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Abstract. We study the existence and asymptotic behavior of least energy sign-changing
solutions for the nonlinear Schrödinger equation coupled with the Chern-Simons gauge
theory

−∆u + ωu + λ
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j=1

(h2(|x|)
|x|2
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1
j

∫ ∞

|x|

h(s)
s

u2 j(s)ds
)
u = f (u) in R2,

u ∈ H1
r (R2),

where ω, λ > 0 are constants, k ∈ N+ and

h(s) =

∫ s

0

r
2

u2(r)dr.

Under some suitable assumptions on f ∈ C(R), with the help of the Gagliardo-Nirenberg
inequality, we apply the constraint minimization argument to obtain a least energy sign-
changing solution uλ with precisely two nodal domains. Furthermore, we prove that the
energy of uλ is strictly larger than two times of the ground state energy and analyze the
asymptotic behavior of uλ as λ ↘ 0+. Our results cover and improve the existing ones
for the gauged nonlinear Schrödinger equation when k ≡ 1.

1. Introduction and main results

In this paper, we consider the following nonlinear Schrödinger equation coupled with
the Chern-Simons gauge theory

−∆u + ωu + λ

k∑
j=1

(h2(|x|)
|x|2

u2( j−1) +
1
j

∫ ∞

|x|

h(s)
s

u2 j(s)ds
)
u = f (u) in R2,

u ∈ H1
r (R2),

(1.1)

where ω > 0, λ > 0 is constant representing the strength of interaction potentials, k ∈ N+

and

h(s) =

∫ s

0

r
2

u2(r)dr.
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It is generally known that (1.1) can be applied to search for standing waves for a nonlinear
generalized Chern-Simons-Schrödinger system

iψt − eφψ + (∇ − ieA)2ψ − e2|A|2
∑k

j=2
1
j |ψ|

2( j−1)ψ + f (ψ) = 0,
κ(∂2A1 − ∂1A2) = e

2 |ψ|
2,

κ(∂2φ + ∂tA2) + e2 ∑k
j=2

1
j |ψ|

2 jA1 = eF
[
ψ(∂1ψ − ieA1ψ)

]
,

−κ(∂1φ + ∂tA1) + e2 ∑k
j=2

1
j |ψ|

2 jA2 = eF
[
ψ(∂2ψ − ieA2ψ)

]
,

(1.2)

where ψ : R2 × R → C is the time-dependent wave function, φ : R2 × R → R is the
electric potential, A = (A1, A2) : R2 × R → R2 is the magnetic potential, e stands for
the strength of the interaction with the electro-magnetic field (see [23] for example) and
κ ∈ R is a parameter which controls the Chern-Simons term. When we consider the static
case, that is, ψ = ψ(x) and Ai = Ai(x), and the Coulomb gauge divA = 0 whcih gives that
div(Au2) = A · ∇u2, then the solitary wave is a solution of the form ψ = exp(−iωt)u(x) if
u : R2 → R solves

−∆u + ωu + eφu + e2|A|2
∑k

j=1
1
j u

2( j−1)u = f (u),
A · ∇u2 = 0, κ(∂2A1 − ∂1A2) = e

2 u2,

κ∂1φ = e2 ∑k
j=1

1
j u

2 jA2, −κ∂2φ = e2 ∑k
j=1

1
j u

2 jA1.

(1.3)

If u : R2 → R is radially symmetric, by [25, Lemma 3.3], A can be written as

A =

(e
κ

h(|x|)
|x|2

x2,−
e
κ

h(|x|)
|x|2

x1

)
, where x = (x1, x2) ∈ R2. (1.4)

Let’s insert (1.4) into the third equation in (1.3), then there holds
1
s

h′(s) =
1
2

u2(s).

Assuming that h(0) = 0, which is necessary to have A smooth, one has

h(|x|) =

∫ |x|

0

s
2

u2(s)ds.

Moreover, by the last two equations in (1.3), one has

∇φ =
e2

κ

k∑
j=1

1
j
u2 j(A2,−A1) = −

(e3

κ2

h(|x|)
|x|2

k∑
j=1

1
j
u2 j

)
x, with x = (x1, x2) ∈ R2.

Hence, if we assume lim|x|→+∞ φ(|x|) = 0, there holds

φ(|x|) =
e3

κ2

k∑
j=1

1
j

∫ ∞

|x|

h(s)
s

u2 j(s)ds.

Combing the above facts, to study (1.3), it is enough to consider (1.1) with λ , e4/κ2. We
refer the reader to [26, 27, 23, 19] and their references therein for the details concerning
the derivation and physical backgrounds of (1.1).

When k ≡ 1, (1.1) can be reduced to the following nonlinear Schrödinger equation of



GAUGED SCHRÖDINGER EQUATION 3

gauged type, which is also known as the Chern-Simons-Schrödinger system,

− ∆u + ωu + λ
(h2(|x|)
|x|2

+

∫ ∞

|x|

h(s)
s

u2(s)ds
)
u = f (u) in R2. (1.5)

From a mathematical point of view, the existence result with respect to the Cauchy prob-
lem corresponding to (1.5) has been investigated in [8], being later improved in [33, 34].
For f (u) = |u|p−2u in (1.5), Byeon-Huh-Seok [9] established the existence of ground
state solutions for p > 4 by a suitable constraint minimization argument, existence and
nonexistence results depending on λ > 0 for p = 4, and the existence of minimizers un-
der L2-constraint for some p ∈ (2, 4). In [39], the authors showed that there exists a sharp
constant ω0 > 0 such that the corresponding variational functional to (1.5) is bounded
from below if ω ≥ ω0 and not bounded from below for ω ∈ (0, ω0) when f (u) = |u|p−2u
with p ∈ (2, 4). Meanwhile, the authors in [18] obtained the multiple results when f (u)
is a Berestycki-Gallouët-Kavian type nonlinearity [7] and it is the planar version of the
well-known Berestycki-Lions type nonlinearity [5, 6]. There are some other interesting
and meaningful works on ground state, semiclasssic and normalized solutions, etc. (see
[22, 30, 24, 25, 48, 40, 10, 29, 28, 47, 21, 36, 42] for example).

