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Abstract 
Plant adaptation to high altitudes has long been a substantial focus of ecological and evolutionary research. However, the genetic mechanisms underlying such adaptation remain poorly understood. Here, we address this issue by sampling, genotyping, and comparing populations of Tibetan poplar, Populus szechuanica var. tibetica, distributed from low (~2000 m) to high altitudes (~3000 m) of Sejila Mountain on the Qinghai-Tibet Plateau. Population structure analyses allow clear classification of two groups according to their altitudinal distributions. However, in contrast to the genetic variation within each population, differences between the two populations only explain a small portion of the total genetic variation (3.64%). We identified asymmetrical gene flow from high- to low-altitude populations. Integrating with population genomic and landscape genomic manner, we detected a hot spot region containing ten genes under natural selection and associated with five environmental factors. These genes participate in abiotic stress resistance and regulating the reproductive process. Our results provide insight into the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar. 
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Introduction

One of the major goals of evolutionary genetics is to discover the driving forces behind adaptive evolution and their roles in shaping patterns of polymorphism and divergence within and among species (Lin et al., 2018; Savolainen et al, 2013). Two bottom-up approaches, i.e., population genetics and landscape genomics, are commonly used to identify genes underlying local adaptation. Population genetics aims to identify the evolutionary forces such as natural selection, gene flow and demographic fluctuations that play dominant roles in driving plant adaptation to local environments. Today, increasing available genome-wide data is transforming population genetics into population genomics and simultaneously bringing our understanding of local adaptation to date (Charlesworth & Charlesworth, 2010; Luikart et al., 2003; Weigel & Nordborg, 2015). Using genome-wide data analyses, it is possible to elucidate the relative contributions of various evolutionary forces to the current extent and pattern of genetic variation, as well as their potential roles in local adaptation (Cutter & Payseur, 2013; Olson-Manning et al., 2012; Sella et al., 2009). However, several drawbacks are inevitable when using population genetics or genomics approach. First, it is difficult to detect rare alleles caused by local adaptation, particularly in a complicated demographic context, such as during robust gene flow events (Kawecki & Ebert, 2018). Second, population genetics and genomics methods do not usually attempt to link adaptive genes to specific environmental factors that drive local adaptation. 
In recent years, landscape genomics has emerged as a valuable alternative approach for identifying adaptive loci that drive local adaptation (Holderegger et al., 2010; Manel & Holderegger, 2013; Manel et al., 2010; Sork et al., 2013). The emergence of landscape genomics has been expedited by next-generation sequencing (NGS), increasing availability of public datasets for environmental factors and rapid development of computational power (Balkenhol et al., 2019; Rellstab et al., 2015). For example, high-throughput sequencing technology allows the quantification of numerous allele variants across the whole genomes of many individuals (Andrews et al., 2016; Luikart et al., 2003). Likewise, environmental data can be obtained at high resolution using accurate remote sensing devices (Anderson & Gaston, 2013; Pettorelli et al., 2005). Subsequently, increased computational power enables analyses of these large datasets within a reasonable amount of time (Kidd & Ritchie, 2006; Paul & Song, 2012). Compared to traditional approaches to testing outlier loci, landscape genomics has the potential to discern adaptive patterns by identifying genetic variants coupled with particular environmental factors. In practice, one could combine population genomics and landscape genomics to obtain better quantitative data and qualitative information underlying local adaptation. Recently, numerous studies of local adaptation combining both approaches have been reported in various species, notably in forest trees such as Pinus, Picea, and Populus (Eckert et al., 2010; Geraldes et al., 2013; Geraldes et al., 2014; Grivet et al., 2013; Keller et al., 2011)
Forest trees are emerging as a model species, which could provide information about demographics and adaptive processes in forest ecosystems through applying population genomics or landscape genomics. (Sork et al., 2013). Populus is a globally distributed tree genus of the Northern Hemisphere, containing nearly 30 species. Poplars are pioneer species and ecologically important trees in their habitats. Due to several advantages of poplar species, including rapid growth, relatively small genome size (<500 Mbp), suitability for efficient genetic transformation, and ease of propagation in tissue culture, they have arisen as important model organisms for studies of forest tree species with developed genetic and genomic resources (Street & Tsai, 2010; Wullschleger et al., 2013). Several population genomics studies and landscape genomics of local adaptation have been reported for P. trichocarpa (Evans et al., 2014; Geraldes et al., 2014; Holliday et al., 2016; Porth et al., 2015; Zhou et al., 2014), P. alba (Stölting et al., 2015), P. tremula and P. tremuloides (Wang et al., 2016a, 2016b), and P. deltoids (Fahrenkrog et al., 2017a, 2017b ). However, very limited information is available about the high altitudinal adaptation of ecologically and economically crucial endemic alpine species such as Populus szechuanica var. tibetica, which is distributed on the Qinghai-Tibetan Plateau (QTP).
The Tibetan poplar (Populus szechuanica var. tibetica) is a QTP endemic perennial woody plant, belonging to Populus sect. Tacamahaca, mainly distributed in Sichuan and Tibet along an altitude gradient from 2000 to 4500 m (Shen, 2014). Recent studies have concentrated mostly on the genetic diversity, phenotypic, and physiological mechanisms accountable for its adaptation to harsh environmental conditions including low temperature, strong solar radiation and poor soil (Shen et al., 2014; Tang et al., 2012.). However, the genetic mechanism underlying the local adaptation to elevating altitude for Tibetan poplar remains unclear. Here, we investigated the genetic diversity and genetic adaptations of Tibetan poplar low (~2000 m) to high altitudes (~3000 m) to investigate its genetic adaptation to this harsh high-altitude environment using genome-wide single-nucleotide polymorphism (SNP) data obtained from genomic resequencing technologies. 

