REFERENCE
Amako, K., Chen, G.X. & Asada, K. (1994). Separate assays specific for
ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic
and cytosolic isozymes of ascorbate peroxidase in plants. Plant
and Cell Physiology, 35(3), 497-504.
Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism,
oxidative stress, and signal transduction. Annual Review of Plant
Biology , 55, 373-399.
Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., & Chiou, T.J.
(2006). pho2 , a phosphate overaccumulator, is caused by a
nonsense mutation in a microRNA399 target gene. Plant
Physiology , 141(3), 1000-1011.
Badger, M.R. & Lorimer, G.H. (1981). Interaction of sugar phosphates
with the catalytic site of ribulose-1, 5-bisphosphate
carboxylase. Biochemistry , 20(8), 2219-2225.
Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis
in vivo. Annual Review of Plant Biology , 59 , 89-113.
Bari, R., Pant, B.D., Stitt, M. & Scheible, W.R. (2006). PHO2,
microRNA399, and PHR1 define a phosphate-signaling pathway in
plants. Plant Physiology., 141(3), 988-999.
Bhatti, A.S. & Loneragan, J.F. (1970). The effect of early
superphosphate toxicity on the subsequent growth of
wheat. Australian Journal of Agricultural Research, 21(6),
881-892.
Biddulph, O., Biddulph, S., Cory, R. & Koontz, H. (1958). Circulation
patterns for phosphorus, sulfur and calcium in the bean
plant. Plant Physiology , 33(4), 293-300.
Bieleski, R.L. (1973). Phosphate pools, phosphate transport, and
phosphate availability. Annual Reveiw of Plant Physiology, 24,
225-252.
Cakmak, I. (2005). The role of potassium in alleviating detrimental
effects of abiotic stresses in plants. Journal of Plant Nutrition
and Soil Science, 168(4), 521-530.
Cakmak, I. & Marschner, H. (1987). Mechanism of phosphorus‐induced zinc
deficiency in cotton. III. Changes in physiological availability of zinc
in plants Is mail. Physiologia Plantarum , 70(1), 13-20.
Cheng, Y., Zhou, W., El Sheery, N.I., Peters, C., Li, M., Wang, X. &
Huang, J. (2011). Characterization of the Arabidopsis
glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of
the plastid‐localized AtGDPD1 in maintaining cellular phosphate
homeostasis under phosphate starvation. The Plant Journal , 66(5),
781-795.
Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F. & Su, C.L.
(2006). Regulation of phosphate homeostasis by microRNA inArabidopsis . The Plant Cell , 18(2), 412-421.
Clarkson, D.T. & Scattergood, C.B. (1982). Growth and phosphate
transport in barley and tomato plants during the development of, and
recovery from, phosphate-stress. Journal of Experimental
Botany, 33(5), 865-875.
Delhaize, E. & Randall, P.J. (1995). Characterization of a
phosphate-accumulator mutant of Arabidopsis thaliana. Plant
Physiology. , 107(1), 207-213.
Deng, M., Bian, H., Xie, Y., Kim, Y., Wang, W., Lin, E., Zeng, Z., Guo,
F., Pan, J., Han, N., Wang, J., Qian, Q. & Zhu, M. (2011). Bcl-2
suppresses hydrogen peroxide-induced programmed cell death viaOsVPE2 and OsVPE3 , but not via OsVPE1 andOsVPE4 , in rice. The FEBS Journal, 278(24), 4797-4810.
Dong, B., Rengel, Z. & Delhaize, E. (1998). Uptake and translocation of
phosphate by pho2 mutant and wild-type seedlings of Arabidopsis
thaliana. Planta , 205(2), 251-256.
Fabre, D., Yin, X., Dingkuhn, M., Clément-Vidal, A., Roques, S., Rouan,
L., Soutiras, A. & Luquet, D. (2019). Is triose phosphate utilization
involved in the feedback inhibition of photosynthesis in rice under
conditions of sink limitation? Journal of Experimental
Botany , 70(20), 5773-5785.
Flóhe, L. & Ötting, F. (1984). Superoxide dismutase assays. In Methods
in enzymology (eds L. Packer), Vol. 105, pp. 93-104, Academic Press,
Orlando.
Flügge, U.I. (1992). Reaction mechanism and asymmetric orientation of
the reconstituted chloroplast phosphate translocator. Biochim
Biophys Acta Biomembranes , 1110(1), 112-118.
