Problemas sobre el método dual-simplex

Yamirlethy Rodríguez-Esquivel ¹

¹Tecnológico Nacional de México - Campus Zacatecas Occidente

19 de febrero de 2020

Pasos para la solución del problema en Excel con solver.

- 1. La primera fila es el objetivo.
- 2. Se ingresan las restricciones.
- 3. Se define un área para el resultado.
- 4. Se definen los totales en términos de las celdas de resultados de las variables.
- 5. Se activa solver.
- 6. Definir la celda objetivo.
- 7. Definir si se va a maximizar o minimizar.
- 8. Definir el rango para las soluciones de las variables.
- 9. Agregar las restricciones (es importante no olvidar la de no negatividad).
- 10. Seleccionar Simplex LP.
- 11. Seleccionar resolver.
- 12. Conservar la solución.

La dieta

Las restricciones se simplifican cambiando los términos en x_1 y x_2 al lado izquierdo de cada desigualdad, con solo una constante del lado derecho. El método completo es.

Minimizar: $z = .3x_1 + .9x_2$

Sujeto a:

$$x_1 + x_2 \ge 800$$

$$.21x_1 - .30x_2 \le 0$$

$$.03x_1 - .01x_2 \ge 0$$

$$x_1, x_2 \ge 0$$

Procedimiento de Excel

		DIETA	A				
Datos de entr	ada:						
	x1	x2					
			Totales		Límites	1	
Objetivo	0.3	0.9	0.000	-		La primera t	
	1	1	0.000	>=	800	es el objetivo	
	0.21	-0.3	0.000	<=	0		
	0.03	-0.01	0.000	>=	0		
	>=0	>=0					
Resultados:							
	x1	x2	Z				
Solución			0.000				

Figura 1: Señalamiento del objetivo

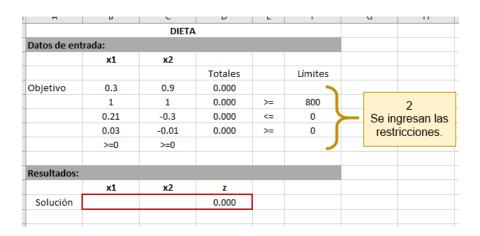


Figura 2: Ingresar las restricciones

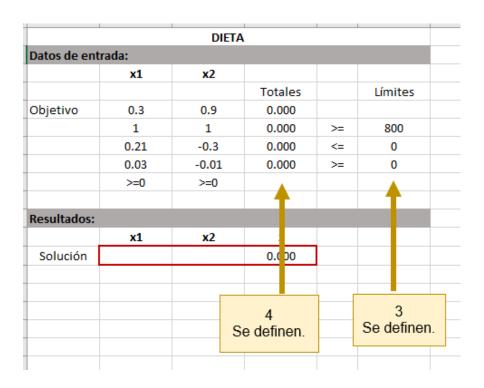


Figura 3: Se definen las áreas

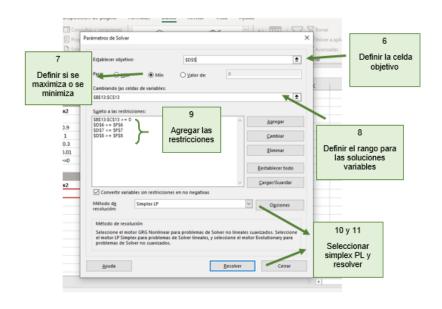


Figura 4: Llenado de solver

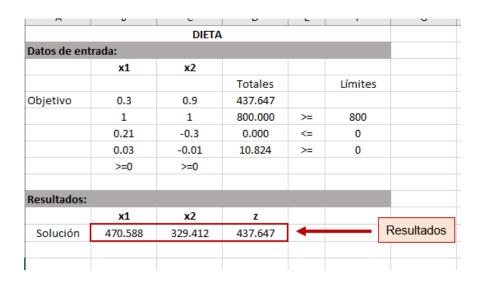


Figura 5: Solución del problema

Hotdogs y refrescos

Un hombre maneja un carrito de hotdogs y refrescos. Su carrito solo puede con 210 lb. Un hotdog pesa 2 oz; un refresco pesa 8 oz. De experiencia sabe que debe tener por lo menos 60 refrescos y por lo menos 80 hotdogs. También sabe que por lo menos por cada 2 hotdogs que vende necesita por lo menos 1 refresco. Dado que obtiene 8 centavos de ganancia de cada hotdog y 4 centavos de ganancia de cada refresco entre cuantos refrescos y hotdogs debe tener para maximizar ganancias.

Variables:

X = Hotdogs

Y = Refrescos

Objetivo:

$$z = .08x + .04y$$

Restricciones:

1.
$$\frac{x}{8} + \frac{y}{2} \le 210$$

- 2. $2y x \ge 0$
- 3. $x \ge 80$
- 4. $y \ge 60$
- 5. $x, y \ge 0$

		но	T DOGS		
Datos de en	trada:				
	X	Y			
	HOT DOG	REFRESCO	Totales		Límites
Objetivo	0.08	0.04	0	-	
	1/8	1/2	0	<=	210
	1	0	0	>=	80
	0	1	0	>=	60
	-1	2	0	>=	0
	>=0	>=0			
Resultados:					
	X	Y	Z		
Solución			0		

Figura 6: Objetivo y restricciones

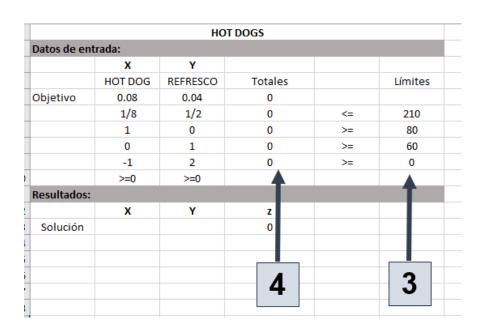


Figura 7: Determinación de áreas

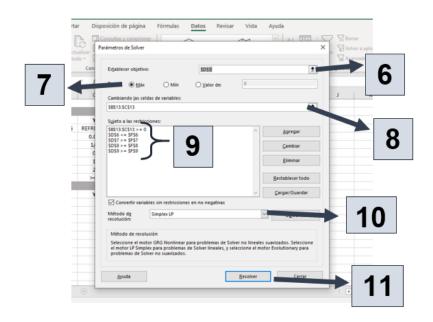


Figura 8: Llenado de solver

		но	TDOGS		
Datos de en	trada:				
	X	Y			
	HOT DOG	REFRESCO	Totales		Límites
Objetivo	0.08	0.04	56		
	1/8	1/2	210	<=	210
	1	0	560	>=	80
	0	1	280	>=	60
	-1	2	0	>=	0
	>=0	>=0			
Resultados:					
	X	Y	Z		
Solución	560	280	56	-	Resultados

Figura 9: Solución del problema