Materials and Methods
Sampling strategy and DNA extraction

A total of 400 samples were collected from Sejila Mountain in southeastern Tibet along an altitudinal gradient of 2000 to 3000 m in the summers of 2013 and 2014 (Fig. 1; Supplement Table 1). These samples were clustered into two altitude groups: high (LL and DJ) and low (PL and TM). However, they were distributed continuously throughout the study area. Each individual was collected with a minimum of 30 m between individuals to prevent the selection of clones. Cuttings of each sample were planted in cultivation medium composed of vermiculite and perlite in a greenhouse at Beijing Forestry University. Approximately 0.2 g newly emerged leaves were prepared from the cuttings for DNA extraction to prevent insect DNA contaminants. Total genomic DNA was extracted using the DNAsecure Plant kit (Tiangen Biotech (Beijing) Co., Ltd.) following the protocol. After quality control of extracted DNA using 1% agarose gel electrophoresis and ultraviolet spectrophotometry, at least 1.5 µg DNA from each sample was prepared for genome-wide resequencing.

SNP calling and data filtering
Genomic DNA, with libraries fragment size (500 bp) were constructed and then paired-end sequenced on the Illumina sequencing platform (Hiseq 2000) at the Novogene Bioinformatics Institute (Beijing, China) in 2015. Those raw reads were removed: 1) adapter sequences; 2) those raw reads contain more than 15 N base (10% of 150 nt) for each single reads; 3) raw reads which containing more than 75 nt low-quality base (Q ≤ 5). Trimmed reads were mapped to the Populus trichocarpa genome version 3.0 (https://genome.jgi.doe.gov/) using BWA (mem –t 4 –k 32 -M) (Li & Durbin, 2009) and SAMtools program ‘rmdup’ to remove duplications (Li et al., 2009). Only reads with at least 85% match to the reference genome were retained for subsequent SNP calling using the SAMtools program ‘mpileup’ with the parameters, -E –C 50 –DS –m 2 –F 0.000911 –d 50,000 (Li et al., 2009b). Next, we removed SNPs with minor allele frequency (MAF) ≤ 0.1, genotype missing rate < 20%, minimum depth 10× and maximum depth 20× using VCFTools (Danecek et al., 2011). Ultimately, a total of 490,363 SNPs were maintained for subsequent analyses. Feature of these SNPs was annotated using SnpEff software (ver 4.0 Cingolani et al., 2012) against P.trichocarpa genome ver 3.0.
Pair-wise kinship among 400 samples was inferred using the program King 2.2.3 with all filtered SNPs (Manichaikul et al., 2010). All duplicate and first-degree individuals were removed, and 348 unrelated individuals were retained for subsequent analyses (Supplement Fig.1). 
Genetic parameters estimation
After filtering for genetic markers and pair-wise kinship for samples, we first estimate several genetics parameters as below. All sorts of SNPs (n = 490,363) were uesd for calculating these genetic parameters.
1) Population fixation index (FST). We first combined the sample sites (LL & DJ) into the high-altitude group and the other two sample sites (PL & TM) into the low-altitude group. Then a per-sites comparison between these two altitudinal groups for FST estimation was performed using VCFtools with parameter --weir-fst-pop. Furthermore, the population fixation index (FST) and gene flow parameter (Nm = FST / (1- FST)) were calculated for all six pair-wise comparisons for four sample sites. A multiple regression on matrices (MRM) test were performed using a package ecodist implemented in R software (https://www.r-project.org/), to test if genetic distance correlated with geological distance for the four sample sites, number of permutation was 1,000. 
2) Nucleotide diversity estimation (θπ). Per-sites estimation for nucleotide diversity (θπ) was measured with VCFtools --site-pi. We also estimated θπ for high- and low-altitude groups and for all four sample sites as we performed in FST calculation. 
3) Linkage disequilibrium (LD). The pattern of LD decay was firstly estimated for high- and low-altitude group via the squared correlation coefficient (r2) using the software LDdecay with default parameters (Zhang et al., 2019). Then we also estimated the pattern of LD decay for all four sample sites independently. The LD decay rate against physical distance was illustrated using R software (https://www.r-project.org/). 
Population structure and divergence
One of the major assumptions of population structure inferring was that there are no spurious correlations among the measured variables. Therefore, the physical and linkage disequilibrium correlated SNPs needed to be pruned before population structure estimation. A LD-based SNPs pruning were performed using Plink software with parameter --indep-pairwise 50 5 0.1 (Purcell et al., 2007). The windows size was set as 50 and the number of SNPs to shift the windows at each step was 5. The threshold for r2 was 0.1. A total of 25,247 unrelated SNPs were retained for the following population structure and divergence estimation. 
