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Abstract Second-order linear hyperbolic equations are solved by using a new
three level method based on non-polynomial spline in the space direction and
Taylor expansion in the time direction. Numerical results reveal that three
level method based on non-polynomial spline is implemented and effective.
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1 Introduction

We consider the second-order linear hyperbolic equation:

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), x ∈ (a, b), t > 0 (1)
with initial conditions

u(x, 0) = Φ(x), ut(x, 0) = Ψ(x)

and boundary conditions

u(a, t) = g1(t), u(b, 0) = g2(t)

where α and β are constants.

Above one can find representations of the damped wave and telegraph
equations respectively. See [1] for the existence and approximations of the
solutions investigated.
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There have been many prominent work regarding the development and im-
plementation of the high resolution methods for the numerical solution of the
second – order linear hyperbolic equation in (1), see [1–3]. Mohanty and Jain
[4–6] developed three-level implicit schemes for linear hyperbolic equations.
Also, Huan-Wen Liu and Li-Bin Liu solved [8] linear hyperbolic equation,
where their solution based on quartic spline interpolation our solution based
on non-polynomial spline method. In this paper, we propose a spline difference
scheme to solve the linear hyperbolic equation (1).

We proceed this paper as follows; Section 2 briefly describes the non-
polynomial spline function. Section 3 describes the methods used to solve and
analyze the solution of problem (1). Section 4 contains the numerical results
and illustrations obtained by MATLAB 6.5 before the overall conclusion in
Section 5.

2 Spline Method

We divide the interval [a, b] into n equal subintervals using the grid points

xi = a+ ih, i = 0, 1, 2, ..., n,

with

x0 = a, xn = b, h = (b− a)/n

where n is defined as an arbitrary positive integer.

Let u(x) be the exact solution and ui approximation of u(xi) which is
obtained by the non-polynomial cubic Si(x) defined as passing through the
points (xi, ui) and (xi+1, ui+1). Here we do not only require that Si(x) sat-
isfies interpolatory conditions at xi and xi+1, but also the continuity of first
derivative at the common nodes (xi, ui) are fulfilled. We write Si(x) in the
form:

Si(x) = ai+bi(x−xi)+cisinτ(x−xi)+dicosτ(x−xi), i = 0, 1, ..., n−1 (2)

where ai, bi, ci and di are constants and τ is a free parameter.

The non-polynomial function S(x) which belongs to the class C2[a, b] in-
terpolates u(x) at the grid points xi, where i = 0, 1, 2, ..., n, and reduces to an
ordinary cubic spline S(x) in [a, b] depending on a parameter τ when τ → 0.

To derive expression for the coefficients of Eq. (2) in term of ui, ui+1,Mi

and Mi+1, we first define:

Si(xi) = ui, Si(xi+1) = ui+1, S
′′
(xi) =Mi, S

′′
(xi+1) =Mi+1. (3)
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After manipulating through algebra we get the following expression:

ai = ui +
Mi
τ2 ,

bi =
ui+1−ui

h + Mi+1−Mi

τθ ,

ci =
Micosθ−Mi+1

τ2sinθ ,
di = −Mi

τ2 ,

 (4)

where θ=τh and i = 0, 1, 2, ..., n− 1.

Using the continuity of the first derivative at (xi, ui), that is S
′

i−1(xi) =

S
′

i(xi) we obtain the following relations for i=1, ..., n− 1.

aMi+1 + bMi + aMi−1 = (1/h2)(ui+1 − 2ui + ui−1) (5)

where a = (−1/θ2+1/θ sin θ), b = (1/θ2−cos θ/θ sin θ) and θ = τh. If b = 5/12
and a = 1/12 the method is fourth-order convergent [9].

