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An algorithm for two-variable rational interpolation is developed. The algorithm is
suitable for interpolation cases where neither the number of interpolation points to
be used nor the final degrees of the rational interpolant are known a priori. Instead, a
maximum degree for the interpolant’s numerator and denominator is assumed, and,
by testing the condition number of the interpolation system’s matrix at each step, the
necessary reductions are made so as to cope with non-normality and unattainability
occasions. The algorithm can be used for applications of the Evaluation-Interpolation
technique in matrix manipulations, such as finding the inverse of a matrix with ele-
ments rational functions in two variables. The algorithm avoids completely symbolic
calculations, thus keeping the execution time very low even if the system size is large,
and achieves accurate function recoveries for greater polynomial degrees than other
bivariate rational interpolation methods.
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1 INTRODUCTION

The problem of two-variable rational interpolation has been addressed by many authors in the recent years (see1 for a thorough

review). However, in all research done so far, it is assumed that the degrees of the numerator and denominator of the wanted

rational interpolant are predefined - e.g. determined by the available number of interpolation points. However, there are cases

where neither the number of interpolation points to be used nor the final degrees of the rational interpolant are known a priori.

In these cases we have to assume a maximum degree for the interpolant’s numerator and denominator, and proceed with interpo-

lation, reducing this degree if necessary. Such an example is the application of the Evaluation-Interpolation technique in matrix

manipulations, widely used in Control Theory (see e.g.2,3). If for example we want to calculate the inverse of a matrix with
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elements rational functions in two variables without the use of symbolic calculations, we can arrive to the solution doing only

numerical calculations, by means of interpolating at numerical “instances" of the solution. That is, we first calculate numerical

instances of the matrix inverse for specific data points and then interpolate the analytic solution at these points. In order to imple-

ment this technique, the first thing to be calculated is the maximum global degree of the numerator and denominator of each

element of the wanted inverse matrix. The initial number of needed interpolation points will be determined by this degree, but

as the interpolation procedure develops, it may come out that fewer interpolation points are actually needed for the calculation

of each symbolic element of the inverse matrix.

In the sections that follow: a) we define the problem of two-variable rational interpolation, b) we develop the Algorithm of

Successive Reductions, which starts with a maximum interpolant degree and successively reduces the number of interpolation

points used, in order to arrive to the correct rational interpolant for the specific problem, c) we apply this algorithm to the calcu-

lation of the inverse of a matrix with elements rational functions in two variables using the Evaluation-Interpolation technique

and d) we compare the efficacy of the Algorithm of Successive Reductions with that of the recently developped Bulirsch-Stoer

bivariate rational interpolation algorithm4.

2 THE TWO-VARIABLE RATIONAL INTERPOLATION PROBLEM

Extending the canonical formularity (see e.g.5) of the univariate case to two dimensions, the rational interpolation problem in

two-variables can be defined as follows:

Let f (x, y) be an unknown function of x, y. We need to determine a rational function of x, y

r(x, y) = p(x, y)∕q(x, y)

where p(x, y) and q(x, y) are polynomials of x, y, of priorly unknown global degrees np and nq respectively. The rational function

r(x, y) must be such, that, for a specific numberM of interpolation points (xi, yi, f (xi, yi)), it holds

r(xi, yi) = fi, i = 1, ..,M,

where for reasons of simplicity we denote f (xi, yi) with fi. Then, r(x, y) interpolates f (x, y) at the given points. The number of

interpolation pointsM and the global degrees np and nq are directly related. In fact, if we focus on finding a rational function

r(x, y) = p(x, y)∕q(x, y) with p(x, y), q(x, y) of global degree at most n in x, y, thenM can be specified as follows:



Katerina G. Hadjifotinou & Nicholas P. Karampetakis 3

p(x, y), q(x, y) can be presented as

p(x, y) =
n
∑

i=0

n−i
∑

j=0
ai,jx

iyj

= a0,0 + a0,1 y + ... + a0,n−1yn−1 + a0,nyn

+ a1,0x + a1,1xy + ... + a1,n−1xyn−1

...

