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Abstract

The modified auxiliary equation (MAE) approach and the generalized projective Ric-
cati equation (GPRE) method are used to solve the Zoomeron problem in this study.
Different types of exact traveling wave solutions are achieved, including solitary wave,
periodic wave, bright, dark peakon, and kink-type wave solutions. Earned results are
given as hyperbolic and trigonometric functions. Moreover, the dynamical features of
obtained results are demonstrated through interesting plots.
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1 Introduction

Nonlinear evolution equations (NLEEs) have been studied in a variety of mathematical-
physical disciplines, including physics, biology, and chemistry. As, NLEEs define a large
number of mathematical-physical models therefore, analytical solutions to these equations
are significant [1, 2, 3]. Among many potential solutions to NLEEs, some special form
solutions, such as solitons, may rely just on a single combination of variables [4, 5]. A soliton
is a self-reinforcing solitary wave, also known as a wave packet or pulse, in mathematics
and physics, which keeps its form while moving at a consistent rate. Solitons are created
when nonlinear and dispersive effects in the medium cancel out.

The nonlinear evolutionary Zoomeron equation is the focus of this research. Calogero and
Degasperis introduced the basic Zoomeron equation. They achieved a breakthrough in 1976
when they examined at one-dimensional Schrodinger equation and an extension of the well-
known KdV equation to show solitons that travel at different speeds and discovered a link
between their polarization effects and speed. This resulted in two forms of solitons: first
defined as an accelerated soliton that arrived from one side in the far past and boomeranged
back to the same side with same speed in the distant future. Second was a trapped soliton,
oscillating in space about a fixed point with changing direction multiple times. The first
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one was named as Boomeron and second as Trappon. Consequently, the classical Zoomeron
equation was derived. The Zoomeron equation therefore covers unique examples of solitons
with distinct properties that emerge in a variety of physical situations, including laser
physics, fluid dynamics and nonlinear optics. Consider the following nonlinear (2 + 1)-
dimensional Zoomeron equation

where A(z,y,t) is the magnitude of the corresponding wave mode. The presented model is
one of the incognito evolution equation and has been explored via different direct approaches
some important ones are, (G'/G)-expansion method [6], extended direct algebraic technique
[7], sine-cosine function method [8], the extended exp(—¢(€))-expansion technique and ex-
ponential rational function technique [9], the exp-function method and modified simple
equation method[10], the new Jacobi elliptic function expansion method, the exponential
rational function method and Jacobi elliptic function rational expansion method [11], aux-
iliary equation method [12] and modified Kudryashov method [13]. Porsezian assured that
the Zoomeron equation passes the P-property of integrability [14], Gandarias et al. exam-
ined symmetry and verified conservation laws [15] and Baleanu et al. presented it’s stability
analysis [16]. In this work, the modified auxiliary equation (MAE) method [17] and the
generalized projective Riccati equation (GPRE) method [18] are for the first time being
employed to acquire analytical solutions for the governing model. These methods are easy
to proceed and provide reliable results.

The work is organized as follows: In Section 2 brief description of mentioned techniques is
provided. Section 3 elaborates the earned results of Zoomeron equation via MAE method
while in Section 4 exact solutions are derived with the help of generalized projective Riccati
equation method. Section 5 contains discussion about obtained solutions and in Section 6
overall conclusion is drawn.

2 Description of proposed technique
The NLEE is considered, as

L(AanvAtaA:ccmAIta”') = 07 (2)

where A = A(z,t) satisfies the NLEE (2).
Inserting the transformation

Az, t) =((Q), Q=a+by— ct. (3)
Eq. (2) can be turned into an ODE, as

M(QC/’CHV") =0, (4)

where b and ¢ are real constants and (' = %.



2.1 Modified auxiliary equation method
The MAE method assumes the general solution of Eq.(4), as

—ao+z[az B (5)

where «;s, ;s are constants to be calculated and h(2) follows the auxiliary equation

B+ az 42l
Inz '

W (Q) =

(6)

Here a, 5,7 and z are arbitrary constants with z > 0, z # 1. Further, o;s and (;s cannot
be zero simultaneously and positive integer N can be computed by utilizing homogeneous
balance principle (HBP) [19]. The solutions of Eq.(6) are as follows :

o If 32 — 4ay < 0 and vy # 0,

4ay—[2Q 4o 20)
ey _ By — BV ) A VA = B eot (M)

or z
2y 2y
o If 32 —4ay > 0 and v # 0,
B2 4a Q —404 Q
(@) _ BtV 32 — 4ary tanh (Y2200 or SO _ B+ (2 — 4ary coth( il )
2y 2y

o If 32 —4ay =0 and v # 0,

he) _ 2+ B
z = — .
2782

2.2 Generalized projective Riccati equation method

The GPRE method assumes the general solution of Eq.(4), as

— Ao+ Z Q) [Ai () + Bio(9)], (7)
where A;s and B;s are constants to be determined later. The functions o(£2) and ()
satisfy the ODEs

