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Abstract. In this paper, we use Schauder and Banach fixed point theorem
to study the existence, uniqueness and stability of periodic solutions of a class
of iterative differential equation

αx′′(t) + βx′(t) + γx(t) = λ1(t)x(t) + λ2(t)x(x(t)) + · · ·+ λn(t)x
[n](t) + f(t).

AMS(2010) subject classifications. 39B12, 39B82

Keywords and phrases: Iterative differential equation, periodic solutions, fixed
point theorem.

1 Introduction

Delay differential equation of the form

x′(t) = f(t, x(t− τ(t)))

has been discussed in [1] and [5]. In particularly, the delay function τ(t) depends
not only on unknown function, but also state, τ(t, x(t)) have been studied in many
literatures in the last few years([6, 7], [13, 14]). In [2], Cooke pointed out that
it is highly desirable to establish the existence and stability properties of periodic
solutions for equations of the form

x′(t) + ax(t− h(t, x(t))) = F (t),
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in which the lag h(t, x(t)) implicitly involves x(t). Eder [3] considered the iterative
functional differential equation

x′(t) = x[2](t)

and obtains that every solution either vanishes identically or is strictly monotonic.
Fečkan [4] studied the equation

x′(t) = f(x[2](t))

by obtaining an existence theorem for solutions satisfying x(0) = 0. In [8], Si and
Cheng considered the analytic solutions of the form

x′(t) = x(at+ bx(t)).

Further discussion is made in [9]-[11] for existence of analytic solutions of several
iterative functional differential equations with state or state derivative dependent.
In 2006, Liu and Li [6] considered the analytic solutions of the form

αx′′(t) + βx′(t) + γx(t) = x(at+ bx(t)) + h(t),

in a neighborhood of the origin. Recently, Si and Wang [12] studied the smooth
solutions of

x′(t) = λ1(t)x(t) + λ2(t)x(x(t)) + · · ·+ λn(t)x
[n](t) + f(t). (1.1)

Moreover, Zhao and Liu [16] considered the periodic solutions of (1.1).

In this note, we will study the existence of periodic solutions of

αx′′(t) + βx′(t) + γx(t) = λ1(t)x(t) + λ2(t)x(x(t)) + · · ·+ λn(t)x
[n](t) + f(t). (1.2)

For convenience, we will make use C(R,R) to denote the set of all real valued con-
tinuous functions map R into R.

For T > 0, define

PT =
{
x ∈ C(R,R) : x(t+ T ) = x(t), ∀t ∈ R

}
.

Then PT is a Banach space with the norm

∥x∥ = max
t∈[0,T ]

|x(t)| = max
t∈R

|x(t)|.

For P > 0, L ≥ 0, define the sets

PT (P,L) =
{
x ∈ PT : ∥x∥ ≤ P, |x(t2)− x(t1)| ≤ L|t2 − t1|, ∀t1, t2 ∈ R

}
,

which is a closed convex and bounded subset of PT , and we wish to find T -periodic
functions x ∈ PT (P,L) satisfies (1.2).
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2 Periodic solutions of (1.2)

In this section, the existence of periodic solutions of equation (1.2) will be proved.
Let us state the Schauder fixed point theorem, which will be used to prove our main
theorem.

Theorem 2.1 (Schauder) Let Ω be a closed convex nonempty subset of a Banach
space (B, ∥·∥). Suppose that A maps Ω into Ω and is compact and continuous. Then
there exists z ∈ Ω with z = Az.

Throughout this paper, we assume that all functions are continuous with respect
to their arguments and following condition holds.

(H) λi ∈ PT (Pi, Li), i = 1, 2, . . . , n, and f ∈ PT (Pf , Lf ) are given.

We begin with the following lemma.