+ an−1,0xn−1 + an−1,1xn−1y

+ an,0xn

(1)

q(x, y) =
n
∑

i=0

n−i
∑

j=0
bi,jx

iyj

= b0,0 + b0,1 y + ... + b0,n−1yn−1 + b0,nyn

+ b1,0x + b1,1xy + ... + b1,n−1xyn−1

...

+ bn−1,0xn−1 + bn−1,1xn−1y

+ bn,0xn.

(2)

Therefore, the number of coefficients to be specified is (n+1)(n+2)∕2 for the numerator p(x, y) and the same for the denominator

q(x, y), so the total number of coefficients is:

N = (n + 1)(n + 2).

Since for the interpolation points (xi, yi, fi) i = 1, ..,M it must be

r(xi, yi) = fi, i = 1, ..,M,

this leads to the relation

p(xi, yi) − fiq(xi, yi) = 0, i = 1, ..,M. (3)

Substituting (1) and (2) to (3) we get

a0,0 + a0,1yi + ... + a0,nyni + ... + an,0x
n
i − fib0,0 − fib0,1yi − ... − fib0,ny

n
i − ... − fibn,0x

n
i = 0, i = 1, ..,M. (4)
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The system (4) is a homogeneous system ofM equations withN unknowns. Let us denote the system’s matrix as

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1⋯ yn1 ... x1yn−11 ... xn1 −f1 −f1y1 ⋯ −f1xn1

1⋯ yn2 ... x2yn−12 ... xn2 −f2 −f2y2 ⋯ −f2xn2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1⋯ ynM ... xMyn−1M ... xnM −fM −fMyM ⋯ −fMxnM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

In order to be able to obtain a non-trivial solution of (4) for any set of interpolation points, it must be M < N . If we use for

exampleM = N −1 interpolation points, then we can normalize the rational function r(x, y) by assuming b0,0 = 1 and thus we

obtain the (N − 1) × (N − 1) non-homogeneous system

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 ⋯ yn1 ... x1yn−11 ... xn1 −f1y1 ⋯ −f1xn1

1 ⋯ yn2 ... x2yn−12 ... xn2 −f2y2 ⋯ −f2xn2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 ⋯ ynN−1 ... xN−1yn−1N−1 ... x
n
N−1 −fN−1yN−1 ⋯ −fN−1xnN−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0,0

a0,1

⋮

an,0

b0,1

⋮

bn,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1

f2

⋮

fN−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

However, system (6) has a non-zero determinant and therefore a unique solution only if b0,0 is indeed non-zero. Consider for

example the case when the function we want to interpolate is

f (x, y) = x2 − 1
x + y

.

In this case the interpolant r(x, y) must have b0,0 = 0.

Nevertheless, there is still solution to the problem. All we need to do, is normalize r(x, y) by assuming a0,0 = 1 instead of

b0,0 = 1.

In this case the (N − 1) × (N − 1) system would be

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1 ⋯ yn1 ... x1yn−11 ... xn1 −f1 ⋯ −f1xn1

y2 ⋯ yn2 ... x2yn−12 ... xn2 −f2 ⋯ −f2xn2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

yN−1 ⋯ ynN−1 ... xN−1yn−1N−1 ... x
n
N−1 −fN−1 ⋯ −fN−1xnN−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0,1

⋮

an,0

b0,0

b0,1

⋮

bn,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1

⋮

−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(7)
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whilst its solution would contain b0,0 = 0.

Of course, there still remains the case when both a0,0 and b0,0 are zero. Let us consider e.g.

f (x, y) = x2

x + y
.

This case can still be solved if we reduce the size N of our problem by 2 and repeat the process. Then the number of interpo-

lation points needed, would be N − 3. In this way we can overpass the problems of unattainability and non-normality of the

canonical representation of the system, stated by Salazar Celis6 as well as other researchers. The procedure described above can

be standardized into the following Algorithm of Successive Reductions (ASR).

3 ALGORITHM OF SUCCESSIVE REDUCTIONS (ASR)

Step 1

Determine the maximum global degree maxn of the numerator and the denominator of the wanted interpolant.

Step 2

Calculate the initial size of the problem:N = (maxn + 1)(maxn + 2).

