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Abstract. Quite recently, Bor [6] has proved a new result on weighted arithmetic mean summa-

bility factors of non-decreasing sequences, which includes some known results. In this paper, we

extend his result to more general matrix summability method by using an almost increasing se-

quence and normal matrices in place of a positive non-decreasing sequence and weighted mean

matrices, respectively.
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1 Introduction

Let
∑
an be a given infinite series with partial sums (sn). We denote by uαn the nth Cesàro mean of order

α, with α > −1, of the sequence (sn), that is (see [7])

uαn =
1

Aαn

n∑
v=0

Aα−1
n−vsv (1)

where

Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα−n = 0 for n > 0. (2)

Let a1 + a2, ..., an be n arbitrary real numbers;their arithmetic mean A is defined to be

A =
a1 + a2 + ...+ an

n
. (3)

A series
∑
an is said to be summable |C,α|k, k ≥ 1, if (see [8],[14])

∞∑
n=1

nk−1|uαn − uαn−1|k <∞. (4)
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If we take α = 1, then we have |C, 1|k summability. Let (pn) be a sequence of positive numbers such that

Pn =
∑n
v=0 pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (wn) of the weighted arithmetic mean or simply the
(
N̄ , pn

)
mean of the sequence

(sn), generated by the sequence of coefficients (pn) (see [9]). The series
∑
an is said to be summable

|N̄ , pn|k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn
pn

)k−1

|wn − wn−1|k <∞. (6)

In the special case when pn = 1 for all values of n (respect. k = 1), then |N̄ , pn|k summability is the same

as |C, 1|k (respect. |N̄ , pn|) summability.

Let
∑
an be a given series with partial sums (sn). Let A = (anv) be a normal matrix, i.e., a lower triangular

matrix of nonzero diagonal entries. Then A defines a sequence-to-sequence transformation, mapping of

the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (7)

A series
∑
an is said to be summable |A, θn|k, k ≥ 1, if (see [15])

∞∑
n=1

θk−1
n

∣∣∆̄An(s)
∣∣k <∞, (8)

where (θn) is any sequence of positive constants and

∆̄An(s) = An(s)−An−1(s). (9)

(see also [13]).

In the special case, if we put θn = Pn
pn

, we have |A, pn|k summability (see [16]. When A is the matrix of

weighted mean (N̄ , pn), and θn = Pn
pn

, for all values of n), then |A, θn|k reduces to summability
∣∣N̄ , pn∣∣k,

k ≥ 1. Further, If θn = n for n ≥ 1 and A is the matrix of Cesàro mean (C,α), then it is the same as

summability |C,α|k in Flett’s notation. By a weighted mean matrix we state

anv =


pv
Pn
, 0 ≤ v ≤n

0 v > n,

where (pn) is a sequence of positive numbers with Pn = p0 + p1 + p2 + ...+ pn →∞ as n→∞.
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2 The Known Results

Let K be a positive constant. If g > 0, then f = O(g) means |f | < K.g and f = o(g) means f/g → 0.

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence

(zn) and two positive constants A and B such that Azn ≤ bn ≤ Bzn (see [1]). It is known that every

increasing sequences is an almost increasing sequence but the converse need not be true. In [4] and [5],

Bor obtained main theorems dealing with absolute summability. Quite recently, Bor has also proved the

following theorems concerning on summability factors of the absolute weighted mean using a positive non-

decreasing sequence.

Theorem 2.1 [3] Let (Xn) be a positive non-decreasing sequence and suppose that there exists sequences

(βn) and (λn) such that

|∆λn| ≤ βn, (10)

βn → 0 as n→∞ (11)

∞∑
n=1

n|∆βn|Xn <∞, (12)

|λn|Xn = O(1). (13)

If

m∑
n=1

|sn|k

n
= O(Xm) as m→∞, (14)

and (pn) is a sequence that

Pn = O(npn), (15)

Pn∆pn = O(pnpn+1), (16)

then the series
∑∞
n=1 an

Pnλn
npn

is summable |N̄ , pn|k, k ≥ 1.

Later on, Bor has proved the following theorem using under weaker conditions.

Theorem 2.2 [6] Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn) , (βn), (λn), and

(pn) satisfy the conditions (10)-(13), (15)-(16), and

m∑
n=1

|sn|k

nXk−1
n

= O(Xm) as m→∞, (17)

then the series
∑∞
n=1 an

Pnλn
npn

is summable |N̄ , pn|k, k ≥ 1.