' () = ea(Q)o(),
QI(Q) =K+ 692(9) - NU(Q>7 €= +1, (8>

such that )
F(O) =~ |K - 2u0(0) + o) )

where K and p are arbitrary constants.
If K =p =0, Eq.(4) has general solution, as

N .
= Aid (). (10)
i=0



where o(Q) satisfies the ODE
' (Q) = *(Q). (11)
The positive integer N can be computed by utilizing homogeneous balance principle (HBP)

[19]. Eq.(8) satisfy the following results:
(i) Ife=—1, K£0,

Rsech(x/ﬁﬂ) \/E‘U&Hh(\/?ﬁ)
g1 = 3 01 = (12)
,usech(x/fﬂ)—l—l usech(x/fﬂ)—l—l
Kcsch(ﬁfl) \/KCOth(\/KQ)
oy = ) 02 = (13)
,ucsch(x/fﬂ)—l—l ucsch(x/fﬂ)—l—l
(ii) If e = 1, K#£ 0,
K sec (\/EQ) VK tan (\/EQ)
03 = ) 03 = (14>
,usec(\/EQ)%—l usec(ﬁﬁ)%—l
K csc (\/EQ) VK cot (\/f?Q)
04 = ) 04 = — (15>
ucsc(@&))—i—l ,ucsc(ﬁQ)%—l
(iii) If K = pu =0,
o5 =5 05 = % (16)

3 Exact solutions of governing model via modified auxiliary
equation method

Considering the traveling wave transformation (3), where ¢ represents speed of wave, in
Eq.(1) and integrating it twice, gives

b(c? —1)¢" —2¢¢3 —d¢ =0, (17)

where d is taken as first constant of integration and second constant of integration is taken
as zero. In accordance with HBP, maintaining a balance between ¢” and (3, gives N = 1.
Then the following relation is obtained from Eq.(5)

C(Q) =+ alzh + ,Blth. (18)

Using Eq.(18) along with Eq.(6) in Eq.(17) and equating coefficients of each power of 2 to
zero, provides the system of algebraic equations. The possible solutions of that system are
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Figure 1: Graphical illustration of |Aq 3(z,t)| with (a) a =0.2, =2, y=0.02, b=1, d =
1, y =1, (b) corresponding contour graph and (c) 2D-density plot.

retrieved with the help of Maple software, as

— Bv2d
Family1 : {040 =1/25 Vdar—p3)(aaby-b82+2d)’
(19)
B b . _ [4aby—bB2+2d
a= m€/(4a7—62)(4abv—b62+2d)’ fr=0, c= \/%}
o BV2d
Family2 : [0‘0 =1/2 {(@ar—p2)(daby—bp2+2d)’
(20)
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Familyl (2 —4av < 0 and v # 0, provide

A171 ($, t) =

or
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Figure 2: Graphical illustration of |Aq 3(z,t)| with (a) a =0.5, =1, y=0.05, b=1, d =
1, y =1, (b) corresponding contour graph and (c) 2D-density plot.
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Figure 3: Graphical illustration of [Ago(z,t)| with (a) a =0.2, =2, y=0.02, b=1, d =
1, y =1, (b) corresponding contour graph and (c) 2D-density plot.



Family2 (2 —4av < 0 and v # 0, provide
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Figure 4: Graphical illustration of |Ag3(z,t)| with (a) a =0.2, =2, y=0.02, b=1, d =
1, y =1, (b) corresponding contour graph and (c) 2D-density plot.
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Figure 5: Graphical illustration of |Ag4(z,t)| for with (a) a = 0.03, 5 =0.3, v =0.02, b =
1, d=1, y =1, (b) corresponding contour graph and (c) 2D-density plot.
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4 Exact solutions of governing model via generalized projec-
tive Riccati equation method

The GPRE method assumes general solution of ODE (17) for N =1, as
C(Q) = Ag + A10(Q) + B1o(Q2). (29)
Using Eq.(29) along with Eq.(8) in Eq.(17) and equating coefficients of o?(£2)0 (), where

(i =0,1,2,...,5 = 0,1.), to zero provides the system of algebraic equations. The possible
solutions of that system are retrieved with the help of Maple software, as

: . _ _ _ 4 —2bd2e2+bd? _ _ V2Kb3—Kbet2d
Familyl : [Ao =0, 4, =0, B = \/ SR i ks kd M =11 ¢= G

Family3 :

_ _ o bde _ _
Ao =0, A1 = \/ K+/Kbe (26271)(2Kbe37Kbefd)67 B1=0, p=0,

= 2 Kbe3 —Kbe—d
- 2 Kbed3 —Kbe

Familyl ¢ = —1 and K # 0, provide

A f/ 202 + bd? VE tanh (\/m2>
, B 30
11(z,1) 8K?%b—-4K?2b—-8Kd 1j:sech(\/EQ) .
and
A {l/ “2bd + b2 VE coth (V@)
, B 31
1.2(2, 1) 8K2b—4K?b—8Kd 1icsch(\/KQ> o
e =1 and K # 0, provide
A \/ 202 + bd? VK tan me)
, B 32
1,3(2, 1) 8K2b—-4K2b+8Kd 1j:sec(\/EQ> .
and
A i/ 20 + b2 VE cot (VEQ)
t B B 33
14(z,t) SK2b—4K2b+8Kd 1icsc<\/FQ) .
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Figure 6: Graphical illustration of |[Ay 1(x,t)| with (a)K = 0.0005, b =10, d =1, y =1,
(b) corresponding contour graph and (c) 2D-density plot.
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Figure 7: Graphical illustration of [A;;(x,t)| with (a)

corresponding contour graph and (c) 2D-density plot.
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Figure 8: Graphical illustration of [A;2(x,t)| with (a)K =2, b=0.5, d=1, y =
corresponding contour graph and (c) 2D-density plot.