Step 3

Choose N − 1 interpolation points (xi, yi, fi). In order to avoid system singularities, not only due to the poles of f (x, y) but

also due to a possible production of two identical columns in the system’s matrix, a fairly safe strategy is a random choice of

xi, yi ∈ (0, 1) instead of using e.g. an orthogonal distribution of (xi, yi).

Step 4

Calculate homogeneous system matrix B as of (5).

Step 5

Calculate the reciprocal condition numbers (in 1-norm, see e.g the Matlab function rcond) c1 and c2 of submatrices B1 = B-

{column N∕2 + 1, that is, the column of b0,0} and B2 = B-{column 1, that is, the column of a0,0} respectively. A matrix is

well-conditioned if it’s reciprocal condition number is close to 1, while it is badly conditioned if it’s reciprocal condition number

is close to zero - that is, close to machine accuracy �.

If the maximum of c1 and c2 is not close to zero, assume the corresponding coefficient (b0,0 or a0,0) to be 1 and solve the thus

derived non-singular non-homogeneous system (6) or (7) respectively.
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Else, reduce system size by 2 removing the first and the (N∕2 + 1)-th columns of matrix B, together with it’s last two rows

(since now the number of needed interpolation points is also reduced by 2) and repeat Step 5. In the most extreme scenario, after

successive executions of Step 5, the size of the system will be reduced toN = 2 and the interpolant will be a constant.

Step 5 of the above algorithm can be further enriched by an extra procedure that acts on the final non-singular system to be

solved: Since we are dealing with polynomials in two variables, it is highly probable that most of the coefficients of the solution

are zero, especially in cases of global degrees greater than three. It is well known that a zero element in the solution vector of

a non-singular linear system corresponds to linear dependence of the vector of system constants with the rest columns of the

system’s matrix (that is, if we substitute the system’s column that corresponds to the zero element with the vector of system

constants, the determinant of the corresponding matrix is zeroed). This property can be used as an extra check, column by

column, to further reduce the system size and finally solve the much smaller system of non-zero solution elements. This can be

better illustrated in the following example:

If wanting to recover the function

f (x, y) = x
2y2

with the only knowledge that the maximum global degree of it’s numerator and denominator is maxn = 3, then the initial size of

the problem will beN = 20. That is, we will have to calculate 20 unknown coefficients and useN −1 = 19 interpolation points,

thus creating a matrix B of the form (5) with dimensions 19 × 20. Each column of B corresponds to an unknown coefficient,

the coefficients being ordered as follows:

1 y y2 y3 x xy xy2 x2 x2y x3 1 y y2 y3 x xy xy2 x2 x2y x3

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a2,0 a2,1 a3,0 b0,0 b0,1 b0,2 b0,3 b1,0 b1,1 b1,2 b2,0 b2,1 b3,0

However, since in our example both coefficients a0,0 and b0,0 are zero, both reciprocal condition numbers c1 and c2 of the

submatrices B1 and B2 described in Step 5 of ASR are zero. As a result, the columns 1 and 11 of B have to be omitted. The

last two lines of B need also be discarded, since now the number of unknowns, and together the needed interpolation points, is

reduced by 2.

Step 5 of ASR is then repeated, examining the reciprocal condition numbers that correspond to the coefficients a0,1 and b0,1.

These are also zero, and Step 5 is repeated again, now with the dimensions ofB being 15×16 and it’s columns corresponding to:

y2 y3 x xy xy2 x2 x2y x3 y2 y3 x xy xy2 x2 x2y x3

a0,2 a0,3 a1,0 a1,1 a1,2 a2,0 a2,1 a3,0 b0,2 b0,3 b1,0 b1,1 b1,2 b2,0 b2,1 b3,0

However now c1 is non-zero, since it corresponds to the non-zero denominator’s coefficient b0,2 of y2. Therefore we can normalize

by assuming that b0,2 = 1 and solve the corresponding non-homogeneous uniquely solvable 15 × 15 system.
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At this point, we can further simplify our system by successively substituting each column of the system’s 15 × 15 matrix

with the vector of system constants and examining the reciprocal condition number of the thus derived matrix. In fact, at our

example, the 15-element solution vector contains only one non-zero element, that concerning the coefficient a1,0. Therefore, if

we perform this procedure for our example, we will find only one non-zero reciprocal condition number, the one that corresponds

to the third column of the reduced 15 × 15 matrix B. This practically means that only one interpolation point is finally needed

in order to reproduce the interpolant.