Very recently, both the authors in [31, 21, 51, 35, 16] are concerned with the existence
of sign-changing solutions for (1.5) with the following necessary assumption

f (t)/t5 is increasing on (0,+∞) and decreasing on (−∞, 0), (1.6)

or, there exists a constant θ ∈ [0, 1) such that for any t > 0 and τ ∈ R\{0}{ f (tτ)
(tτ)5 −

f (τ)
τ5

}
sign(t − 1) +

θω|1 − t4|

(tτ)4 ≥ 0. (1.7)

As explained in [51], (1.7) is weaker than (1.6). However, (1.7) strongly depends on the
fact that θ ∈ [0, 1) in which θ = 1 is excluded. Hence, one of novel features of this paper
is to consider the case θ = 1 in (1.7). We point out here that, to the best of our knowledge,
there seems to be no results for (1.1) with k ≥ 2 on existence of sign-changing solutions,
even on existence of nontrivial solutions. In this paper, we try to establish the existence
of least energy sign-changing solutions for (1.1) with k ∈ N+ and a general nonlinearity.
To achieve this aim, without loss of generality, we suppose that f (t) ∈ C(R) vanishes in
t ∈ (−∞, 0] and satisfies the following assumptions

( f1) | f (t)| ≤ C0(1 + |t|p−1) for some constants C0 > 0 and 2(k + 2) < p < +∞;
( f2) f (t) = o(t) as t → 0+;
( f3) f (t)/t2k+3 → +∞ as t → +∞;
( f4) for any t > 0 and τ ∈ R\{0} there holds{ f (tτ)

(tτ)2k+3 −
f (τ)
τ2k+3

}
sign(t − 1) +

ω|1 − t2(k+1)|

(tτ)2(k+1) ≥ 0. (1.8)

Before stating the main results in this paper, we introduce some notations. We denote
by H1

r (R2) ,
{
u ∈ H1(R2) : u(x) = u(|x|)

}
to be the work space equipped with the inner
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product and norm

(u, v) =

∫
R2

(
∇u∇v + ωuv

)
dx and ‖u‖ =

√
(u, u).

Let | · |p with 1 ≤ p < +∞ be the norm of the usual Lebesgue space Lp(R2). Throughout
this paper, we shall denote by C and Ci (i = 0, 1, 2, · · · ) for the various positive constants
whose exact value may change from lines to lines but are not essential to the analysis of
the problem. We use “→ ” and “ ⇀ ” to denote the strong and weak convergence in the
related function spaces, respectively. For each ρ > 0 and every x ∈ R2, Bρ(x) represents
the ball of radius ρ centered at x, that is, Bρ(x) := {y ∈ R2 : |y − x| < ρ}.

Define the variational functional Iλ : H1
r (R2)→ R associated with (1.1) by

Iλ(u) =
1
2

∫
R2

(
|∇u|2 + ωu2)dx + λ

k∑
j=1

1
2 j

∫
R2

u2 j

|x|2

( ∫ |x|

0

s
2

u2(s)ds
)2

dx −
∫
R2

F(u)dx,

where and in the sequel F(t) =
∫ t

0 f (s)ds. Inspired by the results in [9, 50], we will prove
that Iλ ∈ C1(H1

r (R2),R) whose critical points are solutions of (1.1) and its derivative can
be computed as

〈I′λ(u), v〉 =

∫
R2

(
∇u∇v + ωuv

)
dx + λ

k∑
j=1

∫
R2

h2(|x|)
|x|2

u2( j−1)uvdx

+ λ

k∑
j=1

1
j

∫
R2

u2 j

|x|2

( ∫ |x|

0

s
2

u2(s)ds
)( ∫ |x|

0
su(s)v(s)ds

)
dx −

∫
R2

f (u)vdx

=

∫
R2

(
∇u∇v + ωuv

)
dx + λ

k∑
j=1

∫
R2

h2(|x|)
|x|2

u2( j−1)uvdx

+ λ

k∑
j=1

1
j

∫
R2

( ∫ +∞

|x|

h(s)
s

u2 j(s)ds
)
u(x)v(x)dx −

∫
R2

f (u)vdx,

for any u, v ∈ H1
r (R2), where the Fubini’s theorem is used. In particular, we have

〈I′λ(u), u〉 = ‖u‖2 +λ

k∑
j=1

j + 2
j

∫
R2

u2 j

|x|2

( ∫ |x|

0

s
2

u2(s)ds
)2

dx−
∫
R2

f (u)udx, ∀u ∈ H1
r (R2).

Furthermore, we say u ∈ H1
r (R2) is a sign-changing solution of (1.1) if it is a solution of

(1.1) and satisfies u± , 0, where

u+(x) , max
{
u, 0

}
and u−(x) , min

{
u, 0

}
.

Here, a solution u ∈ H1
r (R2) is called a least energy sign-changing solution of (1.1) if it

possesses the least energy among all sign-changing solutions, namely,

Iλ(u) = inf
{
Iλ(v) : v ∈ H1

r (R2) is a sign-changing solution of (1.1)
}
.
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For every u = u+ + u− ∈ H1
r (R2), by some elementary computations, it is obvious to find

that

Iλ(u) = Iλ(u+) + Iλ(u−) + λ

k∑
j=1

1
j

∫
R2

u2 j

|x|2

( ∫ |x|

0

s
2
|u+(s)|2ds

)( ∫ |x|

0

s
2
|u−(s)|2ds

)
dx

+ λ

k∑
j=1

1
2 j

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

s
2
|u−(s)|2ds

)2
dx

+ λ

k∑
j=1

1
2 j

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

s
2
|u+(s)|2ds

)2
dx. (1.9)

Similarly, we can obtain

〈I′λ(u), u+〉 = 〈I′λ(u+), u+〉 + λ

k∑
j=1

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

s
2
|u−(s)|2ds

)2
dx

+ 2λ
k∑

j=1

1 + j
j

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

s
2
|u+(s)|2ds

)( ∫ |x|

0

s
2
|u−(s)|2ds

)
dx

+ 2λ
k∑

j=1

1
j

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

s
2

u2(s)ds
)( ∫ |x|

0

s
2
|u+(s)|2ds

)
dx, (1.10)

and

〈I′λ(u), u−〉 = 〈I′λ(u−), u−〉 + λ

k∑
j=1

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

s
2
|u+(s)|2ds

)2
dx

+ 2λ
k∑

j=1

1 + j
j

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

s
2
|u+(s)|2ds

)( ∫ |x|

0

s
2
|u−(s)|2ds

)
dx

+ 2λ
k∑

j=1

1
j

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

s
2

u2(s)ds
)( ∫ |x|

0

s
2
|u−(s)|2ds

)
dx. (1.11)

Equation (1.1) is usually regarded as a nonlocal Schrödinger equation because of the
appearance the Cherm-Simons term

λ

k∑
j=1

(h2(|x|)
|x|2

u2( j−1) +
1
j

∫ ∞

|x|

h(s)
s

u2 j(s)ds
)
u

which yields that (1.1) is never a pointwise identity any longer such that there are some
mathematical difficulties that make the study of it more interesting. Actually, (1.1) with
λ ≡ 0 belongs to the following semilinear Schrödinger equations

− ∆u + V(x)u = f (x, u), x ∈ RN , (1.12)
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whose variational IV (u) : H1(RN)→ R is defined by

IV (u) =
1
2

∫
RN

[
|∇u|2 + V(x)u2]dx −

∫
RN

F(x, u)dx, where F(x, u) =

∫ u

0
f (x, t)dt.

