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Abstract

We study properties of a piecewise deterministic Markov process modeling the
changes in concentration of specific antibodies. The evolution of densities of the
process is described by a stochastic semigroup. The long-time behaviour of this
semigroup is studied. In particular we prove theorems on its asymptotic stability.
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1 INTRODUCTION

In4 the authors introduced a mathematical model of the immune system. The immune status is the concentration of specific

antibodies, which appear after infection with a pathogen and remain in serum, providing protection against future attacks of that

same pathogen. Over time the number of antibodies decreases until the next infection. During fighting the invader the immunity

is boosted and then the immunity is gradually waning, etc. Thus the concentration of antibodies is described by a stochastic

process whose trajectories are decreasing functions x(t) between subsequent infections. These functions satisfy the differential

equation

x′(t) = g(x(t)). (1)

It is assumed that the time it takes the immune system to clear infection is negligible and that if x is the concentration of

antibodies at the moment of infection, then Q(x) > x is the concentration of antibodies just after clearance of infection. An
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FIGURE 1 An example of a trajectory of the process �t.

explicit expression forQ was derived in5,16. It is also assumed that the moments of infections are independent of the state of the

immune system and they are distributed according to a Poisson process (Nt)t≥0 with rate Λ > 0.

The immune status is a flow on the interval [0,∞) with jumps at random moments t0 < t1 < t2 < … (see Fig. 1 ). Such a

flow belongs to the family of piecewise deterministic Markov processes3,15. We denote this process by (�t)t≥0 and it is defined

by the following equations

�tn = Q(�t−n−1), �′t = g(�t) for t ∈ [tn−1, tn), Ntn = Nt−n
+ 1 = n.

It means that the process (�t)t≥0 satisfies the following stochastic differential equation

d�t = g(�t) dt + (Q(�t) − �t) dNt.

One of the main interesting problems is the evolution of the distribution of this process, in particular the existence of a

unique stationary density f ∗ and its asymptotic stability. It is worth to mention that if the process (�t)t≥0 has a unique stationary

density f ∗ then, according to the ergodic theorem, f ∗ is the density of distribution of the immune status in the population.

In4 the asymptotic stability of a stationary density f ∗ was proved for a function Q which is unimodal and has properties:

limx→0Q(x) = ∞ and limx→∞(Q(x) − x) = const.

The aim of this note is to show that asymptotic stability holds for a large class of C1-functions Q. In particular we extend

the result from the paper4 to the significant case when the increase of the concentration of antibodies after the infection is

bounded. Moreover, we present another technique to prove this result, which seems to be easier in applications because it does

not require to prove directly the existence of an invariant density. The main idea of the paper is to formulate the problem in the

terms of stochastic semigroups and then apply some results concerning the Foguel alternative11,12, which gives conditions when

a stochastic semigroup is asymptotically stable or sweeping.

The organization of the paper is as follows. In section 2 we present the assumptions concerning our model and formulate

the main problem in the terms of stochastic semigroups. Section 3 contains the definitions and results concerning asymptotic
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properties of stochastic semigroups and the proof of the main result of the paper. In the last section we discuss the case when

concentration of antibodies is bounded and we give some examples.

2 A SEMIGROUP FORMULATION OF THE PROBLEM

Concerning g and Q we assume the following

(A1) g∶ [0,∞)→ ℝ is a C1-function such that g(x) < 0 for x > 0 and g(0) = 0,

(A2) Q∶ [0,∞)→ (0,∞) is a C1-function such that Q(x) > x for x ≥ 0,

(A3) |A| = 0 ⇐⇒ |Q−1(A)| = 0, where A is a Borel subset of [0,∞) and | ⋅ | denotes the Lebesgue measure.

We denote by �tx0 the solution x(t) of Eq. (1) with the initial condition x(0) = x0 ≥ 0.

