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Summary

In this report we prove that the hypothesis on the memory term g in1 can be modified
to be g′(t) ≤ −� (t)gp(t), t ≥ 0, 1 ≤ p < 3

2 where � (t) provides

� (0) > 0, � ′(t) ≤ 0,

∞

∫
0

� (s) ds = +∞.

So the optimal decay results are extended.
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1 INTRODUCTION

Let Ω ⊂ ℝn be an open bounded domain with smooth boundary Γ and is divided by two closed and disjoint parts Γ0, Γ1, Here,
Γ0 ≠ ∅, we investigate the solutions to the problem

utt (x, t) − Δu (x, t) − � (t)

t

∫
0

g (t − s) Δu (x, s) ds = 0 in Ω × (0,+∞) , (1)

u (x, t) = 0 on Γ1 × (0,+∞) , (2)

)u
)�
(x, t) − � (t)

t

∫
0

g (t − s) )
)�
u (x, s) ds = yt (x, t) on Γ0 × (0,+∞) , (3)

ut (x, t) + f (x)yt (x, t) + m(x)y (x, t) = 0 on Γ0 × (0,+∞) , (4)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (5)

where � is the outward normal to Γ. f and m are essentially bounded nonlinear functions satisfying some general properties. u0,
u1 are given functions, Ω is a bounded domain of ℝn, n ∈ ℕ∗, with a smooth boundary )Ω. g, � ∶ ℝ+ → ℝ+ are non-increasing
differentiable functions. The equation in consideration reaches from various mathematical models in engineering and physics.
We refer the readers to2,3,4,1 for a motivation and references concerning the subject of problem (1)-(5).
Our main aim in this work is to establish a general decay rate result, depending on the behavior of both � and g, for the

energy of problem (1)-(5). Our main novel contribution is an extension and improvement of the previous result from1 to the
time-dependent viscoelastic case with the assumption condition g′(t) ≤ −� (t)gp(t), t ≥ 0, 1 ≤ p < 3

2
where � (t) provides

� (0) > 0, � ′(t) ≤ 0,

∞

∫
0

� (s) ds = +∞.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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2 PRELIMINARIES AND MAIN RESULTS

In this section, we present some material needed in the proof of our result and state the main result. Throughout this paper, we
use the notation

H1
Γ1
(Ω) =

{

u ∈ H1 (Ω) ∶ u ∣Γ1= 0
}

endow with the Hilbert structure induced byH1 (Ω), is a Hilbert space.
we use standard functional spaces and denote that ‖.‖2 , ‖.‖Γ0 are L

2(Ω) norm and L2(Γ0) norm, respectively, such that:

‖u‖Γ0 = ∫
Γ0

|u (�)|2 d�, ‖u‖2 = ‖u‖2L2(Ω) = ∫
Ω

|u (x)|2 dx.

Also, we define the inner products (u, v) = ∫Ω u (x) v (x) dx and (u, v)Γ0 = ∫Γ0 u (x) v (x) dΓ.
The norm inH1

0 (Ω) is ‖.‖H1
0 (Ω)

and is given by:

‖u‖2H1
0 (Ω)

= ∫
Ω

|∇u|2 dx.

Let � and �̃ be the smallest positive constants such that

‖u‖2 ≤
√

� ‖∇u‖2 and ‖u‖Γ0 ≤
√

�̃ ‖∇u‖2 ∀u ∈ H1
Γ1
(Ω) . (6)

We wish to use the following hypotheses:

(H1) Hypotheses on g, � g, � ∶ [0,∞)→ (0,∞) are a bounded C1 functions satisfying

g (0) > 0,

∞

∫
0

g (s) ds < +∞, � (t) > 0, 1 − � (t)

t

∫
0

g (s) ds ≥ l > 0. (7)

(H2) Hypotheses on g There exists a non-increasing differentiable function � ∶ ℝ+ → ℝ+ satisfying

� (t) > 0, g′ (t) ≤ −� (t) g (t) , for all t ≥ 0, lim
t→+∞

−�′ (t)
� (t) � (t)

= 0 (8)

(H3) Hypotheses on f, m For the functions p and q , we assume that f , m ∈ C(Γ0) and f (x) > 0 and m(x) > 0 for all x ∈ Γ0.
This assumption implies that there exist positive constant f0,1, m0,1 such that

f0 ≤ f (x) ≤ f1, m0 ≤ m (x) ≤ m1, for all x ∈ Γ0. (9)
Theorem 1. 1, Theorem 2.1.Assume that (H1) and (H3) hold. For the initial data