3 The Spline Difference Scheme

By using the Taylor expansion in the time direction for every xi where i =
1, 2, ..., n− 1, we have the following difference schemes

u(xi, tj) =
u(xi,tj+1)+2u(xi,t)+u(xi,tj−1)

4 +O(k2), (6)

uxx(xi, tj) =
uxx(xi,tj+1)+uxx(xi,tj−1)

2 +O(k2), (7)

ut(xi, tj) =
u(xi,tj+1)−u(xi,tj−1)

2k +O(k2), (8)

utt(xi, tj) =
u(xi,tj+1)−2u(xi,tj)+u(xi,tj−1)

k2 +O(k2). (9)

The given eq. (1) can be discretized as

u(xi,tj+1)−2u(xi,tj)+u(xi,tj−1)

k2 +2α
u(xi,tj+1)−u(xi,tj−1)

2k
+β2 u(xi,tj+1)+2u(xi,t)+u(xi,tj−1)

4

=
uxx(xi,tj+1)+uxx(xi,tj−1)

2
+ f(xi, tj) +O(k2), (10)

i = 1, 2, ..., n− 1, j = 1, 2, ...

We can rewrite (5) in a new form:

(1 + 1
12δ

2
x)M(xi, tj) =

1
h2 δ

2
xu(xi, tj), i = 1, ..., n− 1 (11)
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where
δxM(xi, tj) =M(xi+ 1

2
, tj)−M(xi− 1

2
, tj),

δ2xM(xi, tj) = δx(δxM(xi, tj)) =M(xi+1, tj)− 2M(xi, tj) +M(xi−1, tj),
for i = 1, ..., n− 1. Putting (6) and (11),it follows that;

(1+ 1
12

δ2x)[uxx(xi, tj+1)+uxx(xi, tj−1)] = (1+ 1
12

δ2x)[M(xi, tj+1)+M(xi, tj−1)+O(h4)]

= 1
h2 δ

2
x[u(xi, tj+1) + u(xi, tj−1)] +O(h4)

(12)

Applying the operator (1 + 1
12δ

2
x) to two sides of Eq. (10) and using Eq.

(12),then it is obtained as follows

1
k2 (1 + 1

12
δ2x)u(xi, tj) +

α
k
(1 + 1

12
δ2x)δtu(xi, tj) +

β2

4
(1 + 1

12
δ2x)[u(xi, tj+1 + 2u(xi, tj) +

u(xi, tj−1)]− 1
2h2 δ

2
x[u(xi, tj+1)u(xi, tj−1)] = (1 + 1

12
δ2x)f(xi, tj) +O(k2 + h4)

i = 1(1)n− 1, j = 1, 2, ... (13)

The proposed scheme (13) is an implicit three level scheme. Before starting on
any computation it is found necassary to know the value of u(x, t) at the nodal
points of the first time level expressed as when t = k. Following the work in
[2], a taylor series expansion at [2],a taylor series expansion at t = k may be
written as

u(x, k) = u(x, 0)+kut(x, 0)+
k2

2 utt(x, 0)+
k3

6 uttt(x, 0)+O(k4). (14)

Using the initial values, from (1) we can calculate

utt(x, 0) = ϕxx(x, 0) + f(x, 0)− 2αut(x, 0)− β2u(x, 0), (15)

.

uttt(x, 0) = ψxx(x, 0) + ft(x, 0)− 2tt(x, 0)− β2ut(x, 0). (16)

.

We can obtain the numerical solution of u by using initial values in (15)
and (16) for t = k.

4 Numerical Examples

Here we provide the evidance of illustrations by MATLAB 6.5 of our method
to two second-order linear hyperbolic equations.

Example 1.
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Consider the following equation

utt(x, t) + 4ut(x, t) + 2u(x, t) = uxx(x, t), x ∈ (a, b), t > 0

with initial conditions

u(x, 0) = sinx, ut(x, 0) = −sinx

and boundary conditions

u(0, t) = 0, u(π, 0) = 0.