3 The Main Results

The aim of this paper is to generalize Theorem 2.2 for more general matrix summability method by using

almost increasing sequences in place of positive non-decreasing sequence. So, we have generalized Theorem
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2.2 under weaker hypothesis by using normal matrices.

Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as

follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1,v, a−1,0 = 0 (18)

and

â00 = ā00 = a00, ânv = ∆̄ānv, n = 1, 2, ... (19)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series

transformations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (20)

and

∆̄An(s) =

n∑
v=0

ânvav. (21)

With this notation we have the following theorem.

Theorem 3.1 Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (22)

an−1,v ≥ anv, for n ≥ v + 1, (23)

ann = O(
pn
Pn

), (24)

n−1∑
v=1

avvân,v+1 = O(ann). (25)

Let (Xn) be an almost increasing sequence and (θnann) be a non-increasing sequence. If the sequences

(Xn), (βn), (λn), and (pn) satisfy the conditions (10)-(13) and (15)-(16) of Theorem 2.2, and the condition

m∑
n=1

(θnann)k−1 |sn|k

nXk−1
n

= O(Xm) as m→∞, (26)

is satisfied, then the series
∑∞
n=1 an

Pnλn
npn

is summable |A, θn|k, k ≥ 1.

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.1 [10] Under the conditions on (Xn), (βn), and (λn) as expressed in the statement of Theorem

2.1, we have the following:

nXnβn = O(1), (27)

∞∑
n=1

βnXn <∞. (28)
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Lemma 3.2 [12] If the conditions (15) and (16) of Theorem 2.1 are satisfied, then ∆
(
Pn
npn

)
= O

(
1
n

)
.

Remark Under the conditions on the sequence (λn) of Theorem 2.1, we have that (λn) is bounded and

∆λn = O(1/n) (see [3]).

4 Proof of Theorem 3.1

Let (Vn) denotes the A-transform of the series
∑
an

Pnλn
npn

. Then, by the definition, we have that

∆̄Vn =

n∑
v=1

ânvav
Pvλv
vpv

.

Applying Abel’s transformation to this sum, we have that

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv
vpv

) v∑
r=1

ar +
ânnPnλn
npn

n∑
r=1

ar

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv
vpv

)
sv +

ânnPnλn
npn

sn,

by the formula for the difference of products of sequences (see [9]) we have

∆̄Vn =
annPnλn
npn

sn +

n−1∑
v=1

Pvλv
vpv

∆v(ânv)sv +

n−1∑
v=1

ân,v+1λv∆

(
Pv
vpv

)
sv +

n−1∑
v=1

ân,v+1
Pv+1

(v + 1)pv+1
∆λvsv

∆̄Vn = Vn,1 + Vn,2 + Vn,3 + Vn,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1
n | Vn,r |k<∞, for r = 1, 2, 3, 4. (29)

Firstly, by applying Abel’s transformation and in view of the hypotheses of Theorem 3.1 we have

m∑
n=1

θk−1
n | Vn,1 |k≤

m∑
n=1

θk−1
n ak−1

nn ann

(
Pn
pn

)k−1(
Pn
pn

)
|λn|k

|sn|k

nk

= O(1)

m∑
n=1

(θnann)k−1 |λn|k
|sn|k

n
= O(1)

m∑
n=1

(θnann)k−1 |λn|k−1|λn|
|sn|k

n

= O(1)

m∑
n=1

(θnann)k−1 1

n

1

Xk−1
n

|λn||sn|k = O(1)

m−1∑
n=1

∆|λn|
n∑
v=1

(θvavv)k−1 |sv|k

vXk−1
v

+O(1)|λm|
m∑
n=1

(θnann)k−1 |sn|k

nXk−1
n

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm = O(1)

m−1∑
n=1

βnXn +O(1)|λm|Xm = O(1) as m→∞.
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By applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k