Assumption (A3) allows us to introduce7,14 a linear operator PQ on the space L1 = L1[0,∞) given by the formula

∫
A

PQf (x) dx = ∫
Q−1(A)

f (x) dx (2)

for each f ∈ L1 and all Borel subsets A of [0,∞). The operator PQ is called the Frobenius–Perron operator for the transfor-

mation Q. The adjoint of the Frobenius–Perron operator P ∗ ∶ L∞[0,∞) → L∞[0,∞) is given by P ∗g(x) = g(Q(x)) and it is

called the Koopman operator or the composition operator.

Denote by D the subset of the space L1 which contains all densities

D = {f ∈ L1 ∶ f ≥ 0, ‖f‖ = 1}.

The Frobenius–Perron operator describes the evolution of densities under the action of the transformationQ and it is an example

of a stochastic or Markov operator, which is defined as a linear operator P ∶ L1 → L1 such that P (D) ⊂ D.

The class of the functions Q which satisfy (A3) is rather large. For example if Q is a C1-function and there exists an at most

countable family of intervals [ai, bi], i ∈ I , such that

[0,∞) =
⋃

i∈I
[ai, bi], (ai, bi) ∩ (aj , bj) = ∅ for i ≠ j

and Q′(x) ≠ 0 for x ∈ (ai, bi) and i ∈ I , then Q satisfies (A3) and the operator PQ is given by the formula

PQf (x) =
∑

i∈Ix

f ('i(x))|'′i(x)|, (3)

where 'i is the inverse function of Q
|

|

|(ai,bi)
and Ix = {i∶ 'i(x) ∈ (ai, bi)}.

Now we add the second ingredient to the model. If f is the initial density of immune status and there is no infection till

the time t, then the density of immune status at t is given by S(t)f , where S(t) is the Frobenius-Perron operator related to the
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transformation x → �tx. In this way we obtain a C0-semigroup of stochastic operators {S(t)}t≥0 given by

S(t)f (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (�−tx)
)(�−tx)
)x

if �−tx exists,

0 if �−tx does not exist.

The semigroup {S(t)}t≥0 has the infinitesimal generator 0f (x) = − d
dx
(g(x)f (x)) with the domain D(0) = {f ∈

L1 ∶ 0f ∈ L1}. Here the notation 0f ∈ L1 means that f is a locally absolutely continuous function, so f ′ exists a.e., and

(gf )′ ∈ L1. The adjoint semigroup {S∗(t)}t≥0 on L∞ is given by the formula S∗(t)f (x) = f (�tx).

Finally, we combine both ingredients: waning and boosting of immunity status. Then the density u(t) = u(t, x) of immune

status satisfies the following evolution equation in L1

u′(t) = u(t), (4)

where = 0+ΛPQ−ΛI . The solution u(t) of this equation generates a stochastic semigroup (i.e. aC0-semigroup of stochastic

operators) {U (t)}t≥0. It means that if f is the density of initial immune status then U (t)f is the density of immune status at time

t. The semigroup {U (t)}t≥0 is given by the Dyson-Phillips expansion

U (t)f = e−Λt
∞
∑

n=0
ΛnSn(t)f, (5)

where

S0(t)f = S(t)f, Sn+1(t)f =

t

∫
0

Sn(t − �)PQS0(�)f d�, n ≥ 0. (6)

Similar formulas to (5)–(6) hold for the adjoint semigroup {U ∗(t)}t≥0 on L∞. In particular if f ≥ 0 then

U ∗(t)f ≥ Λe−Λt
t

∫
0

S∗(t − �)P ∗QS
∗(�)f d� = Λe−Λt

t

∫
0

f (��Q(�t−�x)) d�. (7)

The process (�t)t≥0 has the probability transition function (t, x,Γ) given by

(t, x,Γ) = U ∗(t)1Γ(x).

Now inequality (7) allows us to estimate (t, x,Γ) from below

(t, x,Γ) ≥ Λe−Λt
t

∫
0

1Γ(��Q(�t−�x)) d�. (8)

This inequality will play the crucial role in the proof of the existence and asymptotic stability of a stationary density.
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3 ASYMPTOTIC STABILITY AND SWEEPING

We start with some general definitions and results concerning asymptotic stability and sweeping of stochastic semigroups.

