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Abstract. Quite recently, Bor [6] has proved a new result on weighted arithmetic mean summa-
bility factors of non-decreasing sequences, which includes some known results. In this paper, we
extend his result to more general matrix summability method by using an almost increasing se-
quence and normal matrices in place of a positive non-decreasing sequence and weighted mean
matrices, respectively.
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1 Introduction

Let > an be a given infinite series with partial sums (s,). We denote by u; the nth Cesaro mean of order
a, with @ > —1, of the sequence (s,), that is (see [7])
o 1 - a—1
Uy = E ZAn—vs’U (1)
™ »=0

where

a+1)(a+2)..(a+n)
n!

Aﬁ:( =0(n%), A%,=0 for n>0. (2)

Let a1 + ag, ..., an be n arbitrary real numbers;their arithmetic mean A is defined to be

ai +az + ... +an

A=
+ 3)
A series Y a, is said to be summable |C, a|k, k > 1, if (see [8],[14])
n T ul = ul_1]" < oo (4)
n=1



If we take @ = 1, then we have |C, 1|, summability. Let (p,) be a sequence of positive numbers such that

Po=3%"_ ps —+00asn— oo, (P-;=p_; =0, i2>1). The sequence-to-sequence transformation

1 n
wn = 5 ;)pvsv (5)

defines the sequence (w,) of the weighted arithmetic mean or simply the (N ,pn) mean of the sequence
(sn), generated by the sequence of coefficients (p,) (see [9]). The series Y a, is said to be summable

IN, palk, k> 1, if (see [2])

o0 Pn k—1
Z (—) |wy, — wn_1|k < 00. (6)
n=1 Pn

In the special case when p,, = 1 for all values of n (respect. k = 1), then |N,p,|r summability is the same
as |C, 1| (respect. |N,py|) summability.

Let )" an be a given series with partial sums (s,). Let A = (ano) be a normal matrix, i.e., a lower triangular
matrix of nonzero diagonal entries. Then A defines a sequence-to-sequence transformation, mapping of

the sequence s = (s,) to As = (An(s)), where
A"(s) = Zanusv, n:0,1,... (7)
v=0

A series ) a,, is said to be summable |A,0,|,, k > 1, if (see [15])

oo

ST0ET | AAL(s)|" < oo, (8)

n=1

where (6,,) is any sequence of positive constants and
AAn(s) = An(s) — An_1(s). )

(see also [13]).

In the special case, if we put 6, = I;—:, we have |A, p,|, summability (see [16]. When A is the matrix of

weighted mean (N,p,), and 6, = 5:7 for all values of n), then |A, 6., reduces to summability |N,pn|k,

k > 1. Further, If §,, = n for n > 1 and A is the matrix of Cesaro mean (C,«), then it is the same as

summability |C, a|r in Flett’s notation. By a weighted mean matrix we state

where (pn) is a sequence of positive numbers with P, = po + p1 + p2 + ... + pn — 00 as n — 0.



2 The Known Results

Let K be a positive constant. If g > 0, then f = O(g) means |f| < K.g and f = o(g) means f/g — 0.
A positive sequence (by) is said to be almost increasing if there exists a positive increasing sequence
(zn) and two positive constants A and B such that Az, < b, < Bz, (see [1]). It is known that every
increasing sequences is an almost increasing sequence but the converse need not be true. In [4] and [5],
Bor obtained main theorems dealing with absolute summability. Quite recently, Bor has also proved the
following theorems concerning on summability factors of the absolute weighted mean using a positive non-
decreasing sequence.

Theorem 2.1 [3] Let (X,,) be a positive non-decreasing sequence and suppose that there exists sequences

(Bn) and (\,) such that

[AXn| < Bn, (10)
Bn—0 as n— oo (11)
inmmxn < 0, (12)
n=1
[An|Xn = O(1). (13)
If
i |S:L|k =0(Xn) as m — oo, (14)
n=1
and (pn) is a sequence that
Py = O(npn), (15)
PoApn = O(pupni1), (16)

then the series > 7 | an };’"pk” is summable | N, pu|x, k > 1.

n

Later on, Bor has proved the following theorem using under weaker conditions.
Theorem 2.2 [6] Let (X,) be a positive non-decreasing sequence. If the sequences (X)) , (8»), (An), and
(pn) satisfy the conditions (10)-(13), (15)-(16), and

m k
Z n';”kl_l =0(Xm) as m— oo, (17)
n=1 n

then the series > 7 | an ijpi" is summable |N, py |k, k > 1.