Over the last several decades, (1.12) has been extensively considered under the variant
assumptions on V(x) and f (x, u) via variational methods, see [45, 46, 5, 11, 2, 3, 4, 14,
1, 15, 12] and their references therein for example. To look for sign-changing solutions
of (1.12), as pointed out in [20, 43, 49], the approaches heavily rely on the following
decompositions

IV (u) = IV (u+) + IV (u−), 〈IV (u), u+〉 = 〈IV (u+), u+〉, 〈IV (u)u−〉 = 〈IV (u−), u−〉. (1.13)

In view of (1.9)-(1.11), the functional Iλ does not satisfy the decompositions in (1.13).
Thus, there are some essential differences in investigating the existence of sign-changing
solutions for (1.1) between λ > 0 and λ = 0.

In the present paper, by using a suitable constraint minimization argument, we obtain
the existence and asymptotic behavior of least energy sign-changing solutions for (1.1),
which can be viewed as a generalization and improvement to the results in [31, 21, 51].

The main results in this paper can be stated as follows.

Theorem 1.1. Assume that ( f1)− ( f4) hold, then (1.1) possesses at least one least energy
sign-changing solution uλ ∈ H1

r (R2), which has precisely two nodal domains.

Theorem 1.2. Assume that ( f1) − ( f4) hold and let uλ ∈ H1
r (R2) be a least energy sign-

changing solution of (1.1) obtained in Theorem 1.1, then cλ > 0 is achieved and Iλ(uλ) >
2cλ, where

cλ , inf
{
Iλ(u) : u ∈ Nλ

}
and Nλ ,

{
u ∈ H1

r (R2)\{0} : 〈I′λ(u), u〉 = 0
}
.

Theorem 1.3. Assume that ( f1) − ( f4) hold, then for each sequence {λn} ⊂ (0,+∞) with
λn ↘ 0 as n → ∞, there exist a subsequence, still denoted by itself, and u0 ∈ H1

r (R2)
such that uλn obtained in Theorem 1.1 converges strongly in H1

r (R2) to u0. Moreover, u0
is a least energy sign-changing solution of the following problem−∆u + ωu = f (u) in R2,

u ∈ H1
r (R2),

(1.14)

which changes sign only once.

Remark 1.4. Similar to the discussions in [51], ( f4) with k = 1 exactly implies that

f (τ)τ − 6F(τ) + 2ωτ2 ≥ 0, ∀τ ∈ R,

which indicates that for every u ∈ H1
r (R2) there holds

6Iλ(u) − 〈I′λ(u), u〉 ≥ 2|∇u|22 +

∫
R2

[
f (u)u − 6F(u) + 2ωu2]dx ≥ 2|∇u|22.

Obviously, we cannot use the method in [51] to show that Iλ is coercive on the set

Mλ ,
{
u ∈ H1

r (R2) : u± , 0 and 〈I′λ(u), u+〉 = 〈I′λ(u), u−〉 = 0
}
. (1.15)
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Remark 1.5. As far as we are concerned, there seems to be no results concerning sign-
changing solutions for (1.1) until now. We would like to highlight that Theorems 1.1- 1.3
can be suitable for the model nonlinearity

f (t) =

{
0, if t ≤ 0,
tp−1 + αtq−1, if t > 0,

where 2 < q < 2(k + 2) < p < +∞ and α ∈ R satisfy

0 < α ≤
(2k + 4 − q)(q − 2)
(p − 2k − 4)(p − 2)

[ 2(k + 1)(q − 2)
(p − q)(p − 2k − 4)

] p−q
p−2
.

One could easily verify that each f (t) does not satisfy the Nehari type monotone condition
corresponding to (1.1)

f (t)/t2k+3 is increasing on (0,+∞) and decreasing on (−∞, 0), ∀k ∈ N+.

On the other hand, f (t) (even the case k ≡ 1) cannot be applied to (1.7) proposed in [51].
Therefore, we have to introduce some new analytic techniques to deal with the challenges
appearing in this paper.

To complete this section, we sketch the proofs of our main results as follows. In the
proof of Theorem 1.1, inspired by [17, 4], we apply the constrain minimization problem

mλ , inf
{
Iλ(u) : u ∈ Mλ

}
, (1.16)

to establish the existence of least energy solutions of (1.1), whereMλ is given by (1.15).
Firstly, we follow [51, Lemma 2.4] to show thatMλ , ∅, where we have to take some
delicate analysis for k ≥ 2. However, since ( f4) just implies that (see Section 3 below)

f (τ)τ − 2(k + 2)F(τ) + (k + 1)ωτ2 ≥ 0, ∀τ ∈ R, (1.17)

it’s difficult to prove that mλ > 0 in a standard way. To overcome it, we make full use of
the Gagliardo-Nirenberg inequality (see for instance [38, Theorem in Lecture II]), there
exists a best constant Kopt > 0, and for any s ∈ (2,+∞), such that

|u|ss ≤ Kopt|∇u|s−2
2 |u|

2
2, ∀u ∈ H1(R2). (1.18)

Secondly, because of (1.17), we take advantage of the cerebrated Vanishing lemma due
to P. L. Lions (see e.g. [32, 50]) to prove that Iλ is coercive onMλ which indicates that
every minimizing sequence of mλ is bounded in H1

r (R2). Then, by virtue of the Vanishing
lemma again, we show that mλ can be achieved by a nontrivial uλ ∈ H1

r (R2). Finally, we
modify the proof of [19, Propositin 4.9], in which a nonnegative solution was obtained,
to prove that uλ is indeed a solution of (1.1). So, we complete the proof of Theorem 1.1.

As to the proofs of Theorems 1.2 and 1.3, there are no essential differences from the
counterparts in [31, 51] except the boundedness of {uλn}. In view of the analytic skills in
the proof of Theorem 1.1, we can derive the boundedness of {uλn} in a very similar way.
Up to now, we can prove the main results successfully in this paper.

The paper is organized as follows. In Section 2, we provide some basic properties for
the Chern-Simons term. Section 3 is devoted to the proofs of Theorems 1.1-1.3.
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2. Variational settings and Preliminaries

In this section, we formulate (1.1) as a variational problem and prepare some prelim-
inary results. First, for every u ∈ H1

r (R2) and k ∈ N+, we define, for short, the following
quantities,

E j(u) ,
∫
R2

u2 j

|x|2

( ∫ |x|

0

r
2

u2dr
)2

dx, ∀ j ∈
{
1, 2, · · · , k

}
.

In view of [9, Proposition 4.1], one has∫ |x|

0

r
2

u2(r)dr ≤
|x|

2
√

2

( ∫ |x|

0
ru4(r)dr

)1/2
≤
|x|

4π
√

2

( ∫
R2
|u|4dx

)1/2
,

which implies that

E j(u) ≤
1

32π2

∫
R2

u2 jdx
∫
R2
|u|4dx, ∀ j ∈

{
1, 2, · · · , k

}
. (2.1)

Therefore, arguing as [9, Appendix A], we can show that E j(u) ∈ C1(H1
r (R2),R) for any

j ∈
{
1, 2, · · · , k

}
and then every critical point is a weak solution of (1.1). Moreover, we

can obtain the following lemma.