We used both model-independent and model-dependent methods to infer population structure from resequencing data. Model-independent principal component analyses (PCAs) were performed using the package GCTA (Yang et al., 2011). A more precise population genetic structure was inferred using Admixture software (Alexander et al., 2009). The predefined genetic cluster value (K) was set from 1 to 5. The run number of iterations for converged was illustrated for each K (Supplement Fig 2). Then we selected the most probable number of subpopulations according to the maximum marginal likelihood value based on the minimum cross-validation (CV) errors (Supplement Fig 2). Those individuals, collected from a sample site while clustered into other sites based on the Q value measured by Admixture with K = 4, would be treated as admixture (Fig 1b).
Furthermore, we performed analyses of molecular variation (AMOVAs) to assess the distribution of total genetic variation using Arlequin version 3.5 (Excoffier & Lischer, 2010). For AMOVA, we combined the four sample sites into two altitudinal groups (high: LL & DJ; low: PL & TM). 
Gene flow and migration events
According to the continual distribution of Tibetan poplar on Sejila Mountain and lack of a geological barrier between the high- and low-altitude groups, gene flow might be a driving force for the population structure and genetic diversity. Therefore, we inferred the population divergence and gene flow by reconstructing the maximum likelihood phylogenetic tree based on allele frequency data using Treemix software version 1.12 (Pickrell & Pritchard, 2012). Three individuals of P. trichocarpa (downloaded from the Joint Genome Institute database http://phytozome.jgi.doe.gov) were used as the outgroup. We initiated the estimation of gene flow events by comparing high- and low-altitude groups and then we further inferring the migration signals among four sample sites. The migration event parameter was set from 1 to 4. A sort of unrelated SNPs (n = 25,247) were used for migration events estimations.
Signatures of divergent selection
To investigate the underlying mechanism of adaptation for altitudinal gradients, a whole-genome scanning was performed, incorporating population and landscape genomics (Supplement Fig 3). Natural selection was first identified based on the FST ratio method quantified as pairwise nucleotide diversity (θπ) (Tajima, 1983), and the genetic differentiation between the two populations was quantified using pairwise FST values for each locus (n = 490,363) (Weir & Cockerham, 1984). For comparisons between the high- and low-altitude groups, SNPs with the top 5% maximum FST values (FST_outlier) and top 5% maximum log2 value of θπlow/θπhigh (θπ_outlier) were selected as outliers for the high-altitude group, and the opposite conditions characterized the low-altitude group. Natural selection affected not only on separated loci but also on genomic regions. Therefore, we performed a sliding window analysis to validate the putative signal of natural selection. According to the pattern of LD decay, the sliding window size was set as 80 Kbp and step size was 10 Kbp. Those genetic regions were identified under natural selection if the average FST value was higher than FST_outlier, meanwhile, the average log2 value of θπlow/θπhigh was above θπ_outlier. Further, permutation tests were repeated 1,000 times to validate whether those genetic region was truly under natural selection (p-value ≤ 0.05) using a custom script in R. 
Next, we performed a FST-outlier approach to ascertained selective signals, executed in BayeScan software v2.1 (Foll & Gaggiotti, 2008). This statistical method can identify selected loci that have FST coefficients that differ significantly from all genomic loci under a certain demographic model. In this context, strong evidence for selection could be observed between populations with high FST values. Using this method, the FST coefficients are separated into two components, e.g., a locus-specific component (α) and a population-specific component (β). Selective signatures can be examined when α is extremely distinct with zero. The minimum false discovery rate at which the locus may be under significant selection was calculated as a q-value. The default settings were used for BayeScan analyses. Prior odds of the selection model were set as 10000 to reduce false-positive results under a variety of demographic events (Lotterhos & Whitlock, 2014). Loci identified based on both the FST ratio (top 5%) and BayeScan method (q-values < 0.05) were considered as putative outliers (selSNPs). Besides, we also performed a sliding-window calculation and permutation test to identify selective genomic regions for BayeScan analyses as we used in FST-θπ ratios methods. Those regions detected by sliding window methods for either FST-θπ ratios or BayeScan methods were identified as putative selective regions. All SNPs containing in these selective regions were retained for following environmental association analysis (EAA) (Supplement Fig 3). 
Environmental association analysis 