Flügge, U.I. & Heldt, H.W. (1984). The phosphate-triose
phosphate-phosphoglycerate translocator of the chloroplast. Trends
in Biochemical Sciences, 9(12), 530-533.
Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I.,
Rubio-Somoza, I., Leyva, A., Weigel, D., García, J.A. & Paz-Ares, J.
(2007). Target mimicry provides a new mechanism for regulation of
microRNA activity. Nature Genetics , 39(8), 1033-1037.
Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. (2005). A
miRNA involved in phosphate-starvation response inArabidopsis . Current Biology , 15(22), 2038-2043.
Fukayama, H., Ueguchi, C., Nishikawa, K., Katoh, N., Ishikawa, C.,
Masumoto, C., Hatanaka, T. & Misoo, S. (2012). Overexpression of
Rubisco activase decreases the photosynthetic CO2assimilation rate by reducing Rubisco content in rice leaves.Plant Cell Physiology, 53(6), 976-986.
Furihata, T., Suzuki, M. & Sakurai, H. (1992). Kinetic characterization
of two phosphate uptake systems with different affinities in
suspension-cultured Catharanthus roseus protoplasts. Plant
and Cell Physiology , 33(8), 1151-1157.
Ganesan, V. & Thomas, G. (2001). Salicylic acid response in rice:
influence of salicylic acid on H2O2accumulation and oxidative stress. Plant Science , 160(6),
1095-1106.
Gu, M., Chen, A., Sun, S. & Xu, G. (2016). Complex regulation of plant
phosphate transporters and the gap between molecular mechanisms and
practical application: what is missing? Molecular Plant , 9(3),
396-416.
Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J.,
Møller, I.S. & White, P. (2012). Functions of macronutrients.
In Marschner’s mineral nutrition of higher plants (eds Marschner,
P.), pp. 135-189. Academic Press, London.
Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H.,
Mori, S. & Nishizawa, N.K. (2005). OsZIP4, a novel zinc-regulated zinc
transporter in rice. Journal of Experimental Botany , 56(422),
3207-3214.
Kai, M., Masuda, Y., Kikuchi, Y., Osaki, M. & Tadano, T. (1997).
Isolation and characterization of a cDNA from Catharanthus roseuswhich is highly homologous with phosphate transporter. Soil
Science and Plant Nutrition , 43(1), 227-235.
Kirkby, E. (2012). Introduction, definition and classification of
nutrients. In Marschner’s Mineral Nutrition of Higher Plants (eds
Marschner, P.) (pp. 3-5). Academic Press. London.
Klughammer, C. & Schreiber, U. (1994). An improved method, using
saturating light pulses, for the determination of photosystem I quantum
yield via P700+-absorbance changes at 830
nm. Planta , 192(2), 261-268.
Kramer, D.M., Johnson, G., Kiirats, O. & Edwards, G.E. (2004). New
fluorescence parameters for the determination of QAredox state and excitation energy fluxes. Photosynthesis Reserch,79(2), 209-218.
Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis.Journal of Experimental Botany , 56(411), 337-346.
Kurita, Y., Baba, K.I., Ohnishi, M., Anegawa, A., Shichijo, C., Kosuge,
K., Fukaki, H. & Mimura, T. (2014). Establishment of a shortened annual
cycle system; a tool for the analysis of annual re-translocation of
phosphorus in the deciduous woody plant (Populus alba L.).Journal of Plant Reserch , 127(4), 545-551.
Lee, H. S., Lee, D.H., Cho, H.K., Kim, S.H., Auh, J.H. & Pai, H.S.
(2015). InsP6-sensitive variants of the Gle1 mRNA export factor rescue
growth and fertility defects of the ipk1 low-phytic-acid mutation
in Arabidopsis . The Plant Cell , 27(2), 417-431.
Lee, R.B., Ratcliffe, R.G., & Southon, T.E. (1990).31P NMR measurements of the cytoplasmic and vacuolar
Pi content of mature maize roots: relationships with phosphorus status
and phosphate fluxes. Journal of Experimental Botany , 41(9),:
1063-1078.
Leggewie, G., Willmitzer, L. & Riesmeier, J.W. (1997). Two cDNAs from
potato are able to complement a phosphate uptake-deficient yeast mutant:
identification of phosphate transporters from higher plants. The
Plant Cell , 9(3), 381-392.