If, for example, the first of our interpolation points was (x1, y1) = (2, 1) with f1 = 1, our final system, after deducting the 14

unnecessary columns of B, would degenerate into one trivial equation:

a1,0x1 − f1y21 = 0 ⇔ 2a1,0 = 1

which yields a1,0 = 0.5. This coefficient, together with the assumed b0,2 = 1 are adequate for reproducing the wanted interpolant

as

f (x, y) = 0.5x
y2

.

A complete numerical illustration of all stages of the ASR procedure is presented in the next section, where the algorithm is

connected to an application of the Evaluation-Interpolation technique.

4 APPLICATION IN THE EVALUATION-INTERPOLATION TECHNIQUE:

CALCULATION OF THE INVERSE OF A MATRIX WITH ELEMENTS RATIONAL

FUNCTIONS IN TWO VARIABLES

Let A be a square invertible matrix with elements rational functions of x, y, whose inverse we want to calculate without the use

of symbolic calculations. The Evaluation-Interpolation technique (see e.g.2,3) uses numerical computations to compute the exact

solution by means of interpolating at numerical “instances" of the solution. In our case, we first calculate numerical instances of

A−1 for specific data points and then interpolate the analytic solution A−1 at these points. In fact, each element of A−1 will also

be a rational function of x, y. Assigning specific values of xi, yi on A, we can numerically calculate A−1(xi, yi). Each element

A−1
r,c , r, c = 1, .., size(A) of A−1(xi, yi) is actually a value fi,r,c of the wanted function fr,c at the point (xi, yi) (i = 1, ..,M).

As a result, ASR must be run as many times as are the elements of A. In order to implement the algorithm, the first thing to

be considered is the maximum global degree of the numerator and denominator of each element of the wanted A−1. This can

be easily done as follows: It is easy to show (e.g.3, p. 227) that the maximum degree of the numerator and denominator of each

element of A−1 is the corresponding degree of the numerator of det(A). The latter can be calculated as follows:
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Let Deg1 be the matrix of global degrees of all numerators of the elements of A and Deg2 be the matrix of global degrees of

all denominators. det(A) is also a rational function of x, y. The maximum global degreeD2 of it’s denominator is the sum of all

denominator degrees (that is, the sum of all elements ofDeg2). The maximum global degreeD1 of it’s numerator isD2+Dm,Dm

being the minimum between the sum of the maximum global degrees of all rows and the sum of the maximum global degrees

of all columns of Deg1(see e.g.3, p. 199). As a result, for each element of A−1 we can take as maxn (that is, maximum global

degrees of it’s numerator and denominator) the value D1. Now we can proceed to Step 2 of the algorithm. Again the initial size

of the problem is N = (maxn + 1)(maxn + 2) and is the same for each element of A−1. The choice of the N − 1 interpolation

points (xi, yi) at step 3 can also be the same for each element. However, the values fi, i = 1, .., N − 1 are different for each

element as we have explained above.

This is why we need to calculate matrix B of algorithm’s Step 4 from the beginning, for each element of A−1. Step 5 must

also be run for each element seperately.

An example

An example of the complete procedure follows. Let

A(x, y) =

⎡

⎢

⎢

⎢

⎣

1
x2

y+3
x

1 2x

⎤

⎥

⎥

⎥

⎦

be the matrix, with elements rational functions of x, y, whose inverse we want to calculate. It is easy to find analytically that the

determinant of A is

det(A) = −
y + 1
x

while the wanted inverse is

A−1(x, y) =

⎡

⎢

⎢

⎢

⎣

−2x2

y+1
y+3
y+1

x
y+1

−1
xy+x

⎤

⎥

⎥

⎥

⎦

. (8)

Application of ASR for each element of A:

Step 1

The matrix Deg1 of global degrees of all numerators of A is:

Deg1 =

⎡

⎢

⎢

⎢

⎣

0 1

0 1

⎤

⎥

⎥

⎥

⎦

while the matrix Deg2 of global degrees of all denominators of A is:

Deg2 =

⎡

⎢

⎢

⎢

⎣

2 1

0 0

⎤

⎥

⎥

⎥

⎦



Katerina G. Hadjifotinou & Nicholas P. Karampetakis 9

The sum of all elements of Deg2 is

D2 = 3.