The exact solution of the above problem is u(x, t) = e−tsinx which could
be found by solving the equation using the scheme (13) provided in this pa-
per. The absolute errors given of the scheme (16) in [7], (23) in [8] and by
the present scheme in (13) are listed in Tables 1-8, respectively. It can be seen
from the tables that when h = π

300 and k = 0.1, the accuracy of solutions
obtained by using scheme (16) in [7] provides more accurate results than the
present scheme (13). The reason is that the error orders of the scheme (16)
in [7] is approximately O(k5) in addition to the step length “h” being quite
small. As k respectively decreases to k = 0.1 and k = 0.01, since k is now
quite small in comparison with h, the errors of numerical solutions mainly
come from the approximation in the space direction, therefore the absolute
errors obtained from the present scheme (13) is much better than those by us-
ing the scheme (16) in [7]. Finally, we believe it is crucial to mention that the
absolute errors of scheme (23) in [8] are similar to those by using the present
scheme (13) where scheme (23) in [8] using quartic spline functions, we use
non-polynomial spline functions. The numerical results are illustrated in Fig 1.

Example 2. We consider the following equations

utt(x, t) + 2ut(x, t) + β2u(x, t) = uxx(x, t) + (4− 4α+ β2 + h2)e−2tsinhx,
α > β ≥ 0 , x ∈ (a, b), t > 0

with initial conditions

u(x, 0) = sinhx, ut(x, 0) = −2sinhx

and boundary conditions

u(0, t) = 0, u(1, 0) = e−2tsinh

The exact solution of the above problem is u(x, t) = e−2tsinhx.The abso-
lute errors given by the scheme (16) in [7],by the scheme (23) in [8] and by
present scheme (13) are listed in Tables 9-14,respectively. Similar discussion
to example 1 is valid for example 2. Only difference that here we use the term
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λ = k
h to simplify the calculation. The numerical results are illustrated in Fig.

2.

Table 1: Absolute errors of the scheme(16) in [7](h = π
300 , k = 0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0577e-06 0.4102e-06 0.5519e-06 0.4102e-06 0.0577e-06
1.0 0.0105e-05 0.0747e-05 0.1005e-05 0.0747e-05 0.0105e-05
1.5 0.0114e-05 0.0811e-05 0.1091e-05 0.0811e-05 0.0114e-05
2.0 0.1015e-06 0.7215e-06 0.9709e-06 0.7215e-06 0.1015e-06

Table 2: Absolute errors of scheme(23) in [8](h = π
300 , k = 0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0181e-03 0.1418e-03 0.1926e-03 0.1445e-03 0.0221e-03
1.0 0.0379e-03 0.2969e-03 0.4033e-03 0.3026e-03 0.0463e-03
1.5 0.0429e-03 0.3355e-03 0.4558e-03 0.3419e-03 0.0523e-03
2.0 0.0389e-03 0.3039e-03 0.4128e-03 0.3096e-03 0.0475e-03

Table 3: Absolute errors of the present scheme(13)(h = π
300 , k = 0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0211e-03 0.1502e-03 0.2021e-03 0.1502e-03 0.0211e-03
1.0 0.0429e-03 0.3056e-03 0.4112e-03 0.3056e-03 0.0429e-03
1.5 0.0482e-03 0.3427e-03 0.4611e-03 0.3427e-03 0.0482e-03
2.0 0.0435e-03 0.3092e-03 0.4161e-03 0.3092e-03 0.0435e-03

Table 4: Absolute errors of the scheme (16) in [7](h = π
30 , k = 0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0483e-04 0.3462e-04 0.4771e-04 0.3777e-04 0.1430e-04
1.0 0.0904e-04 0.6479e-04 0.8928e-04 0.7069e-04 0.0904e-04
1.5 0.0990e-04 0.7095e-04 0.9776e-04 0.7740e-04 0.0990e-04
2.0 0.0884e-04 0.6337e-04 0.8731e-04 0.6913e-04 0.0884e-04

Table 5: Absolute errors of the scheme(23) in [8](h = π
30 , k = 0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0101e-03 0.1032e-03 0.1826e-03 0.1032e-03 0.0301e-03
1.0 0.0321e-03 0.6995e-03 0.2033e-03 0.6995e-03 0.0412e-03
1.5 0.0375e-03 0.4386e-03 0.5356e-03 0.4386e-03 0.0475e-03
2.0 0.0532e-03 0.5065e-03 0.3128e-03 0.5065e-03 0.0331e-03

