (T'(t));>0 on L?(0,1) defined by

i 2.2
r)= Z e " T N x, en) p2en(r),
n=1

where e, (r) = V2sin(n7r) for n = 1,2,...., and | T(t)| < e~ for all t > 0.
Then the system (5.1) takes the following abstract form

u'(t)

Au(t) + g(t,u(t) / Bi(t —s)f(s,u(s))ds

Bo(t — s)h(s,u(s))dW (s)

— 00

BQ t—s /
ly

BQ t—s /

ly

where u(t) = u(t,-), B1(t) = Ba(t

O(t,u)Z(dt) = /| . F(t,u(t—),y)N(dt,dy)—i—/ll . G(t,u(t—),y)N(dt,dy)

with

—00 v<1

F(s,u((s—),y)N(ds,dy)
G(s,u(s

,Y)N(ds,dy) for all teR,

+
— T

|
— 00 |V21

) =e% for t > 0 and

Z(t) :/ yN(t,dy) +/ yN(t,dy),
lylv <1 lylv>1

F(t,u,y) = h(t,w)y - gy, <1y and  G(t,u,y) = h(t,u)y - 1y, >13-
Here, we assume that the Lévy pure jump process Z on L?(0,1) is decomposed as
above by the Lévy-It decomposition theorem.
Clearly, f,0 are almost automorphic, and F,G Poisson almost automorphic and
satisfying Hi—Hs. Moreover, it is easy to see that the conditions (3.3)—(3.7) are
satisfied with

2
mg(t) = (52<sint+sin\/§t) , my(t) = (52<sint—|—sin\/§t)

2

2

2
mp(t) = 6% Qll vy (sint + sin \/5t> , mp(t) = 8%v(B1(0)) (Sint + sin \/§t>

2
ma(t) = 52b(sint + sinwt) ,

where B;(0) is the ball in V' centered at the origin with radius 1.
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Obviously,

t t 2
Lg — Sup/ e_w(t_s)mg(s)ds = (52 Sup/ e_“’(t_s)mg(s)ds<sin s—+sin \/iS) < 00,

teR J -0 teR J —co

¢ t 2
L= sup/ | By (t—s)||ms(s)ds = 62 sup/ | B1(t—s)| (sin s+sin \/gs) ds < o0,
teR 00 teR J—x

t t 2
Ly = sup/ | B2 (t—s)||man(s)ds = 6*(|Q||Lv,v) sup/ ||Bg(t—s)(sin s+sin \/53) ds < o0,
teR

teR J —c0 —00

¢ t 2
Lp= sup/ | Ba(t—s)||*mp(s)ds = §?v(B1(0)) Sup/ ||B2(t—s)||2(sin s—i—sinws) ds < o0,

teR J —0 teR J —co

¢ t 2
Lg = sup/ | B2 (t—3)||*ma(s)ds = 52bsup/ ||Bz(t—s)||2(sin s—|—sin7rs> ds < o0
t

teR J —co eR J -
Therefore, by Theorem 4.1, the equation (5.1) has a square-mean almost auto-
morphic in distribution mild solution on R whenever § is small enough.
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