Let a triple (X,Σ, �) be a �-finite measure space. A stochastic semigroup {P (t)}t≥0 on L1 = L1(X,Σ, �) is called

asymptotically stable if there exists a density f ∗ such that

lim
t→∞

‖P (t)f − f ∗‖ = 0 for f ∈ D. (9)

If the semigroup {P (t)}t≥0 is generated by some evolution equation u′(t) = Au(t) then the asymptotic stability of {P (t)}t≥0

means that the stationary solution u(t) = f ∗ is asymptotically stable in the sense of Lyapunov and this stability is global on the

set D.

A stochastic semigroup {P (t)}t≥0 is called partially integral if there exist t > 0 and a measurable function q(t, ⋅, ⋅)∶ X×X →

[0,∞) such that

P (t)f (y) ≥ ∫
X

q(t, x, y)f (x)�(dy) for f ∈ D, (10)

and

∫
X

∫
X

q(t, x, y)�(dx)�(dy) > 0.

If (t, x, dy) is the transition probability function corresponding to the stochastic semigroup {P (t)}t≥0 then inequality (10) can

be written in an equivalent form (t, x, dy) ≥ q(t, x, y) dy. We will use the following criterion of asymptotic stability.

Theorem 1. 10 Let {P (t)}t≥0 be a partially integral stochastic semigroup. Assume that the semigroup {P (t)}t≥0 has a unique

invariant density f ∗. If f ∗ > 0 a.e., then the semigroup {P (t)}t≥0 is asymptotically stable.

A stochastic semigroup {P (t)}t≥0 is called sweeping with respect to a set B ∈ Σ if for every f ∈ D

lim
t→∞∫

B

P (t)f (x)�(dx) = 0.

From now on we assume additionally that (X, �) is a separable metric space and Σ = (X) is the �-algebra of Borel subsets of

X. We will consider stochastic semigroups {P (t)}t≥0 which satisfy the following condition:

(K) for every x0 ∈ X there exist an " > 0, a t > 0, and a measurable function � ≥ 0 such that ∫ �(x)�(dx) > 0 and

(t, x, dy) ≥ �(y)�(dy) for x ∈ B(x0, "), (11)

where B(x0, ") = {x ∈ X ∶ �(x, x0) < "}.

It is clear that if a stochastic semigroup satisfies condition (K) then it is partially integral. We will need the following criterion

of sweeping11, Corollary 2.
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Theorem 2. Assume that a stochastic semigroup {P (t)}t≥0 satisfies condition (K) and has no invariant densities. Then {P (t)}t≥0

is sweeping from compact sets.

We say that a stochastic semigroup {P (t)}t≥0 satisfies the Foguel alternative if it is asymptotically stable or sweeping from

all compact sets7. We now formulate the main result of this paper.

Theorem 3. The semigroup {U (t)}t≥0 satisfies the Foguel alternative, i.e. it is asymptotically stable or for every f ∈ L1[0,∞)

andM > 0

lim
t→∞

M

∫
0

U (t)f (x) dx = 0.

In order to prove Theorem 2 it is enough to check that the semigroup {U (t)}t≥0 satisfies condition (K) and that if f ∗ is an

invariant density for {U (t)}t≥0 then f ∗(x) > 0 a.e. Indeed, if {U (t)}t≥0 has no invariant densities, then according to Theorem 2

this semigroup is sweeping from compact sets. In the case when {U (t)}t≥0 has more then one invariant density then it is easy

to construct two invariant densities f ∗1 and f ∗2 with disjoint supports, i.e. such that f ∗1 f
∗
2 = 0 a.e. Thus, the uniqueness of an

invariant density will be a simple consequence of its strict positivity. It means that if an invariant density exists and we know

that this density has to be positive then according to Theorem 1 the semigroup {U (t)}t≥0 is asymptotically stable.

Lemma 1. The semigroup {U (t)}t≥0 fulfills condition (K).