3 The Main Results

The aim of this paper is to generalize Theorem 2.2 for more general matrix summability method by using

almost increasing sequences in place of positive non-decreasing sequence. So, we have generalized Theorem



2.2 under weaker hypothesis by using normal matrices.

Given a normal matrix A = (ans), we associate two lower semimatrices A = (Gny) and A = (Gno) as

follows:
no = iam, n,v=0,1,... Aany =0ny —an-1,0, a-10=0 (18)
and
Q00 = Goo = G00, Qnv = Ndny, n=1,2,.. (19)

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series

transformations, respectively. Then, we have

An(s) = Zanvsu = Z Anvly (20)
v=0 v=0
and
AAn(s) = anvan. (21)
v=0

With this notation we have the following theorem.

Theorem 3.1 Let A = (any) be a positive normal matrix such that

Gno = 17 n:0717"'7 (22)
an—1,v Z Anv, for n Z v+ la (23)
Pn
nn — = 24
= O(22) (24)
n—1
Z avudn,v+1 - O(ann)~ (25)
v=1

Let (X») be an almost increasing sequence and (0nann) be a non-increasing sequence. If the sequences

(Xn), (Br), (An), and (pn) satisfy the conditions (10)-(13) and (15)-(16) of Theorem 2.2, and the condition

m k
> (Onann)*! l;‘fl =O0(Xn) as m — oo, (26)
n=1 NAn

is satisfied, then the series > > | an 12}?: is summable |A,0,|,, k > 1.
We need the following lemmas for the proof of Theorem 3.1.
Lemma 3.1 [10] Under the conditions on (X,), (8r), and (An) as expressed in the statement of Theorem

2.1, we have the following;:

nXnB, = O(1), (27)
iBan < 0. (28)



Lemma 3.2 [12] If the conditions (15) and (16) of Theorem 2.1 are satisfied, then A (:TZ) =0(%).

Remark Under the conditions on the sequence (\,) of Theorem 2.1, we have that (\,) is bounded and

AN, = O(1/n) (see [3]).

4 Proof of Theorem 3.1

Let (V;,) denotes the A-transform of the series 3 a, 22 %‘" Then, by the definition, we have that

np

. < Py
AV, =Y anpay—".
= Up'u
Applying Abel’s transformation to this sum, we have that
n—1 v n
- G Py A Gnn Pa
AVn — A,U < nv v7\v ) ar + nn ns\n ar
n—1 N ~
AVn — A,U (an’UP’U)\’U) S,U + annPn)\n Sn’
v=1 vPv pn

by the formula for the difference of products of sequences (see [9]) we have

n—1
~ annPn/\n P11>\v A
AV, = Tﬁn + E mAv( Sv + g Qn,or1 A <

) Sy + Z Qn v+1 v+ 1]13_;1)4»1 AXysy

v=1 v=1

A‘/n = Vn,l + Vn,? + Vn,S + Vn,4-

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

> 0n [ Vi [F< oo, for r=1,2,34. (29)

n=1
Firstly, by applying Abel’s transformation and in view of the hypotheses of Theorem 3.1 we have

LIRS i P \**' /P, |s|
O Vo < S 0F ek St ann (—”) ( ) A P22
LIS ) G

n=1 n=1

o |S * . [snl*
Z (Bninn) k 1|)\ |k n Z (Bninn) k 1|)\n|k71|/\n‘ n
n

=0(1)