Lemtiri-Chlieh, F., MacRobbie, E.A. & Brearley, C.A. (2000). Inositol
hexakisphosphate is a physiological signal regulating the
K+-inward rectifying conductance in guard cells.Proceedings of the National Academy of Sciences, 97(15),
8687-8692.
Lemtiri-Chlieh, F., MacRobbie, E.A., Webb, A.A., Manison, N.F.,
Brownlee, C., Skepper, J.N., Chen, J., Prestwich, G.D. & Brearley, C.A.
(2003). Inositol hexakisphosphate mobilizes an endomembrane store of
calcium in guard cells. Proceedings of the National Academy of
Sciences, 100(17), 10091-10095.
Lin, S.I., Santi, C., Jobet, E., Lacut, E., El Kholti, N., Karlowski,
W.M., Verdeil, J.L., Breitler, J.C., Périn, C., Ko, S.S., Guiderdoni,
E., Chiou, T.J. & Guiderdoni, E. (2010). Complex regulation of two
target genes encoding SPX-MFS proteins by rice miR827 in response to
phosphate starvation. Plant and Cell Physiology, 51(12),
2119-2131.
Liu, C., Muchhal, U.S., Uthappa, M., Kononowicz, A.K. & Raghothama,
K.G. (1998). Tomato phosphate transporter genes are differentially
regulated in plant tissues by phosphorus. Plant
Physiology , 116(1), 91-99.
Liu, F., Wang, Z., Ren, H., Shen, C., Li, Y., Ling, H. Q., Wu, C., Lian,
X. & Wu, P. (2010). OsSPX1 suppresses the function of OsPHR2 in the
regulation of expression of OsPT2 and phosphate homeostasis in
shoots of rice. The Plant Journal , 62(3), 508-517.
Liu, J., Yang, L., Luan, M., Wang, Y., Zhang, C., Zhang, B., Shi, J.,
Zhao, F.G., Lan, W. & Luan, S. (2015). A vacuolar phosphate transporter
essential for phosphate homeostasis in Arabidopsis .Proceedings of the National Academy of Sciences , 112(47),
E6571-E6578.
Liu, T.Y., Huang, T.K., Yang, S.Y., Hong, Y.T., Huang, S.M., Wang, F.N.,
Chiang, S.F., Tsai, S. Y., Lu, W.C. & Chiou, T.J. (2016).
Identification of plant vacuolar transporters mediating phosphate
storage. Nature Communications, doi:10.1038/ncomms11095.
Loneragan, J.F., Grove, T.S., Robson, A.D. & Snowball, K. (1979).
Phosphorus Toxicity as a Factor in Zinc-Phosphorus Interactions in
Plants 1. Soil Science Society of America Journal, 43(5),
966-972.
Maenz, D.D., Engele-Schaan, C.M., Newkirk, R.W. & Classen, H.L. (1999).
The effect of minerals and mineral chelators on the formation of
phytase-resistant and phytase-susceptible forms of phytic acid in
solution and in a slurry of canola meal. Animal Feed Science and
Technology, 81(3-4), 177-192.
Makino, A., Mae, T. & Ohira, K. (1986). Colorimetric measurement of
protein stained with Coomassie Brilliant Blue R on sodium dodecyl
sulfate-polyacrylamide gel electrophoresis by eluting with
formamide. Agricultural and Biological Chemistry, 50(7),
1911-1912.
Makino, A., Nakano, H. & Mae, T. (1994). Responses of ribulose-1,
5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes
in rice leaves to leaf nitrogen and their relationships to
photosynthesis. Plant Physiology , 105(1), 173-179.
Makino, A., Nakano, H., Mae, T., Shimada, T. & Yamamoto, N. (2000).
Photosynthesis, plant growth and N allocation in transgenic rice plants
with decreased Rubisco under CO2enrichment. Journal of Experimental Botany , 51(suppl_1),
383-389.
Masumoto, C., Fukayama, H., Hatanaka, T. & Uchida, N. (2012).
Photosynthetic characteristics of antisense transgenic rice expressing
reduced levels of Rubisco activase. Plant Production Science,15(3), 174-182.
Mekawy, A.M.M., Assaha, D.V., Munehiro, R., Kohnishi, E., Nagaoka, T.,
Ueda, A. & Saneoka, H. (2018). Characterization of type 3
metallothionein-like gene (OsMT-3a) from rice, revealed its ability to
confer tolerance to salinity and heavy metal stresses.Environmental and Experimental Botany , 147, 157-166.