Environmental association analyses (EAAs), also called genomic–environment analyses (Lotterhos & Whitlock, 2015), have the potential to ascertain patterns induced by adaptive processes that cannot be detected using traditional population genomic approaches. Seven altitudinal climatic variables were examined as possible factors explaining loci under selection: solar radiation (srad), precipitation (prec), wind speed (wind), water vapor pressure (vapr), average temperature (tavg), minimum temperature (tmin), and maximum temperature (tmax). All climatic variables were acquired from the WorldClim global climate database (http://worldclim.org), version 2.0 (Fick & Hijmans, 2017) implemented in ArcGIS 10.6 (http://desktop.arcgis.com), corresponding to recent historical conditions (1970–2000) with a spatial resolution of 2.5 arc-min. Since the high correlation among tavg, tmin and tmax and all these three represent temperature variables, thus we only choose the tavg as an independent factor (Supplement Table 2). The yearly standard average value of each climate variables was used for subsequent EAAs.
Here, we first applied a Bayesian linear mixed based model in Bayenv2 (Günther & Coop, 2013). For a certain genetic variant, Bayenv2 tests whether an environmental factor included model is more suitable than the environmental factor excluded null model. A variance-covariance matrix by running the Markov chain Monte Carlo (MCMC) algorithm after 1,0000 iterations based on allele frequencies accounting for the population structure using LD-pruned SNPs (n = 25,247). Then the variance-covariance matrix was utilized to control for evolutionary history during the process for calculation using the Bayenv2 software. The calculation for BF was performed using normal environment correlation analysis for each SNP. Additionally, a non-parametric test, which excludes the covariance structure among population, was performed for calculation of the non-parametric Spearman’s rank correlation coefficient rho using the parameter -c. In addition to environmental correlations, a population differentiation statistic called XTX was also performed in Bayenv2 (-X). Those loci which ranked as top 5% of BF, absolute value of rho and XTX were identified as outlier loci. This Bayenv2 method was executed for each environment variable and the outlier loci for each variable were calculated independently.
Next, a more recent designed FST-based method, BayeScEnv, was applied (de Villemereuil & Gaggiotti, 2015). This method incorporates environmental information based on the F model which considers two locus-specific effects simultaneously, i.e., divergent selection and various demographic processes. Triplicate random runs were performed starting with a pilot run of 10,000 iterations for estimating the initial parameters, followed by a burn-in length of 50,000 iterations, and a minimum run of 50,000 iterations. Loci with q-values < 0.05 were considered as outliers. Similarly, this BayeScEnv method was also repeated eight times for each environmental factor. Those consensus outlier SNPs for each environmental variable detected by both Bayenv2 and BayeScEnv were identified as potential outlier SNPs (eaSNPs) associated with this environmental factor and were retained for further annotation. For all these four methods (FST-θπ ratios, BayeScan, Bayenv2, and BayeScEnv), four sample sites were combined into high- and low-altitude groups based on the pattern of population structure.
Candidate gene annotation
For comparing selSNPs and eaSNPs, a Venn diagram was plotted using UpsetVenn program implemented in UpSetR package (Conway et al., 2017). The Gene IDs of potential selected genes located in selective regions were extracted from the latest GFF (general feature format) file of P.trichocarpa genome (RefSeq assembly accession: GCF_000002775.4) using a custom python script. Then we converted the Gene ID to gene otology (GO) ID by using bitr function and the toTable function to extract GO terms using clusterProfiler package (Yu et al., 2012) in R for extracting GO terms. The annotation database used in this study were acquired using AnnotationHub package (Morgan et al., 2019), the accession number of P.trichocarpa database was ‘AH66282’. The GO annotation diagram was plotted using a custom script implemented in R software. 