(

u0, u1
)

∈ H1
Γ1
(Ω)∩H2 (Ω)×H1

Γ1
(Ω) there exists

a unique pair of functions (u, yt), which is a solution to the problem (1)-(5) in the class

u ∈ L∞
(

0, T ;H1
Γ1
(Ω) ∩H2 (Ω)

)

, ut ∈ L∞
(

0, T ;H1
Γ1
(Ω)

)

,

utt ∈ L2
(

0, T ;L2 (Ω)
)

,
y, yt ∈ L∞

(

ℝ+;L2
(

Γ0
))

,
Theorem 2. 1, Theorem 2.2.Let

(

u0, u1
)

∈ H1
Γ1
(Ω) ∩H2 (Ω) ×H1

Γ1
(Ω) be given. Assume that (H1)-(H3) hold. Then there exist

positive constants K and k such that the solution of (1)-(5) satisfies

E (t) ≤ Ke−k ∫
t
0 �(s)� (s)ds t ≥ 0, (10)

where

E (t) = 1
2
‖

‖

ut‖‖
2
2 +

1
2

⎛

⎜

⎜

⎝

1 − � (t)

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22 +
1
2
� (t) (g◦∇u) (t) (11)

+1
2 ∫
Γ0

m (x) |y (x, t)|2 dΓ for t ∈ ℝ+,
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A simple differentiation, employing (1), drives to

E′ (t) = −∫
Γ0

f |

|

yt (x, y)||
2 dΓ + 1

2
� (t)

(

g′◦∇u
)

(t) − 1
2
� (t) g (t) ‖∇u‖22 (12)

+1
2
�′ (t) (g◦∇u) (t) − 1

2
�′ (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22

≤ 1
2
� (t)

(

g′◦∇u
)

(t) − 1
2
�′ (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22 for t ∈ ℝ+,

Where

(g◦∇u) (t) =

t

∫
0

g (t − s)∫
Ω

|∇u (s) − ∇u (t)|2 dxds,

In this report, we shall prolong the above exponential rate of decay to the general case. We use the following hypothesis which
is weaker than (8).

(H4) Hypotheses on g There exist a fixed p ∈ [1, 3∕2) and a real positive differentiable function � so that

g′ (t) ≤ −� (t) gp (t) for all t ≥ 0. (13)

and � (t) satisfies

� (0) > 0, � ′ (t) ≤ 0 ∀t ∈ ℝ+,

∞

∫
0

� (s) ds = +∞. (14)

Then, we can show the following principal result.

Theorem 3. Suppose that (H3)-(H4) and (7) hold. Then, there exist strictly two positive constants �0 and �1 such that the energy
E(t) of the problem (1)-(5) satisfies, for all t ∈ ℝ+, the decay rate

E (t) ≤ �0e
−�1 ∫

t
0 �(s)� (s)ds if p = 1, (15)

E (t) ≤ �1
⎛

⎜

⎜

⎝

1 +

t

∫
0

�2p−1 (s) �2p−1 (s) ds
⎞

⎟

⎟

⎠

−1
2p−2

if p > 1, (16)

Furthermore, if �, p in (H4) and � in (H2) satisfy

∞

∫
0

⎛

⎜

⎜

⎝

1 +

t

∫
0

�2p−1 (s) �2p−1 (s) ds
⎞

⎟

⎟

⎠

−1
2p−2

dt < +∞, (17)

then, for all t ∈ ℝ+, we have

E (t) ≤ �0
⎛

⎜

⎜

⎝

1 +

t

∫
0

�p (s) �p (s) ds
⎞

⎟

⎟

⎠

−1
p−1

if p > 1, (18)

Remark 1. 1. For p = 1, (15) retrieve the exponential decay rate in1, Theorem 2.2..

2. When g(t) = a(1 + t)−d , d > 2 and a > 0. Then hypothesis (H4) holds with � (t) = b = da
−1
d and p = d+1

d
∈ (1, 3

2
).

Therefore (17) holds and hence, by (18), we have the following decay rate

E (t) ≤ �0
⎛

⎜

⎜

⎝

1 + bp
t

∫
0

�p (s) ds
⎞

⎟

⎟

⎠

−1
p−1

,

which is not addressed in1.