Proof. From (8) it follows that

(t, x,Γ) ≥ Λe−Λt
t

∫
0

1Γ(r(�, t, x)) d�, (12)

where r(�, t, x) = ��Q(�t−�x). First we want to find the derivative
)r
)�

. We use the following formulas:

)
)t
(�tx) = g(�tx),

)
)x
(�tx) =

g(�tx)
g(x)

. (13)

The first formula follows directly from the definition of �tx. Now we derive the second one. Let '(t, x) = )
)x
(�tx). Then

)'
)t
(t, x) = )

)x
)
)t
(�tx) =

)
)x
g(�tx) = g′(�tx)

)
)x
(�tx) = g′(�tx)'(t, x).

Hence
)
)t
(ln'(t, x)) = g′(�tx),

but since '(0, x) = 1 we have

ln'(t, x) =

t

∫
0

g′(�sx) ds =

�tx

∫
x

g′(y)
g(y)

dy = ln g(y)
|

|

|

|

y=�tx

y=x
= ln

(

g(�tx)
g(x)

)

,
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which proves the second formula of (13). From the chain role we obtain

)r
)�
(�, t, x) = g(��Q(�t−�x)) −

g(��Q(�t−�x))
g(Q(�t−�x))

Q′(�t−�x)g(�t−�x).

If � = 0 and x = x0, then

lim
t→∞

)r
)�
(0, t, x0) = lim

t→∞
[g(Q(�tx0)) −Q′(�tx0)g(�tx0)] = g(Q(0)).

Since g(Q(0)) < 0 and r is a C1 function we can find a sufficiently large t and positive constants "′, �,M , and �0 ≤ t such that

−M ≤ )r
)�
(�, t, x) ≤ −� for � ∈ [0, �0] and x ∈ B(x0, "′).

From (12) it follows that

(t, x,Γ) ≥ Λe−Λt
�0

∫
0

1Γ(r(�, t, x)) d� ≥
Λe−Λt
M ∫

Δx

1Γ(y) dy (14)

for x ∈ B(x0, "′), where Δx = [r(�0, t, x), r(0, t, x)]. The interval Δx has the length at least ��0. Let " ∈ (0, "′) be such that

|r(0, t, x) − r(0, t, x0)| < ��0∕3 for x ∈ B(x0, ").

Then we find an interval Δ with a length of at least ��0∕3 such that Δ ⊂ Δx for x ∈ B(x0, "). Let �(y) = Λe−ΛtM−11Δ(y). Then

(t, x, dy) ≥ �(y) dy for x ∈ B(x0, ").

Lemma 2. If f ∗ is an invariant density with respect to {U (t)}t≥0, then f ∗ > 0 a.e.

Proof. Let A = {x∶ f ∗(x) > 0}. The set A is defined up to a set of measure zero. Since

f ∗(x) = U (t)f ∗(x) ≥ e−ΛtS(t)f ∗(x) = e−Λtf ∗(�−tx)
)�−tx
)x

> 0

for x ∈ �t(A) and t ≥ 0, we have �t(A) ⊆ A for arbitrary t > 0, and consequently A = (0, a) or A = (0,∞). We check that

A = (0,∞). Assume on the contrary that A = (0, a). Then S(�)f ∗(x) > 0 for x ∈ (0, b), b = ��(a). Let m = min{Q(x)∶ x ≥ 0}

and assume that Q(a) ≠ m. Observe that if f (x) > 0 for x ∈ (0, b), then PQf (x) > 0 for all x ∈ (m,Q(b)). It means that

S(t − �)PQS(�)f ∗(x) > 0 for x ∈ (�t−�m, �t−�Q(��(a))).

Since

f ∗(x) ≥ Λe−ΛtS1(t)f ∗(x) = Λe−Λt
t

∫
0

S(t − �)PQS(�)f ∗(x) d�,

we have f ∗(x) > 0 for x ∈ (�tm, �tQ(a)). As m < Q(a), the interval It = (�tm, �tQ(a)) is nontrivial. Moreover, �tQ(a) > a

for sufficiently small t > 0, which contradicts the definition of A. In the case Q(a) = m we need an extra argument. From

assumption (A3) it follows that the transformationQ cannot be constant on any nontrivial interval. Letm = max{Q(x)∶ x ≤ a}.