Mimura, T. (1995). Homeostasis and transport of inorganic phosphate in
plants. Plant and Cell Physiology , 36(1), 1-7.
Mimura, T. (1999). Regulation of phosphate transport and homeostasis in
plant cells. In International Review of Cytology (eds Kwang
W. Jeon.), Vol. 191, pp. 149-200, Academic Press, New York.
Mimura, T., Dietz, K.J., Kaiser, W., Schramm, M.J., Kaiser, G. & Heber,
U. (1990). Phosphate transport across biomembranes and cytosolic
phosphate homeostasis in barley leaves. Planta , 180(2), 139-146.
Mimura, T., Sakano, K. & Shimmen, T. (1996). Studies on the
distribution, re‐translocation and homeostasis of inorganic phosphate in
barley leaves. Plant, Cell and Environment , 19(3), 311-320.
Mimura, T., Shindo, C., Kato, M., Yokota, E., Sakano, K., Ashihara, H.
& Shimmen, T. (2000). Regulation of cytoplasmic pH under extreme acid
conditions in suspension cultured cells of Catharanthus roseus : a
possible role of inorganic phosphate. Plant and Cell Physiology ,
41(4), 424-431.
Mimura, T., Yin, Z. H., Wirth, E. & Dietz, K.J. (1992). Phosphate
transport and apoplastic phosphate homeostasis in barley
leaves. Plant and Cell Physiology , 33(5), 563-568.
Mitsuhashi, N., Ohnishi, M., Sekiguchi, Y., Kwon, Y.U., Chang, Y.T.,
Chung, S.K., Inoue, Y., Reid, R.J., Yagisawa, H. & Mimura, T. (2005).
Phytic acid synthesis and vacuolar accumulation in suspension-cultured
cells of Catharanthus roseus induced by high concentration of
inorganic phosphate and cations. Plant Physiology , 138(3),
1607-1614.
Miyagi, A., Takahashi, H., Takahara, K., Hirabayashi, T., Nishimura, Y.,
Tezuka, T., Kawai-Yamada, M. & Uchimiya, H. (2010). Principal component
and hierarchical clustering analysis of metabolites in destructive
weeds; polygonaceous plants. Metabolomics, 6(1), 146-155.
Miyagi, A., Noguchi, K., Tokida, T., Usui, Y., Nakamura, H., Sakai, H.,
Hasegawa, T. & Kawai-Yamada, M. (2019). Oxalate contents in leaves of
two rice cultivars grown at a free-air CO2 enrichment
(FACE) site. Plant Production Science, 22, 407-411.
Muchhal, U.S., Pardo, J.M. & Raghothama, K.G. (1996). Phosphate
transporters from the higher plant Arabidopsis thaliana .Proceedings of the National Academy of Sciences , 93(19),
10519-10523.
Murphy, A.M., Otto, B., Brearley, C.A., Carr, J.P. & Hanke, D.E.
(2008). A role for inositol hexakisphosphate in the maintenance of basal
resistance to plant pathogens. The Plant Journal , 56(4), 638-652.
Müller, P., Li, X.P., & Niyogi, K.K. (2001). Non-photochemical
quenching. A response to excess light energy. Plant Physiology ,
125(4), 1558-1566.
Nagy, R., Grob, H., Weder, B., Green, P., Klein, M., Frelet-Barrand, A.,
Schjoerring J.K., Brearley, C. & Martinoia, E. (2009). The Arabidopsis
ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol
hexakisphosphate transporter involved in guard cell signaling and
phytate storage. Journal of Biological Chemistry, 284(48),
33614-33622.
Nakamura, Y. (2013). Phosphate starvation and membrane lipid remodeling
in seed plants. Progress in Lipid Research, 52(1), 43-50.
Noguchi, K., Tsunoda, T., Miyagi, A., Kawai-Yamada, M., Sugiura, D.,
Miyazawa, S. I., Tokida, T., Usui, Y., Nakamura, H., Sakai, H. &
Hasegawa, T. (2018). Effects of elevated atmospheric CO2on respiratory rates in mature leaves of two rice cultivars grown at a
free-air CO2 enrichment site and analyses of the
underlying mechanisms. Plant and Cell Physiology, 59(3), 637-649.