Lemma 2.1 ([15]) It holds

PT (P,L) =
{
x ∈ PT : ∥x∥ ≤ P, |x(t2)− x(t1)| ≤ L|t2 − t1|, ∀t1, t2 ∈ [0, T ]

}
. (2.1)

Lemma 2.2 For any φ, ψ ∈ PT (P,L),

||φ[n] − ψ[n]|| ≤
n−1∑
j=0

Lj∥φ− ψ∥, n = 1, 2, . . . . (2.2)

Proof. The result follows from the definition of PT (P,L). ⊓⊔

Now we rewrite (1.2) as a fixed point equation.

Lemma 2.3 Suppose α, β, γ ̸= 0, then x ∈ PT is a solution of equation (1.2) if and
only if

x(t) =
1

α
E(α, β1)E(α, β2)

∫ t+T

t

∫ u+T

u

(
Φx(s) + f(s)

)
e

β1
α
(s−u)e

β2
α
(u−t)dsdu (2.3)

where

E(α, β1) =
1

e
β1
α
T − 1

, E(α, β2) =
1

e
β2
α
T − 1

(2.4)

and

Φx(t) = Σn
i=1λi(t)x

[i](t), (2.5)

β1 =
β+
√
β2−4αγ

2
, β2 =

β−
√
β2−4αγ

2
or β1 =

β−
√
β2−4αγ

2
, β2 =

β+
√
β2−4αγ

2
and we see

β1 + β2 = β, β1β2 = αγ.
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Proof. By direct calculation, we can see that (2.3) is a T -periodic solution of
(1.2).

Suppose x(t) is a T -periodic solution of (1.2), then it is easy to find Eq (1.2) can
be written in the form of

x′′(t)e
β1
α
t +

β1
α
x′(t)e

β1
α
t +

β2
α
x′(t)e

β1
α
t +

γ

α
x(t)e

β1
α
t =

1

α

(
Σn
i=1λi(t)x

[i](t) + f(t)
)
e

β1
α
t,

or (
x′(t)e

β1
α
t
)′
+
β2
α

(
x(t)e

β1
α
t
)′

=
1

α

(
Σn
i=1λi(t)x

[i](t) + f(t)
)
e

β1
α
t. (2.6)

Integrating (2.6) from t to t+ T and using the fact x(t+ T ) = x(t) obtain

x′(t) +
β2
α
x(t) =

1

α

∫ t+T

t

(
Σn
i=1λi(s)x

[i](s) + f(s)
) eβ1

α
(s−t)

e
β1
α
T − 1

ds,

Therefore,

x(t) =
1

α

∫ t+T

t

∫ u+T

u

(
Σn
i=1λi(s)x

[i](s) + f(s)
) eβ1

α
(s−u)

e
β1
α
T − 1

e
β2
α
(u−t)

e
β2
α
T − 1

dsdu.

This completes the proof. ⊓⊔

Now we will need to construct a mapping that satisfy the hypotheses of Theo-
rem 2.1. To this aim, consider the map A : PT (P,L) → PT defined as follows:

(Ax)(t) =
1

α
E(α, β1)E(α, β2)

∫ t+T

t

∫ u+T

u

(
Φx(s) + f(s)

)
e

β1
α
(s−u)+β2

α
(u−t)dsdu, (2.7)

where E(α, β1), E(α, β2) and Φx(t) are defined as in Lemma 2.3.

Lemma 2.4 Suppose (H) holds and α, β, γ ̸= 0, then operator A is continuous and
compact on PT (P,L).

Proof. Take φ, ψ ∈ PT (P,L), t ∈ R, then by (2.2),

|(Aφ)(t)− (Aψ)(t)|

≤ 1

|α|
|E(α, β1)||E(α, β2)|

∣∣∣∣∣
∫ t+T

t

∫ u+T

u
|Φφ(s)− Φψ(s)|e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣∣∣
≤ 1

|γ|

n∑
i=1

i−1∑
j=0

LjPi∥φ− ψ∥, (2.8)
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thus A is continuous.