Results
Resequencing data SNP calling

A total of 15.6 terabases (Tb) were mapped onto 394 Mb, providing approximately 88% (84.53–91.78%) coverage of the P. trichocarpa genome, with an average 15 × (10.08×–19.7×) depth of sequencing. A total of 490,363 SNPs were retained for subsequent analyses after SNP filtering. Among those SNPs, 39,428 SNPs were out of Hardy-Weinberg Equilibrium (HWE) under a threshold for p-value (10-4). Approximately, 49.06 % out of 490,363 SNPs located in intergenic regions, while 34.43% of them were detected at genetic regions (exon + intron + UTR_3 + UTR_5) (Supplement Table 3).
Genetic parameters
The Weir and Cockerham FST comparison for high- against low-altitudinal group was 0.070. Then the average FST value for four sample sites was 0.050, ranged from 0.006 (PL against TM) to 0.083 (LL against TM), indicating that there was little genetic differentiation among the four sampling locations (Table 1). Almost 96.00 % of genetic variation was attributed to variation within sample sites, while only 3.64 % of the variation was attributed to differences between the two altitude groups (Table 1). 
The average nucleotide diversity (θπ) for the low-altitudinal group was 0.36 which was significantly higher than that for the high-altitudinal group (t-test, p-value < 2.2×e-16). The maximum θπ value was detected in PL sample sites (0.366) while the minimum one was detected in LL sites (0.335). There was no significant difference in θπ values among the divergent genetic regions, e.g. genetic region vs intergenic regions (Supplement Fig 4). 
The average distance that LD values decay below 0.1 was almost at ~80 Kbp. The rate of LD decay for low- was much quicker (73.5 Kbp) than that for the high-altitude group (84.8 Kbp) (Fig 2d). The slowest LD decay rate was detected in LL (~ 95 Kbp) while the fastest one was detected in TM (~ 73 Kbp) (Supplement Fig 5). 
Population structure
A total of 25,247 unrelated SNPs were retained for sequential population structure inferring. In PCA, all 348 unrelated samples from four locations clustered into two spatially separated groups associated with different altitudes (Fig. 2b). The first component could explain 35.8% differences among variables. More comprehensively assess the stratification present in Tibetan poplar was obtained using Admixture software (Alexander et al., 2009). We inferred the probable population structure by setting subpopulation numbers from 1 to 5 and chose the most suitable K value by selecting the minimum CV error (Fig. 2a; Supplement Fig. 2). Regardless of which K value was chosen, admixed individuals could be detected. The most suitable K value was 2, which has the minimum CV error (Supplement Fig. 2). As these results show, Tibetan poplars sampled for this study separated into two groups, representing the high and low latitude. Several samples from the edge zone between two neighbor sites were identified as representing admixture events by all methods used (Fig. 2a and 2b). This genetic structure of Tibetan poplars in Sejila Mountain confirmed our sampling strategy, which is suitable for the aim of this study.
Migration event inference 
The average Nm was 3.32 for high- against low-altitudinal groups. Strong gene flow might occur between the high- and low-altitude groups based on the extremely high Nm value and low FST value (Supplement Table 4). There was no migration event detected when the four sample sites were clustered into two altitudinal groups no matter which parameter of migration events was chosen (Fig 2c). However, a common migration event indicating gene flow in the direction from high-altitude (DJ) to low-altitude (PL) sites were detected in all inferred trees. (Fig. 2c & Supplement Fig 6). Another gene flow event, which was conditional on three or four migration events, was detected from the other high-altitude (LL) to low-altitude (TM) sites (Supplement Fig 6). Without exception, the direction of these migration events was from high to low altitude.
Signature of natural selection 
In total, 4,621 SNPs were identified as putative loci under selection for high altitude based on both FST (> 0.24) and log2θπ ratio (> 1.87). Among these outlier SNPs, 1,362 SNPs were out of HWE under a threshold (1×10-4). On the contrary, a total of 4,801 SNPs were identified under selective pressure for low-altitude group (FST > 0.24 & θπ ratio < -1.4) and 1,959 loci were out of HWE. 
A total of 539 SNPs were identified as outliers based on the FST-outlier approach implemented in BayeScan software (q-value < 0.05; FST = 0.19). Approximate 96.6% outlier (n = 521) were out of HWE. The average population index (FST) of these outliers was 0.226 (from 0.192 to 0.291). The locus-specific component (α) ranged from 1.089 to 1.719, indicating that these outlier loci were undergoing continuous directional (divergent) selection. In total, 98 and 257 consensus SNPs (selSNPs) were identified using both the FST ratio and BayeScan methods for high- and low-altitude groups, respectively. For high-altitude group, the selSNP with the highest FST (0.505) were harbored in a gene LOC7476728, which encodes a Nucleosome assembly protein (NAP1) affects dynamics of nucleosomes and the regulation of gene expression in response to environmental stresses (Son et al., 2015). By comparison, a selSNP in gene LOC18098853 encoded probable disease resistance protein At4g27220 had the highest FST value (0.719) for the low-altitude group. This gene involved in the resistance to Verticillium wilt in Arabidopsis (Li et al., 2018).
There were a total of 37,132 regions defined with window size 80 Kbp and step size 10 Kbp with an average 104 SNPs in each region. Either 38 or 39 selective regions were identified for high- or low-altitude group, respectively (Fig 3a), while 412 regions were detected under selective pressure using BayeScan method. Twenty consensus regions were identified with robust signals of natural selection for either high- and low-altitudinal groups by both FST-θπ and BayeScan. 
A hot spot region which located on chromosome 18 from 4. 1 Mbp to 4.4 Mbp, harboring 10 genes, exhibited robust natural selective signals identified by two population genomics analysis for high-altitudinal (Fig 3b & 3c). Approximately 75.3% (244 out of 324) SNPs in these regions were identified under natural selection by FST-θπ ratio method, 113 out of these 244 SNPs were out of HWE. In addition, 53 selSNPs identified under both FST-θπ ratio and BayeScan located in this region and 77.3 % (41 out of 53) were out of HWE (Fig 3c). The average LD value (r2) for a total of 324 SNPs from this region was 0.482, the value among selective SNPs (n = 244) identified only by FST-θπ ratio was 0.595. However, the average r2 value for those selSNPs (n = 53) was 0.893, forming several LD block regions (Fig 3c). 
Environmental association analyses 
First, EAA was executed using Bayenv2 to search for associations between variants of allele frequencies in a population and environmental variables. A set of 468 unique SNPs associated with at least one environmental variable. Among these environment-associated SNPs (eaSNPs), the maximum of 421 eaSNPs were associated with prec, while the minimum number of 117 eaSNPs were identified in association with solar radiation (Fig 4a). Twenty-eight consensus eaSNPs were associated with all six environmental factors. These consensus eaSNPs were harbored in eight genes (Supplement Table 5). There was one eaSNPs associated with five environment factors, which was located in exon 1 of a gene (LOC7476695) from that hot spot region under natural selection as described above (Table 2)