If f (x) = PQS(�)f ∗(x), then f (x) > 0 for x ∈ Q((0, ��a)). We can find an " > 0 such that [m − ", m] ⊂ Q((0, ��a)) for



8 PICHÓR AND RUDNICKI

sufficiently small � > 0. Hence S(t− �)PQS(�)f ∗(x) > 0 for x ∈ Jt where Jt = (�t−�(m− "), �t−�m). Using the same argument

as in the previous case we check that f ∗(x) > 0 for x ∈ Jt. Finally, the inequality �t−�m > m for sufficiently small t implies that

Jt ⊄ A, which contradicts the definition of A.

Proof of Theorem 3. Theorem 3 is a simple consequence of Theorems 1, 2 and Lemmas 1, 2.

Assumptions (A1)–(A3) are not sufficient to prove asymptotic stability of the semigroup {U (t)}t≥0, but according to

Theorem 3 we only need to check when the semigroup {U (t)}t≥0 is weakly tight, i.e. there exists � > 0 such that

sup
F∈

lim sup
t→∞ ∫

F

U (t)f (x) dx ≥ � (15)

for f ∈ D0, where D0 is a dense subset of D and  is the family of all compact subsets of X. It is clear that weak tightness

excludes the case when the semigroup is sweeping from compact sets. The process (�t)t≥0 has the infinitesimal generator

V (x) = g(x)V ′(x) + ΛV (Q(x)) − ΛV (x). (16)

The operators and  are formally conjugated, i.e.
∞

∫
0

f (x)ℎ(x) dx =

∞

∫
0

f (x)ℎ(x) dx for f ∈ D() and ℎ ∈ D().

Assume that there exist a C1-function V ∶ [0,∞)→ [0,∞) and constants ", r,M > 0 such that

V (x) ≤M for x < r and V (x) ≤ −" for x ≥ r. (17)

Then the semigroup {U (t)}t≥0 is weakly tight (see e.g.15, page 128 for a general result).

Since V ,Q, g are C1-functions, the inequality V (x) ≤ M for x < r is obviously fulfilled. Therefore it remains to check

when there exists a C1-function V ∶ [0,∞)→ [0,∞) such that

lim sup
x→∞

[g(x)V ′(x) + ΛV (Q(x)) − ΛV (x)] < 0. (18)

For example, assume that the immune status is roughly proportional to the concentration of antibodies and their degradation rate

is almost constant, then lim
x→∞

g(x) = −∞. Also assume that the increase of the concentration of antibodies after the infection is

bounded, i.e. Q(x) ≤ x + L, then condition (18) is fulfilled with the function V (x) = x. It means that the semigroup {U (t)}t≥0

is asymptotically stable.

Condition (18) also holds under much less restrictive assumptions. For example if g(x) ≤ −ax andQ(x) ≤ bx for a sufficiently

large x, we can take V (x) = x ,  > 0, and check when

−a + Λb − Λ < 0.
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If a > Λ log b, then taking a sufficiently small  we obtain (18).

If a < Λ log b, g(x) ≤ −ax and Q(x) ≥ bx then the semigroup is sweeping from compact sets. Indeed, consider a negative

moment of the process (�t)t≥0

m (t) = E �
−
t =

∞

∫
0

x−u(t, x) dx.

One can easy check that
d
dt
m (t) ≤ cΛm (t),

where c = a+Λb− −Λ. Assume that E �−0 <∞ (this inequality is fulfilled for example if �0 takes values from some interval

[�, �], 0 < � < � < ∞). We have c < 0 for a sufficiently small  , and consequently limt→∞ m (t) = 0. But in this case the

semigroup {U (t)}t≥0 is not asymptotically stable and, in consequence, {U (t)}t≥0 is sweeping from compact sets.