Now we will show that A is a compact map. It is easy to see that PT (P,L) is a
uniformly bounded and equicontinuous on R, then using Arzela-Ascoli theorem we
know PT (P,L) is a compact set. Since A is continuous, it maps compact sets into
compact sets, therefore A is compact. This completes the proof. ⊓⊔

Theorem 2.2 Suppose (H) holds and α, β, γ ̸= 0. Furthermore, the following in-
equalities hold

Pf ≤ (|γ| −
n∑
i=1

Pi)P, (2.9)

|E(α, β2)|(P
n∑
i=1

Pi + Pf )e
|β2|
|α| T

(
1 +

1

|E(α, β2)|
+ e

|β2|
|α| T

)
< |β1|L,

(2.10)

then Eq. (1.2) has a periodic solution in PT (P,L).

Proof. For any φ ∈ PT (P,L). By (2.9), we have

|(Aφ)(t)|

≤ 1

|α|
|E(α, β1)||E(α, β2)|

∣∣∣∣∣
∫ t+T

t

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣∣∣
≤ 1

|γ|
(P

n∑
i=1

Pi + Pf )

≤ P.

Without loss of generality, assume t1, t2 ∈ [0, T ], we obtain∣∣∣∣∣
∫ t2+T

t2

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
(u−t2)dsdu

−
∫ t1+T

t1

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
(u−t1)dsdu

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t2+T

t2

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
udsdu

∣∣∣∣∣∣∣∣e−β2
α
t2 − e−

β2
α
t1
∣∣∣

+e−
β2
α
t1

∣∣∣∣∣
∫ t2+T

t2

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
udsdu−

∫ t1+T

t1

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
udsdu

∣∣∣∣∣
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≤ |β2|
|γ|

(P
∑n
i=1 Pi + Pf )

|E(α, β1)||E(α, β2)|
e

|β2|
|α| T |t2 − t1|

+e−
β2
α
t1

∣∣∣∣∣
∫ t2+T

t1+T

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
udsdu

∣∣∣∣∣
+e−

β2
α
t1

∣∣∣∣∣
∫ t1

t2

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
udsdu

∣∣∣∣∣
≤ |β2|

|γ|
(P
∑n
i=1 Pi + Pf )

|E(α, β1)||E(α, β2)|
e

|β2|
|α| T |t2 − t1|+

|β2|
|γ|

(P
∑n
i=1 Pi + Pf )

|E(α, β1)|
e

2|β2|
|α| T |t2 − t1|

+
|β2|
|γ|

(P
∑n
i=1 Pi + Pf )

|E(α, β1)|
e

|β2|
|α| T |t2 − t1|

=
|β2|
|γ|

(P
∑n
i=1 Pi + Pf )

|E(α, β1)|
e

|β2|
|α| T

(
1 +

1

|E(α, β2)|
+ e

|β2|
|α| T

)
|t2 − t1|, (2.11)

By (2.11) and (2.10), we have∣∣∣(Aφ)(t2)− (Aφ)(t1)
∣∣∣

≤ 1

|α|
|E(α, β1)||E(α, β2)|

∣∣∣∣∣
∫ t2+T

t2

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
(u−t2)dsdu

−
∫ t1+T

t1

∫ u+T

u

(
Φφ(s) + f(s)

)
e

β1
α
(s−u)+β2

α
(u−t1)dsdu

∣∣∣∣∣
≤ 1

|β1|
|E(α, β2)|(P

n∑
i=1

Pi + Pf )e
|β2|
|α| T

(
1 +

1

|E(α, β2)|
+ e

|β2|
|α| T

)
|t2 − t1|

≤ L|t2 − t1|

Therefore (Aφ)(t) ∈ PT (P,L). So by Lemma 2.4, we see that all the conditions
of Schauder’s theorem are satisfied on PT (P,L). Thus there exists a fixed point x in
PT (P,L) such that x = Ax, from Lemma 2.3, x is a T -periodic solution of equation
(1.2). This completes the proof. ⊓⊔

Remark 2.1 If α = 0, Eq. (1.2) change to

βx′(t) + γx(t) = λ1(t)x(t) + λ2(t)x(x(t)) + · · ·+ λn(t)x
[n](t) + f(t), (2.12)

and we have the following results which similarly as [16].