Lemma 2.1. ([9, Lemma 3.2]) Suppose that there is a sequence {un} ⊂ H1
r (R2) converg-

ing weakly to a function u ∈ H1
r (R2) as n → ∞. Then, for every ϕ ∈ H1

r (R2), {E j(un)},
{E′j(un)ϕ} and {E′j(un)un} converge up to a subsequence to E j(u), E′(u)ϕ and E′j(u)u for
any j ∈

{
1, 2, · · · , k

}
, respectively, as n→ ∞.

3. Proofs of Theorems 1.1-1.3

In this section, we give the detail proofs of Theorems 1.1-1.3 and always assume ( f1)−
( f4) are satisfied for simplicity. Firstly, we give some elementary, but very important for
the proofs of our main results, facts:

ζ(θ) , θ2(k+2) − (k + 2)θ2 + k + 1 > ζ(1) = 0,∀θ ∈ (0, 1) ∪ (1,+∞),

ξ j(θ) , ( j + 2)θ2(k+2) − (k + 2)θ2( j+2) + k − j > ξ j(1) = 0, ∀θ ∈ (0, 1) ∪ (1,+∞),
(3.1)

where j ∈
{
1, 2, · · · , k

}
. For every j ∈

{
1, 2, · · · , k

}
, we define

h j+1,1(s, t) , ( j + 1)s2(k+2) + t2(k+2) − (k + 2)s2 j+2t2 + k − j, ∀(s, t) ∈ (0,+∞) × (0,+∞),

h1, j+1(s, t) , s2(k+2) + ( j + 1)t2(k+2) − (k + 2)s2 j+2t2 + k − j, ∀(s, t) ∈ (0,+∞) × (0,+∞),

h j,2(s, t) , js2(k+2) + 2t2(k+2) − (k + 2)s2 jt4 + k − j, ∀(s, t) ∈ (0,+∞) × (0,+∞),

h2, j(s, t) , 2s2(k+2) + jt2(k+2) − (k + 2)s2 jt4 + k − j, ∀(s, t) ∈ (0,+∞) × (0,+∞).

We claim that for any (s, t) ∈ (0,+∞) × (0,+∞) and j ∈
{
1, 2, · · · , k

}
, there holds

h j+1,1(s, t) ≥ 0, h1, j+1(s, t) ≥ 0, h j,2(s, t) ≥ 0 and h2, j(s, t) ≥ 0. (3.2)

We just give the explanation of h j+1,1(s, t) ≥ 0 for every (s, t) ∈ (0,+∞) × (0,+∞) and
j ∈

{
1, 2, · · · , k

}
. In fact, we split it into two cases.
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Case I: j = k. Then it suffices to show that for j ∈
{
1, 2, · · · , k

}
,

h j+1(s, t) = ( j + 1)s2( j+2) + t2( j+2) − ( j + 2)s2 j+2t2 ≥ 0, ∀(s, t) ∈ (0,+∞) × (0,+∞),

which is equivalent to

( j + 1)(s/t)2( j+2) − ( j + 2)(s/t)2 j+2 + 1 ≥ 0, ∀(s, t) ∈ (0,+∞) × (0,+∞).

Similar to (3.1), we know that h j+1(s, t) > 0 for any (s, t) ∈ (0,+∞) × (0,+∞) and s , t.
Obviously, h j+1(s, t) = 0 when s = t. So, the claim is true.

Case II: j , k. It follows from some simple computations that ∂
∂s h j+1,1(s0, t0) = 2(k + 2)( j + 1)s2k+3

0 − 2(k + 2)( j + 1)s2 j+1
0 t2

0 = 0,
∂
∂t h j+1,1(s0, t0) = 2(k + 2)t2k+3

0 − 2(k + 2)s2 j+2
0 t0 = 0,

which yields that (s0, t0) = (1, 1) since s0 > 0 and t0 > 0. One the other hand,

det

 ∂2

∂s2 h j+1,1
∂2

∂s∂t h j+1,1
∂2

∂t∂s h j+1,1
∂2

∂t2 h j+1,1


(s0,t0)

= 16(k + 2)2( j + 1)
[
(k + 1)2 − j(k + 1) − ( j + 1)

]
.

Obviously, ∂2

∂s2 h j+1,1(s0, t0) > 0 and detHh j+1,1(s0, t0) > 0 for every j < k, where Hh j+1,1 is
the Hesse matrix of h j+1,1. Then we have h j+1,1(s, t) ≥ h j+1,1(s0, t0) = 0.

As a consequence of (3.1), we have

G(τ, u) ,
∫
R2

g(τ, u)dx ≥ 0, ∀τ ∈ (0,+∞) and u ∈ H1
r (R2), (3.3)

where

g(τ, u) =
1 − τ2(k+2)

2(k + 2)
f (u)u + F(τu) − F(u) +

ωζ(τ)
2(k + 2)

u2. (3.4)

To get (3.3), we prove that g(τ, u) ≥ 0 for any τ ∈ (0,+∞) and u ∈ H1
r (R2). Indeed,

∂

∂τ
g(τ, u) = f (τu)u − τ2k+3 f (u)u + ωτ(τ2(k+1) − 1)u2

= τ2k+3u2(k+2)
{[ f (τu)

(τu)2k+3 −
f (u)

u2k+3

]
+
ω
[
τ2(k+1) − 1

]
(τu)2k+2

}
.

In view of (1.8), one can find that gτ(τ, u) < 0 for any τ ∈ (0, 1), and gτ(τ, u) > 0 for any
τ ∈ (1,+∞). So, g(τ, u) > g(1, u) = 0 for every τ ∈ (0, 1)∪ (1,+∞). By virtue of ( f2) and
letting τ→ 0 in (3.4), there holds

f (u)u − 2(k + 2)F(u) + (k + 1)ωu2 ≥ 0, ∀u ∈ H1
r (R2). (3.5)

Combing (3.1)-(3.3), we obtain the following lemma.

Lemma 3.1. For every u = u+ + u− ∈ H1
r (R2) and (s, t) ∈ (0,+∞) × (0,+∞), we have

Iλ(u) − Iλ(su+ + tu−) −
1 − s2(k+2)

2(k + 2)
〈I′λ(u), u+〉 −

1 − t2(k+2)

2(k + 2)
〈I′λ(u), u−〉

≥
ζ(s)

2(k + 2)
|∇u+|22 +

ζ(t)
2(k + 2)

|∇u−|22.
(3.6)
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Proof. For every j ∈
{
1, 2, · · · , k

}
, we define

E+,+,+
j ,

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

r
2
|u+(r)|2dr

)2
dx, E−,−.−j ,

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

r
2
|u−(r)|2dr

)2
dx,

E+,+,−
j ,

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

r
2
|u+(r)|2dr

)( ∫ |x|

0

r
2
|u−(r)|2dr

)
dx,

E+,−,−
j ,

∫
R2

|u+|2 j

|x|2

( ∫ |x|

0

r
2
|u−(r)|2dr

)2
dx, E−,+,+j ,

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

r
2
|u+(r)|2dr

)2
dx,

E−,+,−j ,

∫
R2

|u−|2 j

|x|2

( ∫ |x|

0

r
2
|u+(r)|2dr

)( ∫ |x|

0

r
2
|u−(r)|2dr

)
dx.