By contrast, none of those 12,797 SNPs associated with any one of six environmental variables by BayeScEnv. This result might result from the relatively simple pattern of population stratified. Then, EAA test was repeated using four sample sites but none of the associated SNPs were identified either. 
Annotation of environment-associated genes
Totally, 329 unique genes located in those selective regions by at least one of the two population genomics methods, i.e. FST ratio and BayeScan. Gene Ontology (GO) analysis indicated these unique genes belong to 117 GO terms (Figure 4b). The maximum number of GO term was 15 (nucleus), function as cellular components (CC). Fifty-five out of 329 unique genes contained at least one eaSNPs, associating with at least one environmental variable (Supplement Table 5). A gene, LOC18101054 which encoded aconitate hydratase 1 (Aco1), containing 57 eaSNPs and 21 seSNPs (Supplement Table 5). 
Ten genes located in the natural selective hot spot region on chromosome 18 response to elevating altitude (Table 2). The GO terms analysis indicated that those genes mainly involved in several processes such as kinase activity (GO:0004672), phosphorelay signal transduction system (GO:0000160), ATP binding (GO:0005524) and chromatin binding (GO:0003682). Totally, five out of these ten genes, including homeobox-leucine zipper protein (Athb-8), probably inactive leucine-rich repeat receptor-like protein kinase At2g25790 (SKM1), monoacylglycerol lipase (MGL), lachrymatory-factor synthase (LFS), NADP-dependent malic enzyme (NADP-ME) contained SNPs which were identified under selection by at least one method (Table 2). Although most of selSNPs located in the intergenic regions, the robust linkage-disequilibrium among them suggested that the SNPs in the hot spot region might be selected and inherited as a whole. 
Discussion