The minimum between the sum of the maximum global degrees of all rows and the sum of the maximum global degrees of all

columns of Deg1 is

Dm = min{1 + 1, 0 + 1} = 1.

As a result, the maximum global degree D1 of the numerator of det(A) is

D1 = D2 +Dm = 4

and therefore we take

maxn = 4.

Step 2

The initial size of the problem is

N = (maxn + 1)(maxn + 2) = 30.

Step 3

We must randomly choose N − 1 = 29 interpolation points xi, yi ∈ (0, 1), substitute each of these points in A and calculate

numerically fi = A−1(xi, yi). The list of points of an execution of the algorithm is shown in Table 1.

Step 4

The homogeneous system matrix B whose size is 29 × 30, has again to be calculated 4 times, one for each element of A−1.

Indicatively in Table 2 we present matrixB1,1 (that corresponds to the (1,1)-element of wanted matrixA−1) rounded at 1 decimal

digit. At the first line of the table, the x, y-monomials that correspond to each column are shown.

Step 5

Repeat for each of the four matrices Bi,j , i, j = 1, 2:

Calculate the reciprocal condition numbers c1 and c2 of submatricesBi,j-{column 16} andBi,j-{column 1} respectively. If the

maximum of c1 and c2 is not close to zero, assume the corresponding coefficient to be 1 and solve the thus derived non-singular

non-homogeneous system of the form (6) or (7). Else, reduce system size by 2, remove the two columns of matrix Bi,j that were

tested with the above process to be linearly dependent to the rest, remove also the last two rows of Bi,j and repeat Step 5.

E.g. forB1,1 the complete process of it’s reductions is shown in Table 3, where for the calculated reciprocal condition numbers,

their order of magnitude is presented.
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From Table 3 we notice that, in order to find a reciprocal condition number that is not close to zero, we need to reduce the

system size as much asN = 12. That is, we need to omit columns 1-9 and 16-24 and rows 12-29 of B1,1.The matrix after these

reductions is shown in Table 4 (rounded at two decimal digits).

Since, as shown in Table 3, for N = 12 c1 is non-zero, the coefficient of column 7 of Table 4 can be considered as b2,0 = 1.

As a result, from matrix B1,1 of Table 4 we can obtain the following uniquely solvable 11 × 11 system:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.11 0.03 0.01 0.04 0.01 0.01 0.00 0.00 0.01 0.00 0.00

0.10 0.10 0.10 0.03 0.03 0.01 0.01 0.01 0.00 0.00 0.00

0.30 0.23 0.17 0.16 0.12 0.09 0.08 0.06 0.06 0.04 0.03

0.71 0.12 0.02 0.60 0.10 0.50 0.14 0.02 0.72 0.12 0.61

0.82 0.09 0.01 0.74 0.08 0.67 0.13 0.01 1.09 0.11 0.98

0.56 0.40 0.30 0.41 0.30 0.31 0.26 0.19 0.27 0.19 0.20

0.51 0.07 0.01 0.37 0.05 0.26 0.06 0.01 0.34 0.04 0.24

0.20 0.10 0.05 0.09 0.05 0.04 0.03 0.01 0.02 0.01 0.01

0.28 0.24 0.21 0.15 0.13 0.08 0.07 0.06 0.05 0.04 0.02

0.46 0.37 0.30 0.31 0.25 0.21 0.19 0.15 0.16 0.13 0.11

0.28 0.27 0.26 0.15 0.14 0.08 0.08 0.07 0.04 0.04 0.02

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a2,0

a2,1

a2,2

a3,0

a3,1

a4,0

b2,1

b2,2

b3,0

b3,1

b4,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.02

−0.01

−0.10

−0.86

−1.20

−0.36

−0.47

−0.05

−0.09

−0.23

−0.08

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

while we have taken b2,0 = 1 and all the rest of the coefficients that do not appear in (9) are zero.

