[1] Goswami DY., Kreith F.; 2007 . Energy conversion. Taylor & Francis Group, USA, 2007.
[2] Zachary J.; 2013. Integrated solar combined cycle (ISCC) systems. Bechtel Corp, USA, 2013.
[3] Zhu G, Neises T,Turchi C, Bedilion R. Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant. Renewable Energy 2015; 74:815-824. doi.org/10.1016/j.renene.2014.08.073
[4] Turchi CS, Ma Z. Co-located gas turbine/solar thermal hybrid designs for power production. Renewable energy 2014; 64:172-179.doi.org/10.1016/j.renene.2013.11.005
[5] Price H, Kearney K, Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology. USA: Roadmap Workshop Participants; 1998.
[6] Okoroigwe E, Madhlopa A. An integrated combined cycle system driven by a solar tower: A review.Renewable and Sustainable Energy Reviews 2016; 57:337–350.http://dx.doi.org/10.1016/j.rser.2015.12.092.
[7] Nezammahalleh H, Farhadi F, Tanhaemami M.; 2010. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology. Solar Energy 84 (2010) 1696–1705. DOI:10.1016/j.solener.2010.05.007.
[8] Rovira A, Montes MJ, Varela F, Gil M.; 2013. Comparison of heat transfer fluid and direct steam generation technologies for integrated solar combined cycles. Applied Thermal Engineering (2013) 264-274. DOI: 10.1016/j.applthermaleng.2012.12.008.
[9] Franchini G, Perdichizzi A, Ravelli S, Barigozzi G. ; 2013. A comparative study between parabolic trough and solar tower technologies in Solar Rankine Cycle and Integrated Solar Combined Cycle plants. Solar Energy 98 (2013) 302-314. doi.org/10.1016/j.solener.2013.09.033.
[10] Abdel-Dayem AM, Metwally MN, Alghamdi AS, Marzouk EM.; 2014. Numerical simulation and experimental validation of integrated solar combined power plant. Energy Procedia 50 (2014) 290 – 305. DOI: 10.1016/j.egypro.2014.06.036.
[11] Aldali Y, Morad K.; 2016. Numerical simulation of the integrated solar/North Benghazi combined power plant. (2016) Applied Thermal Engineering 108 (2016) 785–792. doi.org/10.1016/j.applthermaleng.2016.07.178.
[12] Dersch J, Geyer M, Geyer M, Herrmann U, Jones SA, Kelly B, Kistner R, Ortmanns W, Pitz-Paal R, Price H.; 2004. Trough integration into power plants-a study on the performance and economy of integrated solar combined cycle systems. Energy 29 (2004) 947–959. Doi:10.1016/S0360-5442(03)00199-3
[13] Montes MJ, Rovira A, Muñoz M, Martínez-Val JM.; 2011. Performance analysis of an integrated solar combined cycle using direct steam generation in parabolic trough collectors, Applied Energy 88 (2011) 3228–3238. doi:10.1016/j.apenergy.2011.03.038.
[14] Antonanzas J, Jimenez E, Blanco J, Antonanzas-Torres F.; 2014. Potential solar thermal integration in Spanish combined cycle gas turbines, Renewable and Sustainable Energy Reviews 37(2014)36–46. doi.org/10.1016/j.rser.2014.05.006.
[15] Price H, Kearney D.; 2003. Reducing the cost of energy from parabolic trough solar power plants, National Renewable Energy Laboratory, NREL/CP-550-33208, USA, January 2003.
[16] Horn M, Fuhring H, Rheinlander J.; 2004. Economic analysis of integrated solar combined cycle power plants. Energy 29 (2004) 935–945. Doi: 10.1016/S0360-5442(03)00198-1.
[17] Hosseini R, Soltani M, Valizadeh G.; 2005. Technical and economic assessment of the integrated solar combined cycle power plants in Iran. Renewable Energy 30 (2005) 1541–1555. DOI:10.1016/j.renene.2004.11.005.
[18] Mokheimer EMA, Dabwan Y N, Habib M A. ; 2015. Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia. Journal of Applied Energy (2015), Volume 185, Part 2, 1, Pages 1268-1280.
[19] Duan L, Qu W, Jia S, Feng T.; 2017. Study on the integration characteristics of a novel integrated solar combined cycle system. Energy 130 (2017) 351–364, http://dx.doi.org/10.1016/j.energy.2017.04.118.
[20] Li Y, Xiong Y.; 2018. Thermo-economic analysis of a novel cascade integrated solar combined cycle system, Energy 145 (2018) 116–127, https://doi.org/10.1016/j.energy.2017.12.128.
[21] [21] Price H, Lüpfert E, Kearney D, Zarza E, Cohen G, Gee R, Mahoney R.; 2002. Advances in parabolic trough solar power plants, Journal of Solar Energy Engineering 124 (2002) 109-125. Doi:10.1115/1.1467922.
[22] Gueymard CA. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew Sustain Energy Rev 2014; 39:1024–34.
[23] Duffie AJ, Beckman AW. Solar engineering of thermal processes.2nd edition.New York: Wiley; 1991.
[24] Wong LT, Chow WK. Solar radiation model. Appl Energy 2001; 69:191–224.
[25] Geuymard CA. Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. Solar Energy 2003;74:381–95.
[26] ASHRAE. Handbook of HVAC Applications. ASHRAE, Atlanta; 2007
[27] Geuymard CA. Direct solar transmittance and irradiance predictions with broadband models. Part II: validation with high-quality measurements. Solar Energy 2003;74:355–79.
[28] Gueymard CA. Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Solar Energy 2012; 86:2145–69.
[29] Zarza Romero-Alvarez M.; 2007. Concentrating solar thermal Power. Chap 21, Plataforma Solar de Almeria-CIEMAT: Taylor & Francis Group; 2007
[30] ISCC Hassi-R’mel power plant. 2014, Operating manual 2014.
[31] Cohen GE, Kearny DW, Gregory JK.; 1999. Final report on the operation and maintenance improvement program for concentrating solar power plants, 1999, SAND 99-1290.
[32] National meteorological Office (ONM). 2014, Report (2014) Algeria.
[33] Horlock JH. Advanced gas turbine cycles. UK: Elsevier Science Ltd; 2003.
[34] Razak AMY. Industrial gas turbines ‘Performance and operability’. USA: Taylor & Francis Group; 2007.
[35] Kim TS, Ro ST. Comparative evaluation of the effect of turbine configuration on the performance of heavy-duty gas turbines. ASME 1995;95-GT-334:V004T10A019. Doi:10.1115/95-GT-334.
[36] Wilcox M, Baldwin R, Garcia-Hernandez A, Brun K. Guideline for gas turbine inlet air filtration systems. USA: Gas Machinery Research Council Southwest Research Institute; 2010.
[37] Çengel AY. Introduction to Thermodynamics and Heat Transfer.2nd edition. USA: McGraw−Hill Primi; 2008.
[38] Wilcock R.C, Young J.B, Horlock J.H, 2005.The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. Journal of Engineering for Gas turbines and Power 127(1) (2005) 109–120.
[39] Ganapathy V.; 2003. Industrial boilers and heat recovery steam generators, Marcel Dekker, USA, 2003.
[40] Ganapathy V.; 2015. Steam generators and waste heat boilers for process and plant engineers, Taylor & Francis Group, USA, 2015.
[41] U.S. Energy Information Administration: Jun 25, 2019, https://www.eia.gov/naturalgas/monthly/pdf/table_03.pdf