\MS I

b1 1 — ~ k—1 |S’U|k
(g o) X’“ Al [sn* = (1);A|An\;(evaw) Xk T

k
k—1 |Sn|
|)\m|z nann nXT]fil

m—1 m—1
DY ANIXn + OM)Am | X = O(1) D BuXp + O(1)Am|Xm = O(1) as m — 0.
n=1 n=1



By applying Hélder’s inequality with indices k and k', where k> 1 and % + % =1 and as in V,,,1, we have
that

m—+1 m+1 k

Zak 1|V2|—ngl

m+1 . P, k n—1 A k—1
Zak {Z'A Ao l* 50| = (pT) }x {;|Av(am)|}

m—+1 k P k
1 v
—0()'S (Butnn Z\A DlelFsol* = (f)
n=2

Z Pp)\ Ay (Gnv)Sv

v

Dv

- k sl (PR k
—1 : v —1 ~
= O(l)z |)\'u‘ ‘)\vHSvl ’[)7 (?) Z (anann) |Afu(anv)‘

n=v+1

- L ey L (PR
—0Y () il () Y 8w

v=1 Dv il
m 1 1 X 1 P'u k
_ 0(1);(0vaw) e (pi)
—0()Y Brann) s (2)
= o vWyv X,{?il v v Uk p,u

. k-1 1 k 1 %
=0(1))_ (fuaw) W'S“ Aol v
S o1 1 Ky (1
= 0(1) Z (01;(11,1;) W'STA |)\U|; = O(l) as m — 09,

by virtue of the hypotheses of Theorem 3.1. Also, since A (vPTU) =0 (%), by Lemma 3.2, we have

v

m+1 m+1 k
7;29271 | Vis |k: HZ;@IC 1 ;aanA( e ))x Sv
m—+1

n—1 k—1
Z ek ! {Zam; an ’U+1|)\ | |S'U| } X {Eavvdn,u+1}
v=1
m+1 k—1 1
—0(1) 3 (ntan) 12( ) ol sl
n=2

m m—+1

1

k—1 k k—1 ~
=0(1) > ol" T Aolls0] " Y (6nann)" ano
v=1 n=v+1

1 m—+1
01} VU ot )\v ot Au v ki An v
(Ovave)™ " Ao IHS\UZCL,H

n=v+1

NE

=0(1)

Il
i

v

NgE

=01))  (Byaw,)" ! Xk — M [|so]" = —O( ) as m — oo,

Il
=

v



by virtue of the hypotheses of Theorem 3.1. Finally, by virtue of the hypotheses of Theorem 3.1, by Lemma
3.1, we have v, = O(%ﬂ), then

m—+1 m—+1 n—1

7;2 91}2_1 | Vn,4 |k— Z ak ! Zan v+1 +1]}_+]1)U+1 A>\v5v
m+1 n—1 n— k—1
< Z ek ! {Z avv an v+1|A>\v|k3vk} X {Z avv&n,erl}
v=1
m+1

[
S
=

M

nann _lzavv an, v+1|A)\ ‘ |5v|

n=2
m P k—1 m+1
—om 3 (B) AN Y @)
v=1 by n=v+1
m m—+1 m
= 0(1) 3" (Boav)* Moo * @B 180 S niors = O(1) S (Boa) L vBuls,|* Xk -
v=1 n=v+1 v=1
- 0(1 m_lA - 0 k—1 ‘ST|k o(1 = 0 k—1 |5v|k
=0( )v=1 (vﬁv);( ) Tt ( )mﬁm;( ) e
m—1 m—
=01) Y " |A®WB)| Xy + O(1)mBm Xm = O(1 Z v+ 1)ABy — Bol Xo + O(1)mBm X.
v=1 v=1
m—1 m—1
=0(1) > vlABXy +0(1) Y XuBy + O()mBmXm = O(1) as m — oo,
v=1 v=1

This completes the proof of Theorem 3.1 .

5 Conclusions

1. If we take 6, = %, then we have a result concerning the |A, p,|r summability factors (see [17]).

2. If we take an, = 11;—:, then we have another result dealing with !N,pm 0”|k summability.

3. If we put any = &> and p, = 1 for all values of n, then we obtain a result concerning |C, 1,60y,

summability.

4. If we take (X,,) as a positive non-decreasing sequence,f,, = % and an, = %Z in Theorem 3.1, then we
obtain Theorem 2.2 and if we put £ = 1 in Theorem 2.2, we have a known result of Mishra and Srivastava
dealing with |N , pn’ summability factors of infinite series (see [12]).

5. If we take 0, = n, any, = }”,—Z and p, = 1 for all values of n in Theorem 3.1, then we obtain a known

result of Mishra and Srivastava concerning the |C, 1| summability factors of infinite series (see [11]).
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