Table 6: Absolute errors of the present scheme(13)(h = π
30 , k = 0.1).
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t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0211e-03 0.1502e-03 0.2021e-03 0.1502e-03 0.0420e-03
1.0 0.0298e-03 0.3055e-03 0.4111e-03 0.3055e-03 0.0429e-03
1.5 0.0819e-03 0.3426e-03 0.4610e-03 0.3426e-03 0.0481e-03
2.0 0.0349e-03 0.3092e-03 0.4161e-03 0.3092e-03 0.0865e-03

Table 7: Absolute errors of the present scheme(13),scheme(16) in[7] and scheme
(23) in [8] (h = π

30 , k = 0.01).

t x = π
10 x = 3π

10 x = 5π
10 x = 7π

10 x = 9π
10

The present s. 1.0 0.13203e-05 0.34565e-04 0.42725e-05 0.34565e-05 0.13203e-05
[7] 1.0 0.29477e-04 0.77174e-04 0.95392e-04 0.77174e-04 0.29477e-04
[8] 1.0 0.08869e-05 0.31701e-05 0.42424e-05 0.31701e-05 0.08869e-05

The present s. 2.0 0.12957e-05 0.31161e-05 0.41931e-05 0.33923e-05 0.12957e-05
[7] 2.0 0.28834e-04 0.75489e-04 0.93309e-04 0.75489e-04 0.28834e-04
[8] 2.0 0.08712e-05 0.31140e-05 0.41673e-05 0.31140e-05 0.08712e-05

Table 8: Absolute errors of the present scheme(13),scheme(16) in[7] and scheme
(23) in [8](h = π

30 , k = 0.001).

t x = π
10 x = 3π

10 x = 5π
10 x = 7π

10 x = 9π
10

The present s. 1.0 0.10965e-08 0.71347e-08 0.88195e-08 0.71347e-08 0.10965e-08
[7] 1.0 0.29477e-04 0.77174e-04 0.95392e-04 0.77174e-04 0.29477e-04
[8] 1.0 0.18390e-08 0.65744e-08 0.87995e-08 0.65744e-08 0.18390e-08

The present s. 2.0 0.19920e-08 0.70295e-08 0.83985e-08 0.70295e-08 0.19920e-08
[7] 2.0 0.28834e-04 0.75489e-04 0.93309e-04 0.75489e-04 0.28834e-04
[8] 2.0 0.17996e-08 0.64330e-08 0.86095e-08 0.64330e-08 0.17996e-08

Table 9:RMS errors of schemes in [6] when λ = 3.2.

α = 50, β = 5, σ = 0.25, γ = 0.75 α = 50, β = 2, σ = 10, γ = 5
h t = 1.0 t = 2.0 t = 1.0 t=2.0
1
16 0.6386e-02 0.5937e-02 0.8998e-02 0.8827e-02
1
32 0.2229e-02 0.1800e-02 0.2850e-02 0.2652e-02
1
64 0.6002e-03 0.4826e-03 0.7676e-03 0.7276e-03

Table 10:RMS errors of schemes in [8] when λ = 3.2.

α = 50, β = 5 α = 50, β = 2
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.1368e-02 0.1005e-02 0.0853e-02 0.1076e-02
1
32 0.2159e-03 0.1368e-03 0.3015e-03 0.3915e-03
1
64 0.1507e-04 0.4015e-04 0.6059e-04 0.5252e-04
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Table 11:RMS errors of present schemes when λ = 3.2.

α = 50, β = 5 α = 50, β = 2
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.0253e-02 0.2643e-02 0.0258e-02 0.2839e-02
1
32 0.1659e-03 0.3804e-03 0.3872e-03 0.3648e-02
1
64 0.1002e-04 0.4984e-04 0.6754e-04 0.4563e-03

Table 12: RMS errors of schemes in [6] when λ = 1.6.