Before proceeding to finding the unique solution of (9), we can make further reductions to the system by eliminating the

columns that correspond to zero elements of the solution vector. In this way we avoid the accumulation of rounding errors that

can arise when trying to solve a large system. In fact, we substitute successively each column of the matrix of (9) with the

vector of system constants and calculate the reciprocal condition number of the new matrix. The exact process for system (9) is

illustrated in Table 5, where the order of magnitude of reciprocal condition numbers is presented for each corresponding column.

Examining Table 5, we can deduce that only coefficients a4,0 and b2,1 of the solution vector of (9) are non-zero. Therefore, after

omitting the last 9 rows of data of (9) and the columns 1-5 and 8-11 of the system matrix, we obtain the 2 × 2 solvable system:

⎡

⎢

⎢

⎢

⎣

0.01 0

0.01 0.01

⎤

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎣

a4,0

b2,1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−0.02

−0.01

⎤

⎥

⎥

⎥

⎦

whose solution is
⎡

⎢

⎢

⎢

⎣

−2

1

⎤

⎥

⎥

⎥

⎦

.
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The coefficients a4,0 = −2 and b2,1 = 1, together with b2,0 = 1 are the only non-zero elements of the 30-element solution vector

of the original system and lead to the rational function

r(x, y) = −2x4

x2 + x2y
= −2x2
y + 1

which is indeed the element (1,1) of A−1(x, y) (see (8)).

Working the same way, we can find that, for the element (1,2) of A−1(x, y) the reduced system B1,2 is of size N = 6, and,

after considering b3,0 to be 1, the non-singular non-homogeneous 5x5 system to be solved is (rounded in 4 digits):

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0386 0.0091 0.0131 −0.0239 −0.0342

0.0322 0.0316 0.0102 −0.0635 −0.0205

0.1646 0.1233 0.0902 −0.2642 −0.1933

0.5969 0.0997 0.5026 −0.2705 −1.3640

0.7363 0.0773 0.6649 −0.2172 −1.8683

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a3,0

a3,1

a4,0

b3,1

b4,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1011

0.0646

0.3528

1.6200

2.0690

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

By testing the reciprocal condition numbers of (10) as done before for system (9), we notice that only the coefficients a3,0, a3,1

and b3,1 are non-zero. Thus, system (10) can be reduced to

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0386 0.0091 −0.0239

0.0322 0.0316 −0.0635

0.1646 0.1233 −0.2642

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a3,0

a3,1

b3,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1011

0.0646

0.3528

⎤

⎥

⎥

⎥

⎥

⎥

⎦

which yields the solution
⎡

⎢

⎢

⎢

⎢

⎢

⎣

3

1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Therefore, the non-zero elements of the solution vector are a3,0 = 3, a3,1 = 1, b3,1 = 1 and b3,0 = 1. This means that the wanted

rational function is

r(x, y) =
3x3 + x3y
x3 + x3y

=
y + 3
y + 1

which is the element (1,2) of A−1(x, y) (see (8)).

A similar situation holds for the element (2,1) of A−1(x, y). The reduced system B2,1 is again of size N = 6, while the further

reduced system of non-zero solution elements (rounded in 4 digits) is:

⎡

⎢

⎢

⎢

⎣

0.0131 −0.0025

0.0102 −0.0051

⎤

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎣

a4,0

b3,1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0.0106

0.0052

⎤

⎥

⎥

⎥

⎦

(11)



12 Katerina G. Hadjifotinou & Nicholas P. Karampetakis

while we have again considered b3,0 = 1.

The solution of system (11) is
⎡

⎢

⎢

⎢

⎣

1

1

⎤

⎥

⎥

⎥

⎦

and the wanted rational function is

r(x, y) = x4

x3 + x3y
= x
y + 1

which is the element (2,1) of A−1(x, y) (see (8)).