Proposition 2.1 Suppose β ̸= 0, λ1(t) ̸= γ and λ1 ∈ PT , then x ∈ PT is a solution
of (2.12) if and only if

x(t) =
1

β

∫ t+T

t

(
Ψx(u) + f(u)

)
G(β, γ, λ1)du (2.13)
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where

G(β, γ, λ1) =
e

1
β

∫ u

t
(γ−λ1(s))ds

e
1
β

∫ T

0
(γ−λ1(s))ds − 1

, (2.14)

and

Ψx(t) = Σn
i=2λi(t)x

[i](t). (2.15)

The proof as Lemma 2.2 in [16], here we omit it.

Remark 2.2 It is easy to see there exists constants m and M such that

m ≤ G(β, γ, λ1) ≤M,

here m = e
1
β
(γ−P1)T

e
1
β
(γ+P1)T−1

,M = e
1
β
(γ+P1)T

e
1
β
(γ−P1)T−1

for β > 0 and m = e
1
β
(γ+P1)T

e
1
β
(γ−P1)T−1

,M =

e
1
β
(γ−P1)T

e
1
β
(γ+P1)T−1

for β < 0. Furthermore, we see

∥G(β, γ, λ1)∥ ≤ Γ(β, γ, λ1)e
1
|β| (γ+P1)T =M, (2.16)

here Γ(β, γ, λ1) = max

{
1

|e
1
β
(γ−P1)T−1|

, 1

|e
1
β
(γ+P1)T−1|

}
.

Consider the map B : PT (P,L) → PT defined as follows:

(Bx)(t) =
1

β

∫ t+T

t

(
Ψx(u) + f(u)

)
G(β, γ, λ1)du, (2.17)

where G(β, γ, λ1) and Ψx are defined as in Proposition 2.1.

Proposition 2.2 Suppose (H) holds and β ̸= 0, λ1(t) ̸= γ, then operator B is
continuous and compact on PT (P,L).

The proof as Lemma 2.4, here we omit it.

In the following theorem, we obtain the similarly result as in [16], but the con-
dition λ1(t) < γ changes to λ1(t) ̸= γ in this paper.

Theorem 2.3 Suppose (H) holds and β ̸= 0, λ1(t) ̸= γ. Furthermore, the following
inequalities hold

MT (P
n∑
i=2

Pi + Pf ) ≤ |β|P, (2.18)

7



M(P
n∑
i=2

Pi + Pf )e
T
|β| (|γ|+P1)

(
2 +

T

|β|
(|γ|+ P1)

)
< |β|L,

(2.19)

then Eq. (2.12) has a periodic solution in PT (P,L).

The proof as Theorem 2.2, here we omit it.

3 Uniqueness and stability

In this section, uniqueness and stability of (1.2) and (2.12) will be proved.

Theorem 3.1 In addition to the assumption of Theorem 2.2, suppose that

n∑
i=1

i−1∑
j=0

LjPi < |γ|, (3.1)

then (1.2) has a unique solution in PT (P,L).

Proof. We know from the proof of Theorem 2.2 that A : PT (P,L) → PT (P,L),
Moreover, by (2.8), we get

∥Aφ− Aψ∥ ≤ 1

|γ|

n∑
i=1

i−1∑
j=0

LjPi∥φ− ψ∥, φ, ψ ∈ PT (P,L),

(3.1) means 1
|γ|
∑n
i=1

∑i−1
j=0 L

jPi < 1, so the fixed point must be unique by the Banach
fixed point theorem. ⊓⊔

Theorem 3.2 The unique solution obtained in Theorem 3.1 depends continuously
on the given functions λi(t) and f(t) for i = 1, 2, . . . , n.