+ 1
k′ = 1 and as in Vn,1, we have

that

m+1∑
n=2

θk−1
n | Vn,2 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

Pvλv
vpv

∆v(ânv)sv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

|∆v(ânv)||λv|k|sv|k
1

vk

(
Pv
pv

)k}
×

{
n−1∑
v=1

|∆v(ânv)|

}k−1

= O(1)

m+1∑
n=2

(θnann)k−1
n−1∑
v=1

|∆v(ânv)||λv|k|sv|k
1

vk

(
Pv
pv

)k

= O(1)

m∑
v=1

|λv|k−1|λv||sv|k
1

vk

(
Pv
pv

)k m+1∑
n=v+1

(θnann)k−1 |∆v(ânv)|

= O(1)

m∑
v=1

(θvavv)k−1 1

Xk−1
v

|sv|k|λv|
1

vk

(
Pv
pv

)k m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

(θvavv)k−1 avv
1

Xk−1
v

|sv|k|λv|
1

vk

(
Pv
pv

)k
= O(1)

m∑
v=1

(θvavv)k−1 1

Xk−1
v

|sv|k|λv|
1

vk

(
Pv
pv

)k−1

= O(1)

m∑
v=1

(θvavv)k−1 1

Xk−1
v

|sv|k|λv|
1

vk
vk−1

= O(1)

m∑
v=1

(θvavv)k−1 1

Xk−1
v

|sv|k|λv|
1

v
= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1. Also, since ∆
(
Pv
vpv

)
= O

(
1
v

)
, by Lemma 3.2, we have

m+1∑
n=2

θk−1
n | Vn,3 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

ân,v+1∆

(
Pv
vpv

)
λvsv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

θk−1
n

{
n−1∑
v=1

a1−kvv ân,v+1|λv|k|sv|k
1

vk

}
×

{
n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m+1∑
n=2

(θnann)k−1
n−1∑
v=1

(
Pv
pv

)k−1

ân,v+1|λv|k|sv|k
1

vk

= O(1)

m∑
v=1

|λv|k−1|λv||sv|k
1

v

m+1∑
n=v+1

(θnann)k−1 ân,v+1

= O(1)

m∑
v=1

(θvavv)k−1 |λv|k−1|λv||sv|k
1

v

m+1∑
n=v+1

ân,v+1

= O(1)

m∑
v=1

(θvavv)k−1 1

Xk−1
v

|λv||sv|k
1

v
= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1. Finally, by virtue of the hypotheses of Theorem 3.1, by Lemma

3.1, we have vβv = O( 1
Xv

), then

m+1∑
n=2

θk−1
n | Vn,4 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

ân,v+1
Pv+1

(v + 1)pv+1
∆λvsv

∣∣∣∣∣
k

≤
m+1∑
n=2

θk−1
n

{
n−1∑
v=1

a1−kvv ân,v+1|∆λv|k|sv|k
}
×

{
n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m+1∑
n=2

(θnann)k−1
n−1∑
v=1

a1−kvv ân,v+1|∆λv|k|sv|k

= O(1)

m∑
v=1

(
Pv
pv

)k−1

|sv|k|∆λv|k
m+1∑
n=v+1

(θnann)k−1 ân,v+1

= O(1)

m∑
v=1

(θvavv)k−1 |sv|k(vβv)k−1βv

m+1∑
n=v+1

ân,v+1 = O(1)

m∑
v=1

(θvavv)k−1 vβv|sv|k
1

vXk−1
v

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(θrarr)
k−1 |sr|k

rXk−1
r

+O(1)mβm

m∑
v=1

(θvavv)k−1 |sv|k

vXk−1
v

= O(1)

m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm = O(1)

m−1∑
v=1

|(v + 1)∆βv − βv|Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

Xvβv +O(1)mβmXm = O(1) as m→∞,

This completes the proof of Theorem 3.1 .

5 Conclusions

1. If we take θn = Pn
pn

, then we have a result concerning the |A, pn|k summability factors (see [17]).

2. If we take anv = pv
Pn

, then we have another result dealing with
∣∣N̄ , pn, θn∣∣k summability.

3. If we put anv = pv
Pn

and pn = 1 for all values of n, then we obtain a result concerning |C, 1, θn|k
summability.

4. If we take (Xn) as a positive non-decreasing sequence,θn = Pn
pn

and anv = pv
Pn

in Theorem 3.1, then we

obtain Theorem 2.2 and if we put k = 1 in Theorem 2.2, we have a known result of Mishra and Srivastava

dealing with
∣∣N̄ , pn∣∣ summability factors of infinite series (see [12]).

5. If we take θn = n, anv = pv
Pn

and pn = 1 for all values of n in Theorem 3.1, then we obtain a known

result of Mishra and Srivastava concerning the |C, 1|k summability factors of infinite series (see [11]).
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