Remark 1. Theorem 3 can be formulated in a slightly stronger form. Denote by �t the distribution of the process (�t)t≥0 at time

t. We do not assume now that the measure �0 has a density. Consider the case when there is an invariant density f ∗. Let �∗ be

the measure with density f ∗. Then the measures �t converge to the measure �∗ in the total variation norm. This result follows

from the fact that if �st is the singular part of the measure �t, then limt→∞ �st ([0,∞)) = 0.

4 MODELS WITH BOUNDED PHASE SPACES

Now we consider the case when the immune status is a number from the interval X = [0,M]. We start with a version of the

model introduced in Section 2. We assume that

(B1) g∶ [0,M]→ ℝ is a C1-function such that g(x) < 0 for x > 0 and g(0) = 0,

(B2) Q∶ [0,M]→ (0,M] is a C1-function such that Q(x) > x for x ∈ [0,M) and Q(M) =M ,

(B3) |A| = 0 ⇐⇒ |Q−1(A)| = 0, where A is a Borel subset of [0,M].

Then in the same way as in the previous sections we introduce a stochastic semigroup {U (t)}t≥0 on the space L1(X,(X), | ⋅ |)

and prove an appropriate version of Theorem 3. But now X is a compact space and, in consequence, the semigroup {U (t)}t≥0

is not sweeping from compact sets. Therefore we can formulate the following

Theorem 4. The semigroup {U (t)}t≥0 is asymptotically stable.

Now we consider a model with an alternative version of the functionQ proposed in4. We replace assumptions (B2) and (B3)

by the following

(B2′) there exists K ∈ (0,M) such that Q∶ [0, K) → (0,M] is a C1-function such that x < Q(x) < M for x ∈ [0, K) and

Q(x) =M for x ∈ [K,M],
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FIGURE 2 Examples of graphs of y = Q(x). Left: condition (B2); right: condition (B2′).

(B3′) |A| = 0 ⇐⇒ |Q−1(A)| = 0, where A is a Borel subset of [0,M).

Illustrative examples of graphs of the transformation Q for both considered cases are given in Fig. 2 .

Observe that in this case the transformation Q does not satisfy condition (B3). Indeed, if A = {M} then |A| = 0 but the set

Q−1(A) = [K,M] has a positive Lebesgue measure. It means that we cannot define the Frobenius-Perron operator PQ on the

spaceL1(X,(X), | ⋅|). In order to use introduced earlier apparatus of stochastic semigroups we need to modify the definition of

the infinitesimal generator of the semigroup {U (t)}t≥0. The starting point can be the infinitesimal generator  of the process

(�t)t≥0 given by (16) and we want to find the operator as a formally adjoint operator of . First, we define some modification

of the Frobenius-Perron operator. If Q̃ = Q||
|[0,K)

, then according to (B3′) we can define an operator PQ̃ ∶ L1[0, K]→ L1[0,M]

by formula (2). Then PQ̃ is a stochastic operator in the sense that it is a linear transformation from L1[0, K] to L1[0,M] and

PQ̃ maps densities to densities. Next we define the operator P̄Q̃ ∶ L1[0,M] → L1[0,M] by P̄Q̃f = PQ̃
(

f ||
|[0,K)

)

. Then P̄Q̃ is a

substochastic operator, i.e. P̄Q̃ is a positive contraction of L1. The operator is defined on the set

D() =
{

f ∈ L1[0,M]∶ f ′ ∈ L1[0,M] and g(M)f (M) = −Λ

M

∫
K

f (x) dx
}

and  is given by

f = −(gf )′ + ΛP̄Q̃f − Λf.

It is not difficult to check that the operators and  are formally conjugated.

Now we can write the evolution of densities of the process (�t)t≥0 in the form of the abstract Cauchy problem (4). We can

treat Eq. (4) as abstract notation of a first order partial differential equation with some linear perturbation and some boundary

condition. Such equations appear in many biological and physical applications, e.g. in structured population models2,8,9,13.