α = 10, β = 5, σ = 0.5, γ = 1.0 α = 20, β = 10, σ = γ = 1.0
h t = 1.0 t = 2.0 t = 1.0 t=2.0
1
16 0.6752e-03 0.1938e-03 0.4496e-02 0.7960e-03
1
32 0.2644e-03 0.7548e-04 0.1406e-03 0.2606e-04
1
64 0.7236e-04 0.2054e-04 0.2478e-04 0.4585e-05

Table 13: RMS errors of schemes [8] when λ = 1.6.

α = 10, β = 5 α = 20, β = 10
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.1651e-07 0.2648e-08 0.3382e-05 0.1285e-05
1
32 0.5269e-08 0.1508e-08 0.2567e-06 0.2618e-07
1
64 0.9686e-09 0.1756e-09 0.3447e-07 0.4172e-08

Table 14: RMS errors of present schemes when λ = 1.6.

α = 10, β = 5 α = 20, β = 10
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.2361e-07 0.1243e-08 0.4365e-05 0.8268e-06
1
32 0.1243e-08 0.8776e-09 0.3553e-06 0.7981e-08
1
64 0.8810e-09 0.0756e-09 0.2021e-07 0.0738e-08

5 Conclusion

This paper presents a new non-polynomial spline method to solve the linear
hyperbolic equation. The distinctness of this method as against the previ-
ous study in [10] is it using the taylor expansion in time direction. Using the
method described in this study gives acceptable results. We have concluded
that numerical results converge to the exact solution when k goes to zero and
for smaller h we have seen that the maximum absolute error decreases. Finally,
we believe it is crucial to mention that the new proposed method for solving
linear hyperbolic equation gives better numerical results than those produced
by a finite difference method [11].



Title Suppressed Due to Excessive Length 9

References

1. E.H.Twizel, An explicit difference method for the wave equation with extended stability
range, BIT Numerical Mathematics 19(3) : 378− 383(1979).

2. R.K.Mohanty,M.K.Jain, K.George, On the use of high order difference methods for
the system of one space second order non-linear hyperbolic equations with variable
coefficients, Journel of Computational and Applied Mathematics 72(2) : 421− 431(1996).

3. M.Climent, S.H.Leventhal, A note on the operator compact implicit method for the wave
equation, Mathematics of Computation 32(1) : 143− 147(1978).

4. R.K.Mahonty, M.K.Jain, An unconditionally stable alternating direction implicit scheme
for the two space dimensional linear hyperbolic equation, Numerical Methods for Partial
Differntial Equations 17(6) : 684− 688(2001).

5. R.K.Mahonty, M.K.Jain, U Arora, An unconditionally stable ADI method for the
linear hyperbolic equation in three space dimensional, International Journal of Computer
Mathematics 79(1) : 133− 142(2002).

6. R.K.Mahonty, An unconditionally stable difference scheme for the one-space dimensional
linear hyperbolic equation, Applied Mathematics Letters 17(1) : 101− 105(2004).

7. F.Gao, C.M.Chi, Unconditionally stable difference schemes for a one-space-
dimensional linear hyperbolic equation, Applied Mathematics and Computation
187(2) : 1272− 1276(2007).

8. Huan-Wen Liu, Li-Bin Liu, An unconditionally stable spline difference schemes of
0(k2 + h4) for solving the second-order 1D linear hyperbolic equation, Mathematical and
Computer Modelling, in press.

9. J.Rashidinia ,R.Mohammadi, Non-polynomial cubic spline methods for the so-
lution of parabolic eqautions, Internation l Journal of Computer Mathematics
85(5) : 843− 850(2008).

10. J.Rashidinia, R.Jalilian, V.Kazemi, Spline methods for the solutions of hyperbolic equa-
tions, Applied Mathematics an Computation 190 : 882− 886(2007).

11. K.George, E.H.Twizell, Stable second order-finite difference methods for linear initial
boundary-value problems, Applied Mathematics Letters 19 : 146− 154(2006).



10 Nazan Çağlar
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Fig. 1: Results for first example with h = π
40

and k = 0.01
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Fig. 2: Results for second example with h = 1
40

,k = 0.01,α = 50 and β = 2


