References

Abrams, P.A. (2015). Why ratio dependence is (still) a bad model of predation. Biological Reviews , 90, 794–814.
Abrams, P.A. & Ginzburg, L.R. (2000). The nature of predation: Prey dependent, ratio dependent or neither? Trends in Ecology and Evolution , 15, 337–341.
Arditi, R. & Ginzburg, L.R. (1989). Coupling in predator-prey dynamics: Ratio-Dependence. Journal of Theoretical Biology , 139, 311–326.
Beddington, J.R. (1975). Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency. The Journal of Animal Ecology , 44, 331.
Berryman, A.A., Gutierrez, A.P. & Arditi, R. (1995). Credible, Parsimonious and Useful Predator-Prey Models: A Reply to Abrams, Gleeson, and Sarnelle. Ecology , 76, 1980–1985.
Chesson, P. & Kuang, J.J. (2008). The interaction between predation and competition. Nature , 456, 235–238.
DeAngelis, D.L., Goldstein, R.A. & O’Neill, R.V. (1975). A Model for Tropic Interaction. Ecology , 56, 881–892.
Edwards, R.L. (1961). The Area of Discovery of Two Insect Parasites, Nasonia vitripennis (Walker) and Trichogramma evanescens Westwood, in an Artificial Environment. Can Entomol , 93, 475–481.
Eveleigh, E.S. & Chant, D.A. (1982). Experimental studies on acarine predator–prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae). Can. J. Zool. , 60, 611–629.
Fernandez-Maldonado, F.J., Gallego, J.R., Valencia, A., Gamez, M., Varga, Z., Garay, J., et al. (2017). Cannibalism: Do risks of fighting and reprisal reduce predatory rates? Community Ecology , 18, 87–96.
Gleeson, S.K. (1994). Density Dependence is Better Than Ratio Dependence. Ecology , 75, 1834–1835.
Hassell, M.P. & Varley, G.C. (1969). New Inductive Population Model for Insect Parasites and its Bearing on Biological Control. Nature , 223, 1133–1137.
Hoffman, M.D. & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research , 15, 1593–1623.
Holling, C.S. (1959). The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. Can Entomol , 91, 293–320.
Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment.Comput. Sci. Eng. , 9, 90–95.
Imbert, C., Papaïx, J., Husson, L., Warlop, F. & Lavigne, C. (2020). Estimating population dynamics parameters of cabbage pests in temperate mixed apple tree-cabbage plots compared to control vegetable plots.Crop Protection , 129, 105037.
Jeschke, J.M., Kopp, M. & Tollrian, R. (2004). Consumer-food systems: Why type I functional responses are exclusive to filter feeders.Biological Reviews of the Cambridge Philosophical Society , 79, 337–349.
Kfir, R. (1983). Functional response to host density by the egg parasiteTrichogramma pretiosum. Entomophaga , 28, 345–353.
Kratina, P., Vos, M., Bateman, A. & Anholt, B.R. (2009). Functional responses modified by predator density. Oecologia , 159, 425–433.
Líznarová, E. & Pekár, S. (2013). Dangerous prey is associated with a type 4 functional response in spiders. Animal Behaviour , 85, 1183–1190.
Long, W.C., Popp, J., Swiney, K.M. & Van Sant, S.B. (2012). Cannibalism in red king crab, Paralithodes camtschaticus (Tilesius, 1815): Effects of habitat type and predator density on predator functional response.Journal of Experimental Marine Biology and Ecology , 422–423, 101–106.
McKinney, W. (2010). Data Structures for Statistical Computing in Python. In: Proceedings of the 9th Python in Science Conference . pp. 51–56.
Mertz, D.B. & Davies, R.B. (1968). Cannibalism of the Pupal Stage by Adult Flour Beetles: An Experiment and a Stochastic Model.Biometrics , 24, 247.
Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel Ostblom, Saulius Lukauskas, et al. (2018). seaborn . Zenodo.
Python Software Foundation (PSF). (2019). Python .
Rohatgi, A. (2019). WebPlotDigitizer .
Salvatier, J., Wiecki, T.V. & Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. PeerJ Computer Science , 2, e55.
Sanchez, C., Gamez, M., Burguillo, F.J., Garay, J. & Cabello, T. (2018). Comparison of predator-parasitoid-prey interaction models for different host plant qualities. Community Ecology , 19, 125–132.
Sanders, D., Thébault, E., Kehoe, R. & Veen, F.J.F. van. (2018). Trophic redundancy reduces vulnerability to extinction cascades.PNAS , 115, 2419–2424.
Schenk, D. & Bacher, S. (2002). Functional response of a generalist insect predator to one of its prey species in the field. Journal of Animal Ecology , 71, 524–531.
Schenk, D., Bersier, L.-F. & Bacher, S. (2005). An experimental test of the nature of predation: neither prey- nor ratio-dependent: Experimental test of functional response. Journal of Animal Ecology , 74, 86–91.
Skalski, G.T. & Gilliam, J.F. (2001). Functional responses with predator interference: viable alternatives to the Holling Type II model.Ecology , 82, 3083–3092.
Taylor, A.D. (1988). Host Effects on Functional and Ovipositional Responses of Bracon hebetor. The Journal of Animal Ecology , 57, 173.
Uttley, M. (1980). A laboratory study of mutual interference between freshwater invertebrate predators. University of York, UK.
Vehtari, A., Gelman, A. & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput , 27, 1413–1432.
van der Walt, S., Colbert, S.C. & Varoquaux, G. (2011). The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. , 13, 22–30.
Watanabe, S. (2013). A Widely Applicable Bayesian Information Criterion.Journal of Machine Learning Research , 14, 867–897.