The following lemma and corollary are essential for the proof of our main result.
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Lemma 1. Suppose that g satisfies (7) and (H4) then
∞

∫
0

� (t) � (t) g1−� (t) dt < +∞, ∀� < 2 − p.

Proof. Evoking (7), we gain

� (t) g1−� (t) = � (t) g1−� (t) gp (t) g−p (t) ≤ −g′ (t) g1−�−p (t) .

A simple integration yields
∞

∫
0

� (t) � (t) g1−� (t) dt ≤

∞

∫
0

−� (t) g′ (t) g1−�−p (t) dt

= −
g2−�−p (t)
2 − � − p

� (t) ∣+∞0 +

∞

∫
0

�′ (t)
g2−�−p (t)
2 − � − p

dt < +∞,

since 0 < 2 − p − � and �′ (t) < 0.

Lemma 2. 3, Lemaa 3.3.Assume that g satisfies (7) and (H4), and u is the solution of (1)-(5) then, for 0 < � < 1, we have

(g◦∇u) (t) ≤ C
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∞

∫
0

g1−� (t) dt
⎞

⎟

⎟

⎠

E (0)
⎤

⎥

⎥

⎦

p−1
p−1+�

(gp◦∇u)
�

p−1+� (t) .

Particularly, for � = 1
2
, we have

(g◦∇u) (t) ≤ C
⎡

⎢

⎢

⎣

∞

∫
0

g
1
2 (t) dt

⎤

⎥

⎥

⎦

2p−2
2p−1

(gp◦∇u)
1

2p−1 (t) . (19)

Corollary 1. Suppose that g satisfies (7) and (H4) and u is the solution of (1)-(5) then

� (t) � (t) (g◦∇u) (t) ≤ C
⎡

⎢

⎢

⎣

−E′ (t) − 1
2
�′ (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22
⎤

⎥

⎥

⎦

1
2p−1

(t) .

Proof. Multiplying both sides of (19) by � (t) � (t) and evoking Lemma 1 and (12) to get

� (t) � (t) (g◦∇u) (t)

≤ C�
2p−2
2p−1 (t) � (t)

2p−2
2p−1

⎡

⎢

⎢

⎣

∞

∫
0

g
1
2 (s) ds

⎤

⎥

⎥

⎦

2p−2
2p−1

� (t)
1

2p−1 � (t)
1

2p−1 (gp◦∇u)
1

2p−1 (t)

≤ C
⎡

⎢

⎢

⎣

∞

∫
0

� (s) � (s) g
1
2 (s) ds

⎤

⎥

⎥

⎦

2p−2
2p−1

� (t)
1

2p−1 (�gp◦∇u)
1

2p−1 (t)

≤ C
⎡

⎢

⎢

⎣

∞

∫
0

� (s) � (s) g
1
2 (s) ds

⎤

⎥

⎥

⎦

2p−2
2p−1

[

� (t)
(

−g′◦∇u
)

(t)
]

1
2p−1

≤ C
⎡

⎢

⎢

⎣

−E′ (t) − 1
2
�′ (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22
⎤

⎥

⎥

⎦

1
2p−1

.
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By adopting the idea of5,2,3,4. Suppose that hypothesis (H4) holds and determine the modified energy, as in1

L (t) =ME (t) + "� (t)F (t) + � (t)H (t) , ∀" > 0. (20)

where
F (t) = ∫

Ω

utudx + ∫
Γ0

u (t) y (t) dΓ + 1
2 ∫
Γ1

m (x) y2 (t) dΓ, (21)

H (t) = ∫
Ω

ut

t

∫
0

g (t − s) (u (s) − u (t)) dsdx, (22)

andM , " is some suitable positive constants to be specified.

E′ (t) ≤ 1
2
� (t)

(

g′◦∇u
)

(t) − 1
2
�′ (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22 (23)

≤ −1
2
� (t) � (t) (gp◦∇u) (t) − 1

2
�′ (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22 for t ∈ ℝ+,

Now, we shall investigate the global decay of the energy function E(t).
First, to achieve the decay result, we use the following lemmas which act of fundamental significance in the proof.

Lemma 3. 1, Lemma 3.2.There exists C1 > 0 such that

|L (t) − E (t)| ≤ "C1E (t) , ∀t ≥ 0, ∀" > 0.
Lemma 4. 1, (5.22) in the proof of Theorem 5.5.There are positive constants C2, C3 such that

L′ (t) ≤ −C2� (t)E (t) + C3� (t) (g◦∇u) (t) ∀t ≥ t1 ≥ t0 (24)

Now, we conclude the proof of the decay property.