Asymmetric gene flow toward downhill

Several gene flow events from high- toward low-altitude were detected in this Tibetan poplar population. Given the relatively long duration of flowering and long-distance pollen and seed dispersal of Populus species (Ingvarsson, 2010; Broeck et al., 2004), high gene flow and introgression events have been documented among populations of a species or related species (Chhatre et al., 2018; Fahrenkrog, et al., 2017; Ma et al., 2018). The Tibetan poplar populations on Sejila Mountain have an overlapping flowering period that runs from late April to mid-May for the low-altitude group and throughout May for the high-altitude group. Furthermore, the sample sites of Tibet poplar in this study were connected by the same river. The combination of overlapping flowering period and shared habitat characteristics enable pollen driven gene flow within the entire Sejila population, leading to the potential combining of the gene pool and reduction of genetic variation among populations. Wind power might be the driven force for gene flow toward the downhill direction in this study (Supplement Fig 6). The closer between sample sites, the greater potential for gene flow will be (Sharma & Khanduri, 2007). No observation of gene flow between TM and PL (~20 Km) might result from the slight divergence of wind power. Although a common gene flow event from DJ to PL were detected by all inferring, the longest distance (~ 70 Km) gene flow occurred from LL to TM (Supplement Fig 4). Such long-distance gene flow mediated by either pollen or seed has been documented for diversity tree species and reviewed by (Kremer et al., 2012). 
Genetic adaptation to an altitude gradient
Based on our strategy for detected signals of natural selection (Supplement Fig 3), a hot spot region exhibited robust selective signals response to elevating altitude. A total of ten genes were harbored in this region. One of them embraced 20 seSNPs and associate with five environmental factors excluding solar radiation. This gene was orthologous to At2g25790 which was a member of leucine-rich repeat receptor-like kinase genes, encoded STERILITY-REGULATING KINASE MEMBER1 (SKM1) in A.thaliana. This SKM1 protein interacted with a CLV3/ESR-related peptide, CLE45, sustained the pollen-pistil interaction under high-temperature stress, leading to successful seed production under abiotic stress in A. thaliana (Endo et al., 2013). According to the similar consequences caused by high temperature and drought stress, SKM1 might interact with other peptides in maintaining the function of successful seed production, although CLE45 specifically participated in tolerance against high temperature in A. thaliana. Furthermore, the extracellular interaction between SKM1 and BRI1, a leucine-rich repeat (LRR) receptor kinase which is involving the brassinosteroid signaling pathway, has been documented by Smakowska-Luzan and colleagues (Smakowska-Luzan et al., 2018). Brassinosteroids (BRs) participated in the regulation of multiple biological process, such as abiotic stress resistance (Bartwal et al., 2013; Takahashi & Shinozaki, 2019) and developmental process including flowering time, male fertility, pollen development and woody formation (Clouse, 2011; Du et al., 2020; Gruszka, 2013; Ye et al., 2010). 
Other genes located in this hot spot selective region also play potential roles in abiotic stress resistance and flowering time. For instance, the HD-Zip protein, Athb8 was a positive regulator for auxin signaling feedback loop, participating in early vascular tissue development (Baima et al., 2001). The Athb-8 gene could be induced by several abiotic stress, including osmotic and cold (Chen et al., 2002). Furthermore, the activity of the NADP- dependent malic enzyme (NADP-ME) could be enhanced by drought, cold and salicylic acid in the leaves of hexaploid wheat (Fu et al., 2011). In the model species for woody plants, P.trichocarpa, the NADP-ME family processed five members. The expression of PtNADP-ME in seedlings increased at least two-fold under NaCl, mannitol and PEG treatments (Yu et al., 2013). Several selSNPs and esSNPs were detected in these five genes (Athb-8, SKM1, MGL, LFS, and NADP-ME), while others were located at intergenic region, flanking some abiotic response and development regulating genes, such as histidine-containing phosphotransfer protein 4 (Hpt4) and casein kinase 1-like protein HD16. There were 4 members of Hpt gene family in P.trichocarpa, one of them (Hpt2) could interact with a histidine-aspartate kinase (HK1) involving in osmotic stress sensing (Chefdor et al., 2006). The similarity between Hpt1-4 suggested their potential roles in osmotic stress response pathway in woody species. Further, the gene Hd16, encoded casein kinase I, involved in the control of rice ﬂowering time by modulating the day-length response (Hori et al., 2013). Taken together, we hypothesized that Tibetan poplar adapted to elevating altitude partially through sustain the function relative to reproduction under abiotic stress, though more detail information about how these genes regulate the adaptation to high altitude for Tibetan poplar are still need to be elucidated in the future.
The QTP is undergoing warming since the 1950s (Kuang & Jiao, 2016). The temperature increased significantly since the 1980s with an overall warming rate of 0.46 °C decade-1, which is about 1.5 times than that of global warming (0.32°C decade-1) (Zhang et al., 2013). Moreover, the annual precipitation in the eastern and southeastern parts nearby our sample sites is decreasing (Kuang & Jiao, 2016). Thus, the Tibetan poplar in Sejila mountain will face climate change with global warming in the future. Comparing to those individuals habituated in low-altitude sites, high-altitudinal ones are more suitable for those climate change. But the benefit allele could be obtained by low altitudinal individuals though downhill direction gene flow from high altitude trees. Together, the cooperation between gene flow and natural selection drive adaptation to cope with environmental change for the whole population of Tibetan poplar in southeastern parts of QTP.
Conclusion 
This is the first attempt to elucidate the intricate genetic structures associated with high-altitude climate adaptation in the QTP endemic woody plant Tibetan poplar, Populus szechuanica var. tibetica. Population structure analyses allow clear classification of two groups according to their altitudinal distributions without significant subpopulation divergence. Gene flow events could be observed between two geological close sample sites, DJ and PL. 