One can check that the operator  generates a stochastic semigroup on the space L1(X,(X), | ⋅ |). The proof of this result

is rather standard so we only sketch it omitting the computational part. Some new and general results concerning piecewise

deterministic Markov processes with boundary can be found in6.
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We start with some definitions and two general results concerning generators of substochastic and stochastic semigroups. Let

A be a linear operator defined on a linear subspace D(A) of a Banach space E. We say that � ∈ ℝ belongs to the resolvent set

�(A) of A, if the operator �I − A∶ D(A) → E is invertible. The operator (�, A) ∶= (�I − A)−1 for � ∈ �(A) is called the

resolvent operator of A at �. Now let E = L1(X,Σ, �). We call a linear operator A resolvent positive if there exists ! ∈ ℝ such

that (!,∞) ⊆ �(A) and (�, A) ≥ 0 for all � > !. Let L1+ = {f ∈ L
1 ∶ f ≥ 0} and D(A)+ = D(A) ∩ L1+. A C0-semigroup of

substochastic operators on the space L1 is called shortly a substochastic semigroup.

Theorem 5. A linear operator A with the domain D(A) ⊂ L1 is the generator of a substochastic semigroup on L1 if and only

ifD(A) is dense in L1, the operator A is resolvent positive, and

∫
X

Af (x)�(dx) ≤ 0 for all f ∈ D(A)+. (19)

The proof of this result is given e.g. in15, Theorem 4.4. The second result concerns positive perturbations of substochastic

semigroups1, Section 6.2.

Theorem 6. Assume that the operator A0 is the generator of a substochastic semigroup {S(t)}t≥0 on L1 and B is a positive and

bounded operator on L1 such that

∫
X

(A0f (x) + Bf (x))�(dx) = 0 for f ∈ D(A0)+. (20)

Then the operator A = A0 + B is the generator of a stochastic semigroup {U (t)}t≥0 on L1.

Now we apply Theorems 5 and 6 to the operator . Consider the operator 0f = −(gf )′ − Λf with the domain D(0) =

D() and the operator f = ΛP̄Q̃f . Then  is a positive and bounded operator on the space L1. The operator 0 generates a

substochastic semigroup {S(t)}t≥0 on the space L1. This statement is intuitively obvious because the equation u′(t) = 0u(t)

describes the movement of particles to the left on the interval [0,M] with the influx of new particles through the right endM

with velocity ∫ M
K u(t, x) dx and the efflux from the interval [0,M] with velocity ∫ M

0 u(t, x) dx. The proof that the operator 0

generates a substochastic semigroup follows from Theorem 5. It is easy to check that D(0) is a dense subset of L1 and that

condition (19) holds. Then we find that

(�,0)f (x) = −
e(�+Λ)'(x)

g(x)

⎛

⎜

⎜

⎝

ΛI(�, f ) +

M

∫
x

f (r)e−(�+Λ)'(r) dr
⎞

⎟

⎟

⎠

,

where '(x) =
M
∫
x

dr
g(r)

and I(�, f ) is a constant such that

I(�, f ) =

M

∫
K

(�,0)f (x) dx.
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It is also easy to observe that(�,0) ≥ 0 for all � > 0. Since

M

∫
0

(0f (x) + f (x)) dx =

M

∫
0

(

− (gf )′(x) − Λf (x) + ΛP̄Q̃f (x)
)

dx

= −g(M)f (M) − Λ

M

∫
0

f (x) dx + Λ

M

∫
0

PQ̃
(

f ||
|[0,K)

)

(x) dx

= Λ

M

∫
K

f (x) dx − Λ

M

∫
0

f (x) dx + Λ

K

∫
0

f (x) dx = 0,

according to Theorem 6 the semigroup {U (t)}t≥0 generated by the operator  is a stochastic semigroup.

Theorem 4 remains true in this case. The only difference in the proof is that instead of formulas (5)–(6) we need to apply the

two following ones

U (t)f =
∞
∑

n=0
Sn(t)f, (21)

where

S0(t)f = S(t)f, Sn+1(t)f =

t

∫
0

Sn(t − �)S0(�)f d�, n ≥ 0. (22)
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