Then, some direct computations give us that

Iλ(u) − Iλ(su+ + tu−) −
1 − s2(k+2)

2(k + 2)
〈I′λ(u), u+〉 −

1 − t2(k+2)

2(k + 2)
〈I′λ(u), u−〉

=
ζ(s)

2(k + 2)
|∇u+|22 +

ζ(t)
2(k + 2)

|∇u−|22 +
λ

2(k + 2)

k∑
j=1

1
j
[
ξ j(s)E+,+,+

j + ξ j(t)E
−,−,−
j

]
+

λ

k + 2

k∑
j=1

1
j

(
h j+1,1(s, t)E+,+,−

j + h1, j+1(s, t)E−,+,−j

)

+
λ

2(k + 2)

k∑
j=1

1
j

(
h j,2(s, t)E+,−,−

j + h2, j(s, t)E−,+,+j

)
+ G(s, u+) + G(t, u−),

which together with (3.1), (3.2) and (3.3) yields the desired result. �

Lemma 3.2. Given a function u ∈ H1
r (R2) with u± , 0, then there exists a unique pair

(su, tu) ∈ (0,+∞) × (0,+∞) such that suu+ + tuu− ∈ Mλ.

Proof. For the fixed u ∈ H1
r (R2) with u± , 0, we consider the following vector function

V(s, t) ,
(
〈I′λ(su+ + tu−), su+〉, 〈I′λ(su+ + tu−), tu−〉

)
, ∀(s, t) ∈ (0,+∞) × (0,+∞),

where

〈I′λ(su+ + tu−), su+〉 = s2‖u+‖2 + λ

k∑
j=1

j + 2
j

s2( j+2)E+,+,+
j −

∫
R2

f (su+)su+dx

+λ

k∑
j=1

1
j

[
2s4t2 jE−,+,+j + 2( j + 1)s2( j+1)t2E+,+,−

j + js2 jt4E+,−,−
j + 2s2t2( j+1)E−,+,−j

]
,

〈I′λ(su+ + tu−), tu−〉 = t2‖u−‖2 + λ

k∑
j=1

j + 2
j

t2( j+2)E−,−,−j −

∫
R2

f (tu−)tu−dx

+λ

k∑
j=1

1
j

[
js4t2 jE−,+,+j + 2s2( j+1)t2E+,+,−

j + 2s2 jt4E+,−,−
j + 2( j + 1)s2t2( j+1)E−,+,−j

]
.
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Recalling that (2.1), then we can apply ( f1) − ( f3) to show that there exist two constants
0 < R1 < R2 < +∞ such that{

〈I′λ(R1u+ + R1u−),R1u+〉 > 0, 〈I′λ(R1u+ + R1u−),R1u−〉 > 0,
〈I′λ(R2u+ + R2u−),R2u+〉 < 0, 〈I′λ(R2u+ + R2u−),R2u−〉 < 0.

Hence, by the monotonicity of s > 0 (resp. t > 0) if t > 0 (resp. s > 0) is fixed, one has{
〈I′λ(R1u+ + tu−),R1u+〉 > 0 and 〈I′λ(su+ + R1u−),R1u−〉 > 0, ∀s, t ∈ [R1,R2],
〈I′λ(R2u+ + tu−),R2u+〉 < 0 and 〈I′λ(su+ + R2u−),R2u−〉 < 0, ∀s, t ∈ [R1,R2].

It follows from the Miranda’s theorem [37] (or, [31, Lemma 2.4]) that there exists a pair
(su, tu) ∈ (R1,R2) × (R1,R2) such that V(su, tu) = (0, 0) which gives suu+ + tuu− ∈ Mλ.

We next prove that the pair (su, tu) ∈ (0,+∞)×(0,+∞) is unique. Arguing it indirectly,
there exist two pairs, (si, ti) with i = 1, 2, such that vi , siu+ + tiu− ∈ Mλ. Then

Iλ(v1) − Iλ(v2) −
s2(k+2)

1 − s2(k+2)
2

2(k + 2)s2(k+2)
1

〈I′λ(v1), s1u+〉 −
t2(k+2)
1 − t2(k+2)

2

2(k + 2)t2(k+2)
1

〈I′λ(v1), t1u−〉

≥
s2

1ζ(s2/s1)
2(k + 2)

|∇u+|22 +
t2
1ζ(t2/t1)
2(k + 2)

|∇u−|22 + G(s2/s1, s1u+) + G(t2/t1, t1u−),

and

Iλ(v2) − Iλ(v1) −
s2(k+2)

2 − s2(k+2)
1

2(k + 2)s2(k+2)
2

〈I′λ(v2), s2u+〉 −
t2(k+2)
2 − t2(k+2)

1

2(k + 2)t2(k+2)
2

〈I′λ(v2), t2u−〉

≥
s2

2ζ(s1/s2)
2(k + 2)

|∇u+|22 +
t2
2ζ(t1/t2)
2(k + 2)

|∇u−|22 + G(s1/s2, s2u+) + G(t1/t2, t2u−).

Since 〈I′λ(v1), s1u+〉 = 〈I′λ(v2), s2u+〉 = 0, and in view of (3.1) and (3.3), we can derive a
contradiction by adding the above two inequalities. The proof is complete. �

Lemma 3.3. There are two constants ρ± ∈ (0,+∞) such that ‖u±‖ ≥ ρ± for any u ∈ Mλ.
Moreover, mλ = inf

{
Iλ(u) : u ∈ Mλ} > 0. Similarly, cλ = inf

{
Iλ(u) : u ∈ Nλ} > 0.

Proof. By ( f1) − ( f2), for any ε > 0, there exists a constant Cε > 0 such that

max
{
f (t)t, F(t)

}
≤ εt2 + Cε |t|p for any t ∈ R and p > 2(k + 2). (3.7)

For any u ∈ Mλ which gives 〈I′λ(u), u±〉 = 0, combing (1.10)-(1.11) and (3.7), we obtain

‖u±‖2 ≤
∫
R2

f (u±)u±dx ≤
1
2
‖u±‖2 + C2‖u±‖p,

which gives the desired result. Let {un} ⊂ Mλ be a minimizing sequence of mλ, that is,
{un} ⊂ Mλ satisfies Iλ(un) → mλ as n → ∞. To proceed the proof, we split it into two
cases.

Case 1: Either ρ+ , infn∈N |∇u+
n |

2
2 > 0 or ρ− , infn∈N |∇u−n |

2
2 > 0. It follows from (3.5)

that

mλ = lim
n→∞

Iλ(un) = lim
n→∞

[
Iλ(un) −

1
2(k + 2)

〈I′λ(un), un〉

]
≥

k + 1
2(k + 2)

(ρ+ + ρ−) > 0.
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Case 2: ρ± , infn∈N |∇u±n |
2
2 = 0. By the first part of this lemma, up to a subsequence

if necessary, we can conclude that

|∇u±n |
2
2 → 0 and |u±n |

2
2 ≥

1
2

(ρ±)2 > 0. (3.8)

Let’s define
sn ,

√
2|u+

n |
−1
2 and tn ,

√
2|u−n |

−1
2 .