Finally, for the element (2,2) of A−1(x, y) it comes out that the reduced system B2,2 is of sizeN = 12, while the further reduced

system of non-zero solution elements (rounded in 4 digits) is:

⎡

⎢

⎢

⎢

⎣

0.0924 0.0218

0.0510 0.0502

⎤

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎣

b3,0

b3,1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−0.1142

−0.1011

⎤

⎥

⎥

⎥

⎦

. (12)

This time, a2,0 is considered 1. The solution of system (12) is

⎡

⎢

⎢

⎢

⎣

−1

−1

⎤

⎥

⎥

⎥

⎦

and the wanted rational function is

r(x, y) = x2

−x3 − x3y
= −1
x + xy

which is the element (2,2) of A−1(x, y) (see (8)).

5 COMPARISON OF ASR WITH THE BULIRSCH-STOER BIVARIATE RATIONAL

INTERPOLATION METHOD

Xia et.al4 have recently developped a Bulirsch-Stoer multivariate rational interpolation algorithm. They compared their method

to other methods for recovering rational functions such as Thiele-Thiele contined fraction method7 and the two-variable Löwner

matrix method8 and have found their method significantly superior in terms of execution time. Since the Bulirsch-Stoer method

is also suitable for using symbolic calculations and therefore could be used for problems such as finding the inverse of a matrix

with elements rational functions in two variables, we have compared the bivariate iterative Bulirsch-Stoer method (BS2v) to the

ASR algorithm, using simple bivariate rational functions as the test functions shown in Table 6. In all tested cases, the maxn of

ASR was the minimum necessary (as was also the case with BS2v). Both algorithms were implemented in Matlab R2016a and

run on an Intel Core i5-3470, 3.60GHz CPU, 8GB RAM, Windows 10 Pro x64 computer.
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In Table 6 we denote with ‘-’ the cases where the algorithm gave the wrong results. Examining the execution times we can

see that, as the maximum global polynomial degree n increases, the execution time increases significantly at BS2v while this is

not the case with ASR. Furthermore, BS2v stops giving accurate results at about n = 4 while the same holds for ASR for n = 7.

Finally, neither the BS2v execution times nor the accuracy did improve when we also tested the LC-version of Bulirsch-Stoer

of Xia et.al4.

6 DISCUSSION

The ASR technique can numerically compute any rational functions, without the need of symbolic arithmetic and without limita-

tions concerning the difference in degrees of numerator and denominator. However, depending on the programming environment

used, limitations may arise when the maximum global polynomial degree n becomes large enough so that all reciprocal condi-

tion numbers are computed to be near zero, without the numerical ability to distinguish between real linear dependence cases.

This is mainly due to the fact that, as shown by Gautschi and Inglese9, the condition number of Vandermonde-like matrices

grows exponentially with n. In practice, for ASR, problems arise around n = 7, while other methods may become inaccurate

even for smaller values of n. Concerning ASR, in order to handle the ill-conditioning problems and increase the values of n for

which accurate results are obtained, we can make use of the pseudoinverse (e.g. Matlab function pinv) for the solution of systems

of the form (6) or (7). In this way, the method’s production of accurate results can in most cases be extended up to n = 10.
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TABLE 1 The interpolation points used for finding the four interpolants - elements of matrix A−1.

i xi yi fi,1,1 fi,1,2 fi,2,1 fi,2,2
1 0.338 0.236 -0.185 2.618 0.273 -2.395
2 0.318 0.984 -0.102 2.008 0.160 -1.586
3 0.548 0.749 -0.344 2.143 0.313 -1.043
4 0.842 0.167 -1.215 2.714 0.721 -1.018
5 0.903 0.105 -1.476 2.810 0.817 -1.002
6 0.745 0.729 -0.642 2.156 0.431 -0.776
7 0.717 0.133 -0.908 2.765 0.633 -1.230
8 0.446 0.509 -0.263 2.326 0.295 -1.487
9 0.530 0.860 -0.303 2.075 0.285 -1.014
10 0.678 0.806 -0.509 2.108 0.375 -0.817
11 0.531 0.956 -0.289 2.023 0.272 -0.962
12 0.067 0.542 -0.006 2.297 0.043 -9.729
13 0.282 0.481 -0.107 2.351 0.190 -2.397
14 0.685 0.208 -0.776 2.655 0.567 -1.208
15 0.608 0.326 -0.558 2.508 0.459 -1.240
16 0.881 0.133 -1.369 2.765 0.777 -1.002
17 0.102 0.959 -0.011 2.021 0.052 -4.984
18 0.153 0.153 -0.041 2.735 0.133 -5.675
19 0.156 0.090 -0.044 2.836 0.143 -5.900
20 0.454 0.669 -0.247 2.198 0.272 -1.319
21 0.831 0.790 -0.772 2.117 0.464 -0.672
22 0.713 0.473 -0.690 2.358 0.484 -0.953
23 0.709 0.958 -0.513 2.021 0.362 -0.721
24 0.506 0.305 -0.392 2.533 0.388 -1.515
25 0.790 0.236 -1.009 2.618 0.639 -1.024
26 0.234 0.465 -0.075 2.365 0.160 -2.914
27 0.619 0.615 -0.475 2.238 0.383 -0.999
28 0.123 0.124 -0.027 2.780 0.109 -7.257
29 0.284 0.736 -0.093 2.152 0.164 -2.025