Proof. Let functions λi(t), f(t) and µi(t), f̃(t) in PT (Pi, Li) and PT (Pf , Lf ) be giv-
en. Then we consider the corresponding operators A, Ã defined by (2.7). Assuming
corresponding conditions (2.9), (2.10) and (3.1), there are two unique corresponding
functions x(t) and x̃(t) in PT (P,L) such that

x = Ax, x̃ = Ãx̃.
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Then we have

∥x− x̃∥ ≤ ∥Ax− Ax̃∥+ ∥Ax̃− Ãx̃∥ ≤ 1

|γ|

n∑
i=1

i−1∑
j=0

LjPi∥x− x̃∥+ ∥Ax̃− Ãx̃∥,

which implies

∥x− x̃∥ ≤ |γ|
|γ| −∑n

i=1

∑i−1
j=0 L

jPi
∥Ax̃− Ãx̃∥.

Now, for t ∈ [0, T ], we note

∣∣∣ ∫ t+T

t

∫ u+T

u

( n∑
i=1

(λi(s)− µi(s))x̃
[i](s)

)
e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣
≤ P

n∑
i=1

∥λi − µi∥
∣∣∣ ∫ t+T

t

∫ u+T

u
e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣
≤ |α|

|γ|
P

|E(α, β1)||E(α, β2)|

n∑
i=1

∥λi − µi∥, (3.2)

∣∣∣ ∫ t+T

t

∫ u+T

u
(f(s)− f̃(s))e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣
≤ |α|

|γ|
1

|E(α, β1)||E(α, β2)|
∥f − f̃∥ (3.3)

From (3.2)-(3.3), we arrive at

∥x− x̃∥

≤ |γ|
|γ| −∑n

i=1

∑i−1
j=0 L

jPi
∥Ax̃− Ãx̃∥

≤ |γ|
|α|

|E(α, β1)||E(α, β2)|
|γ| −∑n

i=1

∑i−1
j=0 L

jPi
×

×
(∣∣∣ ∫ t+T

t

∫ u+T

u

( n∑
i=1

(λi(s)− µi(s))x̃
[i](s)

)
e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣
+
∣∣∣ ∫ t+T

t

∫ u+T

u
(f(s)− f̃(s))e

β1
α
(s−u)+β2

α
(u−t)dsdu

∣∣∣)
≤ 1

|γ| −∑n
i=1

∑i−1
j=0 L

jPi

(
P

n∑
i=1

∥λi − µi∥+ ∥f − f̃∥
)
.

This completes the proof. ⊓⊔

Remark 3.1 For Eq. (2.12), we have the following results which similarly as [16].
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Theorem 3.3 Assume the conditions in Theorem 2.3 hold and

T
n∑
i=2

i−1∑
j=0

LjPi < |β|. (3.4)

Then (2.12) has a unique periodic solution in PT (P,L).

Theorem 3.4 The unique solution obtained in Theorem 3.3 depends continuously
on the given functions λi(t) and f(t), i = 1, 2, . . . , n.

4 Examples

Example 4.1 Let us show that the conditions in Theorem 2.2 do not self-contradict.
Consider the following equation:

x′′(t) + 2x′(t)− 3x(t) =
1

103
sin(t)x(t) +

1

103
cos(t)x(x(t)) +

1

10
sin(t), (4.1)

where α = 1, β = 2, γ = −3, λ1(t) = 1
103

sin(t), λ2(t) = 1
103

cos(t), f(t) = 1
10
sin(t).