By (3.8), we obtain {sn}, {tn} are bounded and then

lim
n→∞

s2
n|∇u+

n |
2
2 = lim

n→∞
t2
n |∇u−n |

2
2 = 0. (3.9)

Since {un} ⊂ Mλ, by (3.1) and (3.3), we know that

Iλ(un) = max
s,t>0

Iλ(su+
n + tu−n ). (3.10)

Choosing ε = 1/4 in (3.7), combing (3.9) and (3.10), we derive

Iλ(un) ≥ Iλ(snu+
n + tnu−n ) ≥

s2
n

4
|u+

n |
2
2 +

t2
n

4
|u−n |

2
2 −C4sp

n |u
+
n |

p
p −C4tp

n |u
−
n |

p
p

≥ 1 −C5(sn|∇u+
n |2)p−2s2

n|u
+
n |

2
2 −C5(tn|∇u−n |2)p−2t2

n |u
−
n |

2
2 = 1 + o(1),

which gives the desired result, where we have used (1.18). The proof is complete. �

Lemma 3.4. The variational functional Iλ is coercive onMλ.

Proof. Arguing it indirectly, we may assume that there exists a sequence {un} ⊂ Mλ such
that Iλ(un)→ mλ and ‖un‖ → +∞ as n→ ∞. Set vn = un/‖un‖, then ‖vn‖ ≡ 1. Passing to
a subsequence, there exists a function v ∈ H1

r (R2) such that vn ⇀ v in H1
r (R2), vn → v in

Ls(R2) with s ∈ (2,+∞), and vn → v a.e. in R2. We claim that there exist two constants
R > 0 and δ > 0 such that

lim inf
n→∞

sup
y∈RN

∫
BR(y)
|vn|

2dx ≥ δ. (3.11)

If not, by using Lion’s vanishing lemma (see e.g. [32, 50]), one can conclude that vn → 0
in Ls(R2) for any s ∈ (2,+∞). For a fixed constant L >

√
2(1 + mλ), by (3.7), we obtain

lim
n→∞

∫
R2

F(Lvn)dx = 0,

which implies that

lim
n→∞

Iλ(Lvn) ≥
L2

2
− lim

n→∞

∫
R2

F(Lvn)dx =
L2

2
. (3.12)

Since {un} ⊂ Mλ, by (3.10) we derive

Iλ(un) = max
s,t>0

Iλ(su+
n + tu−n ) ≥ Iλ(L‖un‖

−1u+
n + L‖un‖

−1u−n ) = Iλ(Lvn).

By (3.12), we can get a contradiction because of the choice of L. So, (3.11) holds true
and there exists yn ∈ R

2 such that
∫

BR(0) v2
ndx ≥ δ/2 > 0, where vn = vn(· − yn). Clearly,

‖vn‖ = ‖vn‖ = 1, then there is a function v , 0 such that vn ⇀ v in H1
r (R2), vn → v in
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Ls(R2) with s ∈ (2,+∞), and vn → v a.e. in R2 in the sense of a subsequence. For every
x ∈ {x ∈ R2 : v(x) , 0

}
, we derive |un(· − yn)| = ‖un‖ · |vn(x)| → ∞ as n → ∞. It follows

from ( f3) that

lim inf
n→∞

∫
R2

F(un)
‖un‖

2(k+2) dx = lim inf
n→∞

∫
R2

F(un(· − yn))
|un(· − yn)|2(k+2) |vn|

2(k+2)dx = +∞. (3.13)

Since Iλ(un)→ mλ > 0 as n→ ∞, combing (2.1) and (3.13) we have

0 = lim sup
n→∞

Iλ(un)
‖un‖

2(k+2) ≤
C
2
− lim inf

n→∞

∫
R2

F(un)
‖un‖

2(k+2) dx = −∞,

a contradiction. The proof is complete. �

Lemma 3.5. Let u ∈ H1
r (R2) be a minimizer of Iλ(u) under the constraintMλ, then u is

a least energy sign-changing solution of (1.1).

Proof. We follow the idea used in [41, Theorem 2.2] and [44, Theorem 1.1]. Let u ∈ Mλ

be a minimizer of the functional Iλ|Mλ
. Then from Lemmas 3.1 and 3.2, one has

Iλ(u) = inf
v∈H1

r (R2) with v±,0
max
s,t>0

Iλ(sv+ + tv−) = inf
v∈Mλ

Iλ(v). (3.14)

Suppose by contradiction that u is not a weak solution of (1.1), then there exists a func-
tion ϕ ∈ C∞0 (R2) such that

〈I′λ(u), ϕ〉 < −1.
Choosing ε > 0 sufficiently small so that

〈I′λ(su+ + tu− + σϕ), ϕ〉 ≤ −
1
2
, for all |s − 1|, |t − 1|, |σ| ≤ ε. (3.15)

Let η(s, t) be a cutoff function such that 0 ≤ η(s, t) ≤ 1 for any (s, t) ∈ (0,+∞) × (0,+∞)
and

η(s, t) =

{
1, if |s − 1| ≤ 1

2ε and |t − 1| ≤ 1
2ε,

0, if |s − 1| ≥ ε or |t − 1| ≤ ε.

For every (s, t) ∈ (0,+∞) × (0,+∞), we define a path v : R+ × R+ → H1
r (R2) by

v(s, t) =

{
su+ + tu−, if |s − 1| ≥ ε or |t − 1| ≤ ε
su+ + tu− + εη(s, t)ϕ, if |s − 1| < ε and |t − 1| < ε.

We then claim that
max
s,t>0

Iλ(v(s, t)) < mλ. (3.16)

If |s − 1| ≥ ε or |t − 1| ≤ ε, then v(s, t) = su+ + tu−, and Lemma 3.2 implies that

Iλ(v(s, t)) = Iλ(su+ + tu−) < Iλ(u) = mλ.

If |s − 1| < ε and |t − 1| < ε, by (3.15)

Iλ(v(s, t)) = Iλ(su+ + tu−) +

∫ ε

0
〈I′λ(su+ + tu− + ση(s, t)ϕ), η(s, t)ϕ〉dσ

≤ Iλ(su+ + tu−) −
1
2
εη(s, t) < mλ,
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yielding that (3.16) holds. Hence, there exists a constant ε ∈ (0, 1 − ε) such that

max
ε≤s,t≤2−ε

Iλ(v(s, t)) = mλ < mλ. (3.17)

Similar to Lemma 3.2, set

V(s, t) ,
(
〈I′λ(v(s, t)), v+(s, t)〉, 〈I′λ(v(s, t)), v−(s, t)〉

)
.