Nussaume, L., Kanno, S., Javot, H., Marin, E., Nakanishi, T.M. &
Thibaud, M.C. (2011). Phosphate import in plants: focus on the PHT1
transporters. Frontiers in Plant Science, 2:83. doi:
10.3389/fpls.2011.00083.
Ogawa, S., Suzuki, Y., Yoshizawa, R., Kanno, K. & Makino, A. (2012).
Effect of individual suppression of RBCS multigene family on Rubisco
contents in rice leaves. Plant, Cell and Environment, 35(3),
546-553.
Ogo, Y., Itai, R.N., Nakanishi, H., Inoue, H., Kobayashi, T., Suzuki,
M., Takahashi, M., Mori, S. & Nishizawa, N.K. (2006). Isolation and
characterization of IRO2, a novel iron-regulated bHLH transcription
factor in graminaceous plants. Journal of Experimental Botany,57(11), 2867-2878.
Ova, E.A., Kutman, U.B., Ozturk,L. & Cakmak, I. (2015). High phosphorus
supply reduced zinc concentration of wheat in native soil but not in
autoclaved soil or nutrient solution. Plant and Soil, 393(1-2),
147-162.
Perera, I., Fukushima, A., Arai, M., Yamada, K., Nagasaka, S.,
Seneweera, S. & Hirotsu, N. (2019). Identification of low phytic acid
and high Zn bioavailable rice (Oryza sativa L.) from 69
accessions of the world rice core collection. Journal of Cereal
Science, 85, 206-213.
Perera, I., Seneweera, S., & Hirotsu, N. (2018). Manipulating the
Phytic Acid Content of Rice Grain Toward Improving Micronutrient
Bioavailability. Rice , 11(1), 4.
Porra, R.J., Thompson, W.A. & Kriedemann, P.E. (1989). Determination of
accurate extinction coefficients and simultaneous equations for assaying
chlorophylls a and b extracted with four different
solvents: verification of the concentration of chlorophyll standards by
atomic absorption spectroscopy. Biochimica et Biophysica Acta
-Bioenergetics, 975(3), 384-394.
Portis, A.R. (2003). Rubisco activase–Rubisco’s catalytic chaperone.Photosynthesis research, 75(1), 11-27.
Pospíšil, P. (2016). Production of reactive oxygen species by
photosystem II as a response to light and temperature stress.Frontiers in Plant Science, 7:1950. doi: 10.3389/fpls.2016.01950.
Pratt, J., Boisson, A.M., Gout, E., Bligny, R., Douce, R. & Aubert, S.
(2009). Phosphate (Pi) starvation effect on the cytosolic Pi
concentration and Pi exchanges across the tonoplast in plant cells: an
in vivo 31P-nuclear magnetic resonance study using methylphosphonate as
a Pi analog. Plant Physiology, 151(3), 1646-1657.
Puga, M.I., Mateos, I., Charukesi, R., Wang, Z., Franco-Zorrilla, J.M.,
de Lorenzo, L., Irigoyen, M.L., Masiero, S., Bustos, R., Rodriguez, J.,
Leyva, A., Rubio, V., Sommer, H. & Leyva, A. (2014). SPX1 is a
phosphate-dependent inhibitor of Phosphate Starvation Response 1 inArabidopsis . Proceedings of the National Academy of
Sciences , 111(41), 14947-14952.
Raboy, V., Gerbasi, P.F., Young, K.A., Stoneberg, S.D., Pickett, S.G.,
Bauman, A.T., Murthy, P.P., Sheridan, W.F. & Ertl, D.S. (2000). Origin
and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1.Plant Physiology, 124(1), 355-368.
Raghothama, K.G. (1999). Phosphate acquisition. Annual Review of
Plant Biology , 50, 665-693.
Ranieri, A., Castagna, A., Baldan, B. & Soldatini, G.F. (2001). Iron
deficiency differently affects peroxidase isoforms in sunflower.Journal of Experimental Botany , 52(354), 25-35.
Rossiter, R.C. (1951). Phosphorus toxicity in subterranean clover and
oats grown on Muchea sand, and the modifying effects of lime and
nitrate-nitrogen. Australian Journal of Agricultural Research,3(3), 227-243.
Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva,
A. & Paz-Ares, J. (2001). A conserved MYB transcription factor involved
in phosphate starvation signaling both in vascular plants and in
unicellular algae. Genes and Development, 15(16), 2122-2133.