β1 =
β+
√
β2−4αγ

2
= 3, β2 =

β−
√
β2−4αγ

2
= −1, P1 = P2 = 1

103
, L1 = L2 = 1

103
, Pf =

Lf =
1
10
,

E(α, β1) =
1

e
β1
α
T − 1

=
1

e6π − 1
, E(α, β2) =

1

e
β2
α
T − 1

=
e2π

1− e2π
,

here T = 2π. Take P = 1, L = 3269, then

Pf =
1

10
≤ 3− 2

103
= (|γ| − P1 − P2)P,

and

|E(α, β2)|(P (P1 + P2) + Pf )e
|β2|
|α| T

(
1 +

1

|E(α, β2)|
+ e

|β2|
|α| T

)
=

e2π

e2π − 1

51

500
e2π(2 +

1

e2π
+ e2π) =

51e4π

500(e2π − 1)
(2 +

1

e2π
+ e2π)

< 9804.31

< 9807 = |β1|L,

By Theorem 2.2, Eq. (4.1) has a 2π-periodic solution x such that |x(t)| ≤ 1, and
|x(t2)− x(t1)| ≤ 3269|t2 − t1|, ∀t1, t2 ∈ R.
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Example 4.2 Let us show that the conditions in Theorem 3.1 do not self-contradict.
Consider the following equation:

x′′(t) + 2x′(t)− 3x(t) =
1

103
sin(t)x(t) +

1

103
cos(t)x(x(t)) +

1

100
sin(t), (4.2)

where α = 1, β = 2, γ = −3, λ1(t) =
1

103
sin(t), λ2(t) =

1
103

cos(t), f(t) = 1
100

sin(t).

β1 =
β+
√
β2−4αγ

2
= 3, β2 =

β−
√
β2−4αγ

2
= −1, P1 = P2 = 1

103
, L1 = L2 = 1

103
, Pf =

Lf =
1

100
,

E(α, β1) =
1

e
β1
α
T − 1

=
1

e6π − 1
, E(α, β2) =

1

e
β2
α
T − 1

=
e2π

1− e2π
,

here T = 2π. Take P = 1, L = 385, then

Pf =
1

100
≤ 3− 2

103
= (|γ| − P1 − P2)P,

and

|E(α, β2)|(P (P1 + P2) + Pf )e
|β2|
|α| T

(
1 +

1

|E(α, β2)|
+ e

|β2|
|α| T

)
=

e2π

e2π − 1

3

250
e2π(2 +

1

e2π
+ e2π) =

3e4π

250(e2π − 1)
(2 +

1

e2π
+ e2π)

< 1153.45

< 1155 = |β1|L,

By Theorem 2.2, Eq. (4.2) has a 2π-periodic solution x such that |x(t)| ≤ 1, and
|x(t2)− x(t1)| ≤ 385|t2 − t1|, ∀t1, t2 ∈ R. Furthermore, we see

P1 + P2(1 + L) = 0.387 < 3 = |γ|,

then by Theorem 3.1, Eq. (4.2) has a unique 2π-periodic solution.

We see that the solution of Example 4.2 satisfies the properties of a solution of
Example 4.1 and we do not know if a solution of Example 4.1 is different from the
one of Example 4.2. Thus, we discuss this in the next case.

Example 4.3 Consider

x′′(t) + 2x′(t)− 3x(t) =
1

103
sin(t)x(t) +

1

103
cos(t)x(x(t)) + δ sin(t), (4.3)

where δ > 0 is a parameter. Noting α = 1, β = 2, γ = −3, β1 =
β+
√
β2−4αγ

2
=

3, β2 =
β−
√
β2−4αγ

2
= −1 and λ1(t) =

1
103

sin(t), λ2(t) =
1

103
cos(t) as in Example 4.1.

Here f(t) = δ sin(t), taking Pf = Lf = δ, P1 = P2 = L1 = L2 =
1

103
.

E(α, β1) =
1

e
β1
α
T − 1

=
1

e6π − 1
, E(α, β2) =

1

e
β2
α
T − 1

=
e2π

1− e2π
,
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here T = 2π. Next, we consider P (δ) and L(δ) as variables to be defined by δ. Then
(2.9), (2.10) and (3.1) have the forms

δ ≤ 1499

500
P (δ), (4.4)

e4π

e2π − 1
(
P (δ)

500
+ δ)(2 +

1

e2π
+ e2π) < 3L(δ), (4.5)

1

103
+

1

103
(1 + L(δ)) < 3, (4.6)