It follows from some standard computations that{
〈I′λ(v(ε, t)), v+(ε, t)〉 > 0 and 〈I′λ(v(2 − ε, t)), v+(2 − ε, t)〉 < 0, ∀t ∈ [ε, 2 − ε],
〈I′λ(v(s, ε)), v−(s, ε)〉 > 0 and 〈I′λ(v(s, 2 − ε)), v−(s, 2 − ε)〉 < 0, ∀s ∈ [ε, 2 − ε].

which together with the Miranda’s theorem [37] (or, [31, Lemma 2.4]) that yields a pair
(s0, t0) ∈ (ε, 2−ε)×(ε, 2−ε) such that V(s0, t0) = (0, 0). So, s0u++t0u−+εη(s0, t0)ϕ ∈ Mλ,
which is a contradiction to (3.17). The proof is complete. �

Proof of Theorem 1.1. Let {un} ⊂ Mλ be a minimizing sequence of Iλ under the con-
straintMλ, namely {un} ⊂ Mλ and Iλ(un)→ mλ as n→ ∞. By Lemma 3.4, the sequence
{un} is bounded in H1

r (R2) and then there exists a function uλ ∈ H1
r (R2) such that un ⇀ uλ

in H1
r (R2), un → uλ in Ls(R2) with s ∈ (2,+∞), and un → uλ a.e. in R2. In view of (1.10)

and (1.11), by using {un} ⊂ Mλ and Lemma 3.3, one has

0 < (ρ±)2 ≤ lim inf
n→∞

‖u±n ‖
2 ≤ lim inf

n→∞

∫
R2

f (u±n )u±n dx =

∫
R2

f (u±λ )u±λdx,

which shows that u±λ , 0. Moreover, by Lemma 2.1, one can easily observe that

〈I′λ(uλ), u±λ 〉 ≤ lim inf
n→∞

〈I′λ(un), u±n 〉 = 0. (3.18)

Then combing the Fatou’s lemma, Lemma 2.1, (3.3), (3.6) and (3.18), for every (s, t) ∈
(0,+∞) × (0,+∞), there holds

mλ = lim inf
n→∞

Iλ(un) = lim inf
n→∞

[
Iλ(un) −

1
2(k + 2)

〈I′λ(un), un〉
]

= lim inf
n→∞

[ 1
2(k + 2)

|∇un|
2
2 +

λ

2(k + 2)

k∑
j=1

k − j
k

E j(un) + G(0, un)
]

≥ Iλ(uλ) −
1

2(k + 2)
〈I′λ(uλ), u+

λ 〉 −
1

2(k + 2)
〈I′λ(uλ), u−λ 〉

≥ Iλ(su+
λ + tu−λ ) −

s2(k+2)

2(k + 2)
〈I′λ(uλ), u+

λ 〉 −
t2(k+2)

2(k + 2)
〈I′λ(uλ), u−λ 〉

≥ Iλ(su+
λ + tu−λ ) ≥ mλ, by the arbitrariness of (s, t) ∈ (0,+∞) × (0,+∞),

which yields that 〈I′λ(uλ), u+
λ 〉 = 〈I′λ(uλ), u−λ 〉 = 0 and Iλ(uλ) = mλ. Recalling that Lemma

3.5, we know that uλ is indeed a least energy sign-changing solution solution of (1.1).
We apply the arguments in [13] to determine the number of nodal domains of uλ. If uλ
has more than two nodal domains, say, D1,D2 are positive domains, and D3 is a negative
domain. Then uλ|D1∪D3 ∈ Mλ and uλ|D2 ∈ Nλ, thus Iλ(uλ) ≥ mλ+cλ, a contradiction. �
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Proof of Theorem 1.2. Proceeding as the proof of Theorem 1.1, there exists a function
vλ ∈ H1

r (R2) such that I′λ(vλ) = 0 and Iλ(vλ) = cλ > 0 (see Lemma 3.3). From Theorem
1.1, we know that (1.1) has a least energy sign-changing solution uλ ∈ H1

r (R2) which
changes sign only once. It is similar to Lemma 3.2 that there exist two constants sλ, tλ > 0
such that sλu+

λ ∈ Nλ and tλu−λ ∈ Nλ. By using (1.9) and (3.14), one has

mλ = Iλ(uλ) ≥ Iλ(sλu+
λ + tλu−λ ) > Iλ(sλu+

λ ) + Iλ(tλu−λ ) ≥ 2cλ.

The proof is complete. �

Proof of Theorem 1.3. For each λ > 0, let uλ = u+
λ + u−λ with u±λ , 0 be a least energy

sign-changing solution of (1.1) obtained in Theorem 1.1, which changes sign only once.
Choosing a sequence {λn} ⊂ (0, 1) to satisfy λn ↘ 0 as n→ ∞. We denote {un} and {mn}

by {uλn} and {mλn} for simplicity, respectively.

Step 1. The sequences {mn} and {un} are bounded in R+ and H1
r (R2), respectively.

Firstly, we prove that {mλn} is bounded. Note that the idea comes from [51, Theorem 1.3],
but we have to take some delicate analysis when k ∈ N+ with k ≥ 2. Let w0 ∈ C∞0 (R2)
with w±0 , 0. From ( f1) − ( f3), there exist k + 1 constants β0 > 0 and β j ≥ j−1E j(w0) for
any j ∈ {1, 2, · · · , k} such that

∫
R2 F(sw+

0 )dx ≥
∑k

j=1 β js2( j+2) − β0, ∀s ∈ (0,+∞),∫
R2 F(tw−0 )dx ≥

∑k
j=1 β jt2( j+2) − β0, ∀t ∈ (0,+∞).

(3.19)

In view of the notations used in the proof of Lemma 3.1, we have

E j(w0) = E+,+,+
j (w0) + 2E+,+,−

j (w0) + E+,−,−
j (w0)

+ E−,+,+j (w0) + 2E−,+,−j (w0) + E−,−,−j (w0). (3.20)

Obviously, there exist two constants M1,M2 ∈ (0,+∞) such that
maxs>0

(
s2

2 ‖w
+
0 ‖

2 −
∑k

j=1
1
2 j E

+,+,+
j (w0)s2( j+2)

)
, M1,

maxt>0

(
t2
2 ‖w

−
0 ‖

2 −
∑k

j=1
1
2 j E

−,−,−
j (w0)t2( j+2)

)
, M2.

(3.21)

Similar to the Case I of (3.2), for any (s, t) ∈ (0,+∞) × (0,+∞) there holds

Hi, j(s, t) ≥ 0, i ∈ {1, 2, 3, 4} and j ∈ {1, 2, · · · , k}, (3.22)

where
H1, j(s, t) , s2( j+2) − s2 j+2t2 + t2( j+2), H2, j(s, t) , 2s2( j+2) − s2 jt4 + 2t2( j+2),

H3, j(s, t) , 2s2( j+2) − s4t2 j + 2t2( j+2), H4, j(s, t) , s2( j+2) − s2t2 j+2 + t2( j+2).