How to cite this article: Hadjifotinou, K.G. and Karampetakis, N.P. (2020), An algorithm for two-variable rational interpolation

suitable for matrix manipulations with the evaluation-interpolation method, Math Meth Appl Sci., 2020;–.
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TABLE 3 The reciprocal condition numbers of the submatrices of B1,1 of sizeN .

N c1 c2
30 10−21 10−19

28 10−19 10−18

26 10−18 10−18

24 10−19 10−18

22 10−19 10−19

20 10−19 10−19

18 10−18 10−18

16 10−18 10−19

14 10−18 10−18

12 10−05 10−18

TABLE 4 Matrix B1,1 after eliminating the linearly dependent columns

x2 x2y x2y2 x3 x3y x4 x2 x2y x2y2 x3 x3y x4

0.11 0.03 0.01 0.04 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00
0.10 0.10 0.10 0.03 0.03 0.01 0.01 0.01 0.01 0.00 0.00 0.00
0.30 0.23 0.17 0.16 0.12 0.09 0.10 0.08 0.06 0.06 0.04 0.03
0.71 0.12 0.02 0.60 0.10 0.50 0.86 0.14 0.02 0.72 0.12 0.61
0.82 0.09 0.01 0.74 0.08 0.67 1.20 0.13 0.01 1.09 0.11 0.98
0.56 0.40 0.30 0.41 0.30 0.31 0.36 0.26 0.19 0.27 0.19 0.20
0.51 0.07 0.01 0.37 0.05 0.26 0.47 0.06 0.01 0.34 0.04 0.24
0.20 0.10 0.05 0.09 0.05 0.04 0.05 0.03 0.01 0.02 0.01 0.01
0.28 0.24 0.21 0.15 0.13 0.08 0.09 0.07 0.06 0.05 0.04 0.02
0.46 0.37 0.30 0.31 0.25 0.21 0.23 0.19 0.15 0.16 0.13 0.11
0.28 0.27 0.26 0.15 0.14 0.08 0.08 0.08 0.07 0.04 0.04 0.02

TABLE 5 Finding the non-zero elements of the solution of system (9)

Column Corresponding reciprocal condition number

1 10−18

2 10−19

3 10−18

4 10−17

5 10−18

6 10−05

7 10−05

8 10−17

9 10−17

10 10−18

11 10−17
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TABLE 6 Comparison of algorithms BS2v and ASR

test function BS2v time(secs) ASR time(secs)

(7x + 3y − 2)∕(5x − 4y − 1) 0.4 0.07
(x2 + 5xy − 4y2 − 7x + 3y − 2)∕(xy − 5x − 4y − 1) 2.8 0.08
(x3 − 2)∕(y − 1) 6.0 0.09
(x4 − 2)∕(y − 1) 19.9 0.10
(x4 − 2)∕(y2x − 1) 24.0 0.10
(32y4 − 28y3x + 17yx − 27)∕(x4 − 3xy − 25) - 0.10
(x − 2)∕(y5 − 1) - 0.10
y5∕x5 - 0.10
y6∕x6 - 0.15
y7∕x7 - -
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