By (4.4) and (4.5), we have

P (δ) ≥ 500

1499
δ (4.7)

and

L(δ) >
δe4π

e2π − 1

500

1499
(2 +

1

e2π
+ e2π)

.
= δ × 3377.856428315845. (4.8)

From (4.6), we get

L(δ) < 2998. (4.9)

For (4.5), by (4.7) and (4.9), we have

500

1499
δ ≤ P (δ) < 500

(
8994(e2π − 1)

e2π(e4π + 2e2π + 1)
− δ

)
. (4.10)

and

0 < δ <
1499

1500

(
8994(e2π − 1)

e2π(e4π + 2e2π + 1)

)
.
= 0.010376817040576716. (4.11)

Thus, if we taking P (δ) and L(δ) satisfy (4.7) and (4.8), Theorem 2.2 is satisfied
and Eq. (4.3) has a 2π-periodic solution such that |x(t)| ≤ P (δ) and |x(t2)−x(t1)| ≤
L(δ)|t2−t1|, ∀t1, t2 ∈ R. Furthermore, if we taking P (δ) and L(δ) satisfy (4.8)-(4.11),
by Theorem 2.3, we know the 2π-periodic solution of (4.3) is a unique one.

Remark 4.1 Obviously, in Example 4.1, P = 1, L = 3269, δ = 1
10

satisfy (4.7) and
(4.8), so (4.1) has periodic solutions. In Example 4.2, P = 1, L = 385, δ = 1

100

satisfies (4.8)-(4.11), then (4.2) has a unique periodic solution.
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Example 4.4 Now, let us consider the first order differential equation

2x′(t)− 3x(t) =
1

103
sin(t)x(t) +

1

103
cos(t)x(x(t)) + δ sin(t), (4.12)

where δ > 0 is a parameter. As Example 4.3, β = 2, γ = −3, λ1(t) =
1

103
sin(t), λ2(t) =

1
103

cos(t), f(t) = δ sin(t), taking Pf = Lf = δ, P1 = P2 = L1 = L2 = 1
103
, and

T = 2π. We see M = 1

e
2999
1000π−1

, Then (2.18), (2.19) and (3.4) have the forms

2π

e
2999
1000

π − 1
(
1

103
P (δ) + δ) ≤ 2P (δ), (4.13)

1

e
2999
1000

π − 1
(

1

1000
P (δ) + δ)e

3001
1000

π(2 +
3001

1000
π) < 2L(δ), (4.14)

2π(1 + L(δ))
1

1000
< 2. (4.15)

By (4.13) and (4.14) we have

P (δ) ≥ πδ

e
2999
1000

π − 1− π
1000

(4.16)

and

L(δ) >
P (δ) + 1000δ

2000(e
2999
1000

π − 1)
(2 +

3001

1000
π)e

3001
1000

π. (4.17)

Next, (4.15) shows us

L(δ) <
1000

π
− 1. (4.18)

For (4.16), by (4.17) and (4.18), we have

πδ

e
2999
1000

π − 1− π
1000

≤ P (δ) <
2× 106(1000− π)(e

2999
1000

π − 1)

π(2000 + 3001π)e
3001
1000

π
− 1000δ. (4.19)

and

0 < δ <
2× 106(1000− π)(e

2999
1000

π − 1)

π(2000 + 3001π)e
3001
1000

π

(
π

e
2999
1000π−1− π

1000

+ 1000

) .
= 55.18009. (4.20)

Thus, if we taking P (δ) and L(δ) satisfy (4.16) and (4.17), Theorem 2.3 is
satisfied and Eq. (4.12) has a 2π-periodic solution such that |x(t)| ≤ P (δ) and
|x(t2)− x(t1)| ≤ L(δ)|t2 − t1|, ∀t1, t2 ∈ R. Furthermore, if we taking P (δ) and L(δ)
satisfy (4.16)-(4.20), by Theorem 3.3, we know the 2π-periodic solution of (4.12) is
a unique one.
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