Rokka, A., Zhang, L. & Aro, E.M. (2001). Rubisco activase: an enzyme
with a temperature‐dependent dual function?. The Plant Journal,25(4), 463-471.
Sacksteder, C. A. & Kramer, D.M. (2000). Dark-interval relaxation
kinetics (DIRK) of absorbance changes as a quantitative probe of
steady-state electron transfer. Photosynthesis Research , 66(1-2),
145-158.
Sakano, K. (1990). Proton/phosphate stoichiometry in uptake of inorganic
phosphate by cultured cells of Catharanthus roseus (L.) G. Don.Plant Physiology, 93(2), 479-483.
Salvucci, M.E., Portis, A.R. & Ogren, W.L. (1985). A soluble
chloroplast protein catalyzes ribulosebisphosphate carboxylase/oxygenase
activation in vivo. Photosynthesis Research, 7(2), 193-201.
Secco, D., Wang, C., Arpat, B.A., Wang, Z., Poirier, Y., Tyerman, S.D.,
Wu, P., Shou, H. & Whelan, J. (2012). The emerging importance of the
SPX domain‐containing proteins in phosphate homeostasis. New
Phytologist, 193(4), 842-851.
Sharkey, T.D. (1985). Photosynthesis in intact leaves of C3 plants:
physics, physiology and rate limitations. The Botanical
Review , 51(1), 53-105.
Shive, J.W. (1918). Toxicity of monobasic phosphates towards soybeans
grown in soil-and solution-cultures. Soil Science , 5, 87-122.
Singh, J.P., Karamanos, R.E. & Stewart, J.W.B. (1988). The mechanism of
phosphorus-induced zinc deficiency in bean (Phaseolus vulgarisL.). Canadian Journal of Soil Science, 68(2), 345-358.
Sonoike, K. (2011). Photoinhibition of photosystem I. Physiologia.
Plantarum , 142(1), 56-64.
Su, D., Zhou, L., Zhao, Q., Pan, G. & Cheng, F. (2018). Different
phosphorus supplies altered the accumulations and quantitative
distributions of phytic acid, zinc, and iron in rice (Oryza
sativa L.) Grains. Journal of Agricultural and Food Chemistry,66(7), 1601-1611.
Suganami, M., Suzuki, Y., Sato, T. & Makino, A. (2018). Relationship
between Rubisco activase and Rubisco contents in transgenic rice plants
with overproduced or decreased Rubisco content. Soil Science and
Plant Nutrition, 64(3), 352-359.
Suzuki, M., Tanaka, K., Kuwano, M. & Yoshida, K.T. (2007). Expression
pattern of inositol phosphate-related enzymes in rice (Oryza
sativa L.): implications for the phytic acid biosynthetic
pathway. Gene , 405(1-2), 55-64.
Suzuki, Y., Fujimori, T., Kanno, K., Sasaki, A., Ohashi, Y. & Makino,
A. (2012). Metabolome analysis of photosynthesis and the related primary
metabolites in the leaves of transgenic rice plants with increased or
decreased Rubisco content. Plant, Cell & Environment, 35(8),
1369-1379.
Suzuki Y, Kawazu T. & Koyama, H. (2004). RNA isolation from siliques,
dry seeds and other tissues of Arabidopsis thaliana .Biotechniques, 37(4), 542-544.
Suzuki, Y., Ohkubo, M., Hatakeyama, H., Ohashi, K., Yoshizawa, R.,
Kojima, S., Hayakawa, T., Yamaya, T., Mae, T. & Makino, A. (2007).
Increased Rubisco content in transgenic rice transformed with the
‘sense’rbcS gene. Plant and Cell Physiology, 48(4), 626-637.
Stevenson-Paulik, J., Bastidas, R.J., Chiou, S.T., Frye, R.A. & York,
J.D. (2005). Generation of phytate-free seeds in Arabidopsisthrough disruption of inositol polyphosphate kinases. Proceedings
of the National Academy of Sciences, 102(35), 12612-12617.
Takagi, D., Amako, K., Hashiguchi, M., Fukaki, H., Ishizaki, K., Goh,
T., Fukao, Y., Sano, R., Kurata, T., Demura, T., Sawa, S. & Miyake, C.
(2017). Chloroplastic ATP synthase builds up a proton motive force
preventing production of reactive oxygen species in photosystem I.The Plant Journal, 91(2), 306-324.