Family2 ¢ = —1 and K # 0, provide

Ao(z,t) = (@tanh(@@)f/_uéffzm

and

Aoo(z,t) = <\/§coth (@Q)) il/—4Kg:Cj—22Kd'

e =1 and K # 0, provide

Aos(z,t) = (\/?tan (ﬁQ» \ 4K2bbd—|—22Kd

and
b2 Ksech (\/EQ)
iK% 2Kd” T e (VEQ)+1

Ao a(z,t) = <—\/Ecot <\/EQ)) Y
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Figure 9: Graphical illustration of |A; 2(z,t)| with (a)/K = 0.0005, b=1, d=1, y =1, (b)
corresponding contour graph and (c) 2D-density plot.
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Figure 10: Graphical illustration of |Ag1(z,t)| with (a)K =0.1, b=0.5, d=1, y =1, (b)
corresponding contour graph and (c) 2D-density plot.
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Family3 ¢ = —1 and K # 0, provide

Asy(z,t) = —\/K J% (Ksech(\/ﬁg)) (38)

and

Ago(z,t) = —¢ - Kbb(de+ - (K csch (\/I?Q)) . (39)

e =1 and K # 0, provide

Azsz(x,t) = \/_K Kbbeb = (K sec (\/f?Q)) (40)

and

Aza(z,t) = \/_K\/% <KCSC (ﬁQ)) . (41)

5 Graphical Explanation

The traveling patterns of obtained solutions are presented as 3D surface plots. For some
graphs it is easy to observe variations in 3D surface graphics through contours and density
plots. That’s why corresponding to each 3D pattern, contours and density graphs are plot-
ted. Fig-[1] represents absolute 3D plot of solution of the Eq.(23) corresponding to the set
of parameter values a = 0.2, 6 =2, v=0.02, b=1and d =1 at y = 1. For these selected
values of parameters kink solitary wave is observed. For o« =0.5, =1, v =0.05, b=1
and d = 1 at y = 1 a different solitary wave pattern is observed in Fig-[2]. Fig-[3] represents
absolute 3D plot of solution of the Eq.(26) corresponding to the set of parameter values
a=02 =2 7v=002 b=1and d =1 at y = 1. For these selected values of pa-
rameters periodic behavior is observed. Fig-[4] and Fig-[5] represent two different solitary
wave patterns corresponding to Eq.(27) and Eq.(28) for selected set of parameter values
a=02 =2 v=002,b=1,d=1and «a=0.03, =03, y=002, b=1,d=1
at y = 1, respectively. Fig-[6] represents absolute 3D plot of solution of the Eq.(30) corre-
sponding to the set of parameter values K = 0.0005, b = 10, d = 1 at y = 1. For these
selected values of parameters a new travelling pattern is observed. For K = 3.5, b =1 and
d =1 at y = 1 a dark peakon wave is observed in Fig-[7]. Fig-[8] represents absolute 3D
plot of solution of the Eq.(31) corresponding to the set of parameter values K =2, b = 0.5
and d = 1 at y = 1. For these selected values of parameters a different solitary wave pattern
is observed. For K = 0.0005, b = 1 and d = 1 at y = 1 a periodic wave is observed in
Fig-[9]. Fig-[10] represents absolute 3D plot of solution of the Eq.(38) corresponding to the
set of parameter values K = 0.1, b= 0.5 and d = 1 at y = 1. For these selected values of
parameters bright soliton is observed. Most of the mentioned patterns are new and rest of
them are in accordance with graphs already available in literature.
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6 Conclusion

This attempt culminated in successful investigation of the evolutionary Zoomeron equa-
tion via modified auxiliary equation approach and generalized projective Riccati equation
method. The obtained results are consistent with those previously available in literature,
indicating that the suggested approaches are reliable. The set of achieved results includes
kink, periodic, dark peakon, bright solitons and different solitary wave solutions. These
solutions are presented as trigonometric and hyperbolic functions. The obtained solutions
showed a complex behavior characterized by the constraints of proposed methodologies.
The achieved complex behaviors as presented in Fig-[5], Fig-[7] and Fig-[9] are new one
and not reported earlier for the governing model. In addition, the provided study identifies
several intriguing patterns that will be helpful in analyzing nature of the model solutions
as well as the consequences of the indicated approaches in the future.
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