The main aim of this study was to elucidate the genetic mechanism underlying high-altitude adaptation. Intergrading population genomics methods (FST-θπ and BayeScan) and landscape genomics method (BayeNv), we detected a hot spot region with robust signals of natural selection and associated with five environmental factors. This region comprised 10 genes that mainly involved abiotic stress resistance and sustaining for successful reproduction. Therefore, it is hypothesis that Tibetan poplar adapted to high altitude partially through sustain successful production under environmental stress conditions. The cooperation between gene flow and natural selection drives local adaptation for this population of Tibet poplar This paper will be useful for understanding how various evolutionary forces, including natural selection and environmental factors, drive local adaptation to altitudinal differences in Tibetan poplar.
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Table 1 Analysis of molecular variance (AMOVA) among 

P. szechuanica population along altitude gradient.

	Source of variation
	d.f
	sum of squares
	variance component
	percentage of variation

	Among groups
	1
	75067.180  
	191.75251
	3.64

	Among sample sites within groups
	2
	16206.346
	18.46357
	0.35

	Within sample sites
	692
	3495412.873
	5051.17467
	96.00

	Total
	695
	3586686.399
	5261.39075
	100


Table 2. Candidate environmental factors association genes detected in hot spot selective region for high altitude
	GeneID
	CHR
	STR
	END
	Description
	GOID
	GOTerm
	FST_H
	Bayescan
	BayesNv2

	7462919
	18
	4122470
	4129838
	homeobox-leucine zipper protein ATHB-8
	
	
	22
	0
	0

	
	18
	4129838
	4180690
	Intergenic region
	
	
	44
	1
	0

	7476695
	18
	4180690
	4185097
	probably inactive leucine-rich repeat receptor-like protein kinase At2g25790
	GO:0005524 GO:0004672
	ATP binding protein 

kinase activity
	13
	7
	1

	
	18
	4185097
	4208437
	Intergenic region
	
	
	8
	7
	0

	7462918
	18
	4208437
	4209554
	LOC7462918
	
	
	0
	0
	0

	
	18
	4209554
	4220571
	Intergenic region
	
	
	4
	1
	0

	7476694
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Figure Legends
Figure 1. Sampling locations of Populus szechuanica on Sejila Mountain. All 400 trees analyzed were collected from four sampling sites (a) along an altitudinal gradient (b). The area of each circle represents the sample size. Admixture proportion was assigned on the basis of both original sample sites and Q matrix generated by Admixture tools with K = 4.
Figure 2. Population structure of P. szechuanica. (a) Admixture of 348 unrelated samples illustrated for K = 2, 3, 4. (b) PCA of population structure. Confidence intervals are marked with ellipses, red for the high-altitude group (LL & DJ) and green for the low-altitude group (PL & TM). (c) Gene flow events inferred by TREEMIX software. No gene flow was detected in the maximum-likelihood trees for two altitudinal groups (left). But gene flow can be detected using four sample sites (right). (d) The pattern of LD decay for high- vs low-altitudinal group using r2 value. The number indicated the physical distance in which r2 value went below 0.1 for each group.
Figure 3. Putative genomic regions under natural selection. (a) Selective regions identified by FST-θπ ratio. Each point represents a genomic region based on 80 Kbp sliding window method. The green dash line denotes the top 5% per site measured FST (0.24). The threshold value of top 5% θπ ratio was red dash line (1.87 for high altitude) and blue dash line (-1.4 for low altitude). Section 1 (red points) contains 38 selective region for the high-altitude group and section 2 (blue line, n = 39) for the low-altitude group. (b) A hot spot selective region based on FST and θπ ratio at chromosome 18 (4.1 – 4.4 Mbp). (c) Natural selection signals estimated using BayeScan method (up) and the LD block pattern for SNPs located in the hot spot selective region (down). The threshold value was calculated using the minimum FST (0.19) when q-value < 0.05. Putative selective SNPs identified by different methods were marked as an asterisk. From inner to outer was FST-θπ ratio, BayeScan, and Bayenv2. Five gene locations were marked by black line (d) Environment associated with precipitation (prec) analysis for SNPs from Chromosome 18 by Bayenv2: dash lines represent threshold value (top 5%) for both XtX and log2 value of Bayes factor (BF). The eaSNPs marked by red points located in the hot spot selective region.
Figure 4. Venn diagram and GO annotation for putative SNP and selective genes. (a) Upset Venn diagram plotted for comparing putative selective SNPs and SNPs associated with six environment factors: H represent the selSNPs (n = 98) identified by both FST-θπ ratio and BayeScan for high altitude group; L indicates the selSNPs (n = 257). Intersect among different sets was marked by a black line. (b) Bar plot for GO term annotation for 329 unique genes located in the putative selective region identified by either FST-θπ ratio or BayeScan method.
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