Takagi, D., Hashiguchi, M., Sejima, T., Makino, A. & Miyake, C.
(2016b). Photorespiration provides the chance of cyclic electron flow to
operate for the redox-regulation of P700 in photosynthetic electron
transport system of sunflower leaves. Photosynthesis Research,129(3), 279-290.
Takagi, D., Ihara, H., Takumi, S. & Miyake, C. (2019). Growth light
environment changes the sensitivity of photosystem I photoinhibition
depending on common wheat cultivars. Frontiers in Plant Science,10:686. doi: 10.3389/fpls.2019.00686.
Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T. & Miyake, C.
(2016a). Superoxide and singlet oxygen produced within the thylakoid
membranes both cause photosystem I photoinhibition. Plant
Physiology , 171(3), 1626-1634.
Terashima, I., Funayama, S. & Sonoike, K. (1994). The site of
photoinhibition in leaves of Cucumis sativus L. at low temperatures is
photosystem I, not photosystem II. Planta, 193(2), 300-306.
Ullrich-Eberius, C.I., Novacky, A., Fischer, E. & Lüttge, U. (1981).
Relationship between energy-dependent phosphate uptake and the
electrical membrane potential in Lemna gibba G1. Plant
Physiology, 67(4), 797-801.
Ullrich-Eberius, C.I., Novacky, A. & Van Bel, A.J.E. (1984). Phosphate
uptake in Lemna gibba G1: energetics and kinetics. Planta ,161 (1), 46-52.
Vargas-Suárez, M., Ayala-Ochoa, A., Lozano-Franco, J., García-Torres,
I., Díaz-Quiñonez, A., Ortíz-Navarrete, V.F. & Sánchez-de-Jiménez, E.
(2004). Rubisco activase chaperone activity is regulated by a
post-translational mechanism in maize leaves. Journal of
Experimental Botany, 55(408), 2533-2539.
von Caemmerer, S.V., & Farquhar, G.D. (1981). Some relationships
between the biochemistry of photosynthesis and the gas exchange of
leaves. Planta , 153(4), 376-387.
Wada, S., Suzuki, Y., Takagi, D., Miyake, C. & Makino, A. (2018).
Effects of genetic manipulation of the activity of photorespiration on
the redox state of photosystem I and its robustness against excess light
stress under CO2-limited conditions in rice.Photosynthesis Research , 137(3), 431-441.
Wang, C., Ying, S., Huang, H., Li, K., Wu, P. & Shou, H. (2009).
Involvement of OsSPX1 in phosphate homeostasis in rice. The
Plant Journal , 57(5), 895-904.
Wang, Z., Ruan, W., Shi, J., Zhang, L., Xiang, D., Yang, C., Li, C., Wu,
Z., Liu, Y., Shou, H., Mo, X., Mao, C. & Shou, H. (2014). Rice SPX1 and
SPX2 inhibit phosphate starvation responses through interacting with
PHR2 in a phosphate-dependent manner. Proceedings of the National
Academy of Sciences , 111(41), 14953-14958.
Yamori, W., Masumoto, C., Fukayama, H. & Makino, A. (2012). Rubisco
activase is a key regulator of non‐steady‐state photosynthesis at any
leaf temperature and, to a lesser extent, of steady‐state photosynthesis
at high temperature. The Plant Journal , 71(6), 871-880.
Yuan, M., Li, X., Xiao, J. & Wang, S. (2011). Molecular and functional
analyses of COPT/Ctr-type copper transporter-like gene family in
rice. BMC Plant Biology , 11: 69. doi: 10.1186/1471-2229-11-69.
Zhang, N., Kallis, R.P., Ewy, R.G. & Portis, A.R. (2002). Light
modulation of Rubisco in Arabidopsis requires a capacity for redox
regulation of the larger Rubisco activase isoform. Proceedings of
the National Academy of Sciences , 99(5), 3330-3334.
Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W. & Wu,
P. (2008). OsPHR2 is involved in phosphate-starvation signaling and
excessive phosphate accumulation in shoots of plants. Plant
Physiology , 146(4), 1673-1686.
Zhu, Y.G., Smith, S.E. & Smith, F.A. (2001). Zinc (Zn)-phosphorus (P)
interactions in two cultivars of spring wheat (Triticum aestivumL.) differing in P uptake efficiency. Annals of
Botany , 88 (5), 941-945.