Denoting ws,t = sw+
0 + tw−0 , we claim that

max
s,t>0

I1(ws,t) ≤ M1 + M2 + 2β0 , M0 ∈ (0,+∞), (3.23)

where M0 is a constant independent of n ∈ N. Indeed, combing (3.19)-(3.22), we obtain
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the following estimate, for any (s, t) ∈ (0,+∞) × (0,+∞),

I1(ws,t) ≤
s2

2
‖w+

0 ‖
2 +

t2

2
‖w−0 ‖

2 + 2β0 −

k∑
j=1

1
j
E j(w0)

[
s2( j+2) + t2( j+2)]

+

k∑
j=1

[ 1
2 j

s2 j+4E+,+,+
j (w0) +

1
j
s2 j+2t2E+,+,−

j (w0) +
1
2 j

s2 jt4E+,−,−
j (w0)

]

+

k∑
j=1

[ 1
2 j

s4t2 jE−,+,+j (w0) +
1
j
s2t2 j+2E−,+,−j (w0) +

1
2 j

t2 j+4E−,−,−j (w0)
]

=

[ s2

2
‖w+

0 ‖
2 −

k∑
j=1

1
2 j

E+,+,+
j (w0)s2( j+2)

]
+

[ t2

2
‖w−0 ‖

2 −

k∑
j=1

1
2 j

E−.−.−j (w0)t2( j+2)
]

+ 2β0 −

k∑
j=1

1
j

[
H1, j(s, t)E+,+,−

j (w0) + H3, j(s, t)E−,+,+j (w0)
]

−

k∑
j=1

1
2 j

[
H2, j(s, t)E+,−,−

j (w0) + H4, j(s, t)E−,+,−j (w0)
]

≤ M1 + M2 + 2β0 = M0 ∈ (0,+∞),

which implies that (3.23) holds true. Since 0 < λn < 1, by (3.14) and (3.23) we have

mn ≤ max
s,t>0

Iλn(sw+
0 + tw−0 ) ≤ max

s,t>0
I1(ws,t) ≤ M0.

One can obtain the boundness of {un} in a very similar way in the proof of Lemma 3.4,
we omit it here. The proof of Step 1 is complete.

Step 2. I′0(u0) = 0 and I0(u0) = m0.
Recalling that the Step 1, there exist a subsequence, still denoted by itself, and a function
u0 ∈ H1

r (R2) such that un ⇀ u0 in H1
r (R2), un → u0 in Ls(R2) with each s ∈ (2,+∞) and

un → u0 a.e. R2. Similar to the proof in Theorem 1.1, one has u±0 , 0. By ( f1) − ( f2),

〈I′0(u0), ϕ〉 = lim
n→∞
〈I′λn

(un), ϕ〉 = 0, ∀ϕ ∈ C∞0,r(R
2) =

{
u ∈ C∞0,r(R

2) : u(x) = u(|x|)
}
,

which yields that I′0(u0) = 0 in H1
r (R2). As a consequence, u0 is a sign-changing solution

of (1.14), which changes sign only once. By virtue of the Fatou’s lemma, one has

m0 ≤ I0(u0) ≤ lim inf
n→∞

Iλn(un) = lim inf
n→∞

mn ≤ lim sup
n→∞

mn. (3.24)

On the other hand, let w0 ∈ H1(R2) be a least energy sign-changing solution of (1.14),
that is, I′0(w0) = 0 and I0(w0) = m0. We claim that

lim
n→∞
〈I′λn

(w0),w+
0 〉 = lim

n→∞
〈I′λn

(w0),w−0 〉 = 0. (3.25)

In fact, since 〈I′0(w0),w+
0 〉 = ‖w+

0 ‖
2 −

∫
R2 f (w+

0 )w+
0 dx = 0, we can conclude the following



GAUGED SCHRÖDINGER EQUATION 17

fact that

〈I′λn
(w0),w+

0 〉 = λn

k∑
j=1

1
j

[
( j + 2)E+,+,+

j (w0) + 2( j + 1)E+,+,−
j (w0) + E+,−,−

j (w0)

+ 2E−,+,+j (w0) + 2E−,+,−j (w0)
]
,

which yielding the first part of (3.25) since λn → 0 as n→ ∞. We can get the other part
of (3.25) in the same way. Since w±0 , 0, by Lemma 3.2, then there exists a unique pair
(sn, tn) ∈ (0,+∞) × (0,+∞) such that snw+

0 + tnw−0 ∈ Mλn . We claim that

both {sn} and {tn} are bounded in R+. (3.26)

We argue it indirectly and distinguish the following three cases:

Case 1. sn → ∞ and tn → ∞ as n → ∞. Without loss of generality, we may assume
that sn ≤ tn for any n ∈ N. By 〈I′λn

(snw+
0 + tnw−0 ), tnw−0 〉 = 0, we have

t2
n‖w

−
0 ‖

2 + λn

k∑
j=1

1
j

[
( j + 2)t2 j+4

n E−,−,−j (w0) + 2( j + 1)s2
nt2 j+2

n E−,+,−j (w0)

+2s2 j
n s4

nE+,−,−
j (w0) + s4

nt2 j
n E−,+,+j (w0) + 2s2 j+2

n t2
nE+,+,−

j (w0)
]

=

∫
R2

f (snw+
0 )snw+

0 dx.

Dividing t2(k+2)
n on both sides of the above formula, we can get a contradiction by ( f3).

Case 2. sn → ∞ as n → ∞ and {tn} is bounded. By 〈I′λn
(snw+

0 + tnw−0 ), snw+
0 〉 = 0, we

have

s2
n‖w

+
0 ‖

2 + λn

k∑
j=1

1
j

[
( j + 2)s2 j+4

n E+,+,+
j (w0) + 2( j + 1)s2 j+2

n t2
nE+,+,−

j (w0)

+s2 j
n t4

nE+,−,−
j (w0) + 2s4

nt2 j
n E−,+,+j (w0) + 2s2

nt2 j+2
n E−,+,−j (w0)

]
=

∫
R2

f (snw+
0 )snw+

0 dx.

Dividing s2(k+2)
n on both sides of the above formula, we can get a contradiction by ( f3).

Case 3. tn → ∞ as n→ ∞ and {sn} is bounded. We take a contradiction as Case 2.

Combing (3.1), (3.6) and (3.25)-(3.26), there holds

m0 = I0(w0) = lim sup
n→∞

Iλn(w0)

≥ lim sup
n→∞

[
Iλn(snw+

0 + tnw−0 ) +
1 − s2(k+2)

n

2(k + 2)
〈I′λn

(w0),w+
0 〉 +

1 − t2(k+2)
n

2(k + 2)
〈I′λn

(w0),w−0 〉
]

= lim sup
n→∞

Iλn(snw+
0 + tnw−0 ) ≥ lim sup

n→∞
mn,

which together with (3.24) gives that I0(u0) = m0. The proof is complete. �
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plan, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 307-310 and Publications du Laboratoire d’Analyse
Numérique, Université de Paris VI (1984). 3
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