Proof of Theorem 3. Give
"0 = min

{

1
2C1

, 1
C2

}

.

It results from Lemma 3 that, for " < "0,
1
2
E (t) ≤ L (t) ≤ 3

2
E (t) , ∀t ≥ 0. (25)

Case when p = 1. By the determination of L (t), (23) and (24), we get

� (t)L′ (t) ≤ −C2� (t) � (t)E (t) + C3� (t) � (t) (g◦∇u) (t) (26)
≤ −C2� (t) � (t)E (t) + C3� (t)

(

−g′◦∇u
)

(t)

≤ −C2� (t) � (t)E (t) − C3�′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22 − 2C3E
′ (t) ∀t ≥ t1

We fixed
K (t) = � (t)L (t) + 2C3E (t) .

Then, L(t) is equivalent to E(t). In fact, we have

K (t) ≤ � (0)L (t) + 2C3E (t) ≤
(3
2
� (0) + 2C3

)

E (t)

and
K (t) ≥ 1

2
� (t)E (t) + 2C3E (t) ≥ 2C3E (t) .
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From (25) and (26), since � ′ (t) ≤ 0 we get

K ′ (t) = � ′ (t)L (t) + � (t)L′ (t) + 2C3E′ (t) (27)

≤ −C2� (t) � (t)E (t) − C3�′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22

≤ −� (t) � (t)
⎡

⎢

⎢

⎣

C2 +
2�′ (t)

l� (t) � (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

E (t) ∀t ≥ t1

By (H2), we can choose t2 ≥ t1 and then (27) gives

K ′ (t) ≤ −C2� (t) � (t)E (t) ∀t ≥ t2 (28)

Since � ′(t) ≤ 0, we can easily get K(t) ∼ E(t) and

K ′ (t) ≤ −k� (t) � (t)K (t) ∀t ≥ t2 (29)

for some positive constant k. Integrating (29) over [t2, t], we have

K (t) ≤ Ke−k ∫
t
0 �(s)� (s)ds, ∀t ≥ t2.

Since K(t) ∼ E(t), we have
E (t) ≤ Ke−k ∫

t
0 �(s)� (s)ds, ∀t ≥ t2.

By the virtue of the continuity and boundedness of E(t) in the interval [0, t2], this yields (15).
Case when p > 1. To verify (16), once more consider (26) and apply corollary 1 to obtain

� (t)L′ (t) ≤ −C2� (t) � (t)E (t) + C3� (t) � (t) (g◦∇u) (t)

≤ −�� (t) � (t)L (t) + C
⎡

⎢

⎢

⎣

−E′ (t) − �′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22
⎤

⎥

⎥

⎦

1
2p−1

∀t ≥ t1

Multiplication of the last inequality by � (t)� ��L�(t), where � = 2p − 2 > 0, gives
1

� + 1
��+1� (t)� d

dt
L�+1(t) ≤ −���+1 (t) ��+1 (t)L�+1(t)

+C (�� (t)L (t))�
⎡

⎢

⎢

⎣

−E′ (t) − �′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22
⎤

⎥

⎥

⎦

1
�+1

.

Application of Young’s inequality, with q = � + 1 and q∗ = �+1
�
, yields, for any " > 0,

1
� + 1

��+1� (t)� d
dt
L�+1(t) ≤ −���+1 (t) � (t)�+1 L�+1(t) (30)

+C
(

"��+1 (t) ��+1 (t)L�+1(t) − C (")E′ (t)
)

− C (") �′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22

= −� (t) � (t)
⎡

⎢

⎢

⎣

(� − "C) � (t)� �� (t)L�+1(t) +
C (") �′ (t)
l� (t) � (t)

⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22
⎤

⎥

⎥

⎦

−C (")E′ (t) ∀t ≥ t1
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By (H2), we can choose t2 ≥ t1 and then (30) gives
1

� + 1
��+1� (t)� d

dt
L�+1(t) ≤ −���+1 (t) � (t)�+1 L�+1(t)

+C
(

"��+1 (t) ��+1 (t)L�+1(t) − C (")E′ (t)
)

− C (") �′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22

= − (� − "C) � (t)�+1 ��+1 (t)L�+1(t) − C (")E′ (t) ∀t ≥ t2

keeping to mind that � ′(t) ≤ 0 and taking 0 < " < �
C
, to get

d
dt

(

��+1� (t)� L�+1(t)
)

