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Abstract. In this study, we �rstly introduce a di¤erent type of di-
rectional Fermi-Walker transportations along with vortex lines of a non-
vanishing vector �eld in three-dimensional space. Thus we conclude that
geometric quantities, which are used to characterize vortex lines, are also
associated with the geometric phase and angular velocity vector (Darboux
vector) of the system. Then we present directional magnetic vortex lines
by computing the Lorentz force. Hence, we reach a remarkable relation be-
tween directional magnetic vortex lines and angular velocity vector of vortex
lines with a non-rotating frame. We later determine the directional electric
vortex lines by considering the electromagnetic force equation. We �nally
investigate the conditions of being uniform for magnetic �elds of directional
magnetic vortex lines and we improve a remarkable approach to �nd the elec-
tromagnetic curvature, which contains many geometrical features belonging
to directional electric vortex line.
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1 Introduction

Recently, it has been intensively concentrated on the phenomena connected
with topological and geometric features of some parameters evolving in time,
which is given in the form of a space curve traced by the quantum or me-
chanical system. For instance, Berry proved that a quantum system can
pick up a topological phase apart from the ordinary dynamical phase. Even
though the complete phase of a system is not commonly estimated Berry
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argued a special case when the phase of a quantum system is observed due
to the intervention with the phase of the alternative quantum system [1]. A
traditional example for this case can be observed through the polarized light
ray propagating along with optical �bers or waveguides. This observation
provides detailed information regarding the related phases of the polarized
light in both optical �bers and waveguides. Furthermore, phase dependence
and geometric nature of the rotational polarized light ray in optical �bers or
waveguides can be comprehended by the parallel transportation along with
unit vectors of space curves described by optical �bers or waveguides [2; 3].

One of the well-known and highly important parallel transportation
is given by the Fermi-Walker derivative. Fermi-Walker transportation is
signi�cant to understand various experiments and investigations. As is
known an orthogonal frame undergoing rotational or linear acceleration can
be determined by the Serret-Frenet frame. This frame together with the
Fermi-Walker transportation is useful to characterize some essential physi-
cal events. They are e¤ectively used in the investigation of the gravitational
wave resonant detectors, in the search of the inertial e¤ects on a Dirac par-
ticle, in the study of gyroscopic, Lense-Thirring and geodetic precession
[4; 5; 6].

From the physical point of view, space curves are considered as the path
or trajectory followed by the state of the system for a given speci�c pa-
rameter. In particular, they could symbolize vortex �laments, waveguides,
polymer chains, optical �bers, elastic rods, etc. Many authors focus their
attention on space curves to characterize the intrinsic properties of given
systems. For example, Dandolo¤ and Zakrzewski found that two di¤erent
phase-like quantities could help to represent a space curve and they con-
cluded that these quantities are associated to the Berry phase, which emerges
in the action of propagating of a light ray in a waveguide or optical �ber [7].
Dandolo¤ also de�ned other possible parallel transportation laws and their
relations with the Berry phase [8] : Moreover, it has been investigated that
the Berry phase can appear completely theoretical systems. For instance,
in an integrable �nite-dimensional Hamiltonian system, the straightforward
analogue of the Berry phase is given by the Hannay angle [9]. As opposed
to the former case if the integrability and existence of time-dependent pa-
rameters are not necessarily required then another type of phase is given as
the straightforward anologue of the Aharanov-Anandan phase [10].
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2 Geometric Background

In the pure geometric context, all phase-like quantities are evenly signi�cant
and closely linked. These quantities can be derived by considering the Serret-
Frenet triad and Fermi-Walker parallel transportation for a given parameter
of a vortex line.

According to this approach s�lines, which are vortex lines whose tangent
vector is t; is de�ned by c = c (s) ; where s is treated as the arc-length
parameter. Unit Serret-Frenet vectors along with s�lines are denoted by
t; n; b; which respectively stand for the unit tangent, principal normal and
binormal vectors. Thus these vectors form a moving orthogonal frame for
s�lines, which is known to satisfy the following Serret-Frenet equations.

rst = �n;

rsn = ��t+ �b; (1)

rsb = ��n;

where � = � (s) ; � = � (s) are the curvature and torsion of the given s�lines.
Here it is also assumed that rs = d=ds:

The angular velocity of the Serret-Frenet frame is given by the Darboux
vector D and it has components along with unit vectors of (t;b) forming
the rectifying plane and satisfying the following identities.

rst = D�t;
rsn = D�n; (2)

rsb = D�b;

where D =�t+ �b [11] :
Now let us observe the normal plane spanned by unit vectors (n;b) :

The angular velocity of the Serret-Frenet triad around the tangent vector
t is given by � : Hence it can be found that Berry phase is B1=