≤ ��+1� (t)� d
dt
L�+1(t)

≤ −C4��+1 (t) � (t)�+1 L�+1(t) − C (")E′ (t) ;

which means
d
dt

(

��+1� (t)� L�+1(t) + C (")E (t)
)

≤ −C4��+1 (t) � (t)�+1 L�+1(t) (31)

Let G = ��+1� (t)� L�+1(t) + C (")E (t) ∼ L ∼ E. Then
d
dt
G (t) ≤ −C4��+1 (t) � (t)�+1G�+1(t) = −C4�2p−1 (t) � (t)

2p−1G2p−1(t);

Integrating over (0, t) and using the fact that G ∼ E, we get, for some �0 > 0

E (t) ≤ �0
⎛

⎜

⎜

⎝

1 +

t

∫
0

� (s)2p−1 �2p−1 (s) ds
⎞

⎟

⎟

⎠

−1
2p−2

, ∀t ≥ t2.

hence by the virtue of the continuity and boundedness of E(t) in the interval [0, t2], the assertion (16) holds.
To prove (18), we set

' (t) =

t

∫
0

∫
Ω

|∇u (s) − ∇u (t − s)|2 dxds

From (16) and (17), we have

' (t) ≤ 2

t

∫
0

∫
Ω

(

|∇u (s)|2 + |∇u (t − s)|2
)

dxds

≤ 4
l

t

∫
0

(E (t) + E (t − s)) ds ≤ 8
l

t

∫
0

E (t) ds < +∞.

This signifies that
sup
t∈ℝ+

' (t)
p−1
p < +∞ (32)

Suppose that '(t) > 0. Then, from (26), we gain

� (t)L′ (t) ≤ −C2� (t) � (t)E (t) + C3� (t) � (t) (g◦∇u) (t) (33)

≤ −C2� (t) � (t)E (t) + C3
' (t)
' (t)

� (t)

t

∫
0

(�p (s) gp (s))
1
p

∫
Ω

|∇u (s) − ∇u (t − s)|2 dxds

Using Jensen’s inequality for the second term of the right-hand side of (32), in the form

1
' (t)

t

∫
0

(�p (s) gp (s))
1
p

∫
Ω

|∇u (s) − ∇u (t − s)|2 dxds

≤
⎛

⎜

⎜

⎝

1
' (t)

t

∫
0

(�p (s) gp (s))∫
Ω

|∇u (s) − ∇u (t − s)|2 dxds
⎞

⎟

⎟

⎠

1
p

,
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to get

� (t)L′ (t) ≤ −C2� (t) � (t)E (t)

+C3' (t)
⎛

⎜

⎜

⎝

1
' (t)

t

∫
0

(�p (s) gp (s))∫
Ω

|∇u (s) − ∇u (t − s)|2 dxds
⎞

⎟

⎟

⎠

1
p

Hence, using (32) we get

� (t)L′ (t) ≤ −C2� (t) � (t)E (t)

+C3'
p−1
p (t)

⎛

⎜

⎜

⎝

�p−1 (0)

t

∫
0

(� (s) gp (s))∫
Ω

|∇u (s) − ∇u (t − s)|2 dx
⎞

⎟

⎟

⎠

1
p

ds

≤ −C2� (t) � (t)E (t) + C
(

−g′◦∇u
)

(t)
1
p

and then

� (t)L′ (t) ≤ −C2� (t) � (t)E (t) + C
⎛

⎜

⎜

⎝

−E′ (t) − �′ (t)
⎛

⎜

⎜

⎝

t

∫
0

g (s) ds
⎞

⎟

⎟

⎠

‖∇u‖22
⎞

⎟

⎟

⎠

1
p

(34)

If '(t) = 0, then s→ ∇u (s) is a constant function on [0, t]. Consequently

(g◦∇u) (t) = 0,

and so we have, from (26),
L′ (t) ≤ −C2� (t)E (t)

which implies (34).
Now, multiplying (34) by �� (t) � (t)� L� (t) using again the fact that E ∼ L, for � = p − 1, and repeating the same estimates

as in above, we become at, for suitable �0 > 0,

E (t) ≤ �0
⎛

⎜

⎜

⎝

1 +

t

∫
0

� (s)p �p (s) ds
⎞

⎟

⎟

⎠

−1
p−1

if p > 1.
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