R s0
0 � (s) ds

between unit vectors (n;b) and associated non-rotating frame, which is de-
scribed by considering the ordinary Fermi-Walker derivative r� along with
s�lines in the following way [7] :

r�sA =rsA�(t � A)rst+ (rst � A)t; (3)

which is induced to
rsA =� (b�A) (4)

if A is supposed to Fermi-Walker parallel transported.
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If one observes the osculating plane spanned by unit vectors (t;n) then
the angular velocity of the Serret-Frenet triad around the binormal vec-
tor b is given by �: Hence it can be found that modi�ed Berry phase is
a B2=

R s0
0 � (s) ds between unit vectors (t;n) and associated non-rotating

frame, which is described by considering the modi�ed Fermi-Walker deriva-
tive (r�)M along with s�lines in the following way [7] :

(r�)Ms A=rsA�(b � A)rsb+ (rsb�A)b; (5)

which is induced to
rsA =� (t�A) (6)

if A is supposed to modi�ed Fermi-Walker parallel transported.
Finally, modi�ed Fermi-Walker parallel transportation and ordinary Fermi-

Walker parallel transportation yield the normal Fermi-Walker parallel trans-
portation in the following way.

(r�)Ns A=rsA�(n � A)rsn+ (rsn�A)n; (7)

which is induced to

rsA = � (b�A) + � (t�A)
= D �A (8)

if A is supposed to normal Fermi-Walker parallel transported [7].
In three-dimensions, the intrinsic characterization of vortex lines is given

by the curvature and binormal functions together with the arc-length pa-
rameter de�ned along the vortex lines. However, investigating the intrinsic
characterization of a vector �eld is signi�cantly sophisticated as the vec-
tor �eld may be de�ned by non-holonomic coordinates which includes much
more partial di¤erential equations and parameters. It can be introduced the
orthonormal basis at points along with the tangent vector (t), normal vector
(n) and binormal vector (b) on a given vortex line of the non-vanishing vec-
tor �eld [12; 13]. Directional derivative in the tangential direction is given
by the Eq. (1) and it is known as the Serret-Frenet triad. Directional deriv-
atives in the normal and binormal directions were introduced by Marris and
Passman in the following manner [14; 15] :

rnt = �nsn+ (�b + �)b;

rnn = ��nst� (divb)b; (9)

rnb = � (�b + �) t+ (divb)n;
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where rn = d=dn is the directional derivative in the principal normal direc-
tion.

rbt = � (�n + �)n+ �bsb;
rbn = (�n + �) t+ (�+ divn)b; (10)

rbb = ��bst� (�+ divn)n;

where rb = d=db is the directional derivative in the binormal direction.
Here, r is considered as gradient operator and it can be expressed by

r = brb + nrn + trs: (11)

Geometric constants �ns and �bs are de�ned by Bjorgum [13] as follows.

�ns = nrnt; �bs = brbt; (12)

and

(r � t) = div t =�ns + �bs;

(r � n) = divn = ��+ b�rbn; (13)

(r � b) = divb = �brnn:

Moreover,

curl t = �st+ �b;

curln = �(divb)t+ �nn+ �nsb; (14)

curlb = (�+ divn)t��bsn+ �bb;

where
curl = b�rb + n�rb + t�rs; (15)

and

curl t � t = �s = b�rnt� n�rbt;
curln � n = �n = t�rbn�� ; (16)

curlb � b = �b = �� � t�rnb:

Here �s; �n; �b are called abnormality functions of the unit Serret-Frenet
vectors t; n; b. These abnormalities represent total moments of the unit
tangent, principal normal and binormal vectors, respectively [13� 15].
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3 Directional Fermi-Walker Parallel Transporta-
tions and Geometric Phases of Vortex Lines

In this section, we focus our attention to de�ne a new type of directional
Fermi-Walker derivatives in three dimensions to reach a complete under-
standing with the parallelism of vortex lines of a non-vanishing vector �eld.
Di¤erent kind of Fermi-Walker parallel transportations for s�lines, which
are curves whose tangent vector is t; has been given by Eqs. (1; 3; 5; 7) :
These parallel transportations can be considered as the directional Fermi-
Walker derivative in the tangential direction. Now we will de�ne directional
Fermi-Walker derivative in the principal normal direction for n�lines and
directional Fermi-Walker derivative in the binormal direction for b�lines,
respectively.

3.1 Fermi-Walker Derivative and Geometric Phases in the
Principal Normal Direction

In this subsection, we consider a three dimensional non-vanishing vector �eld
de�ned along with n�lines, which are vortex lines whose tangent vector is n;
to investigate its Fermi-Walker parallelism in the principal normal direction.

De�nition 1. A be any three dimensional non-vanishing vector �eld
de�ned along with n�lines.

i: Ordinary Fermi-Walker derivative in the principal normal direction is
de�ned by

r�nA =rnA�(t � A)rnt+ (rnt � A)t: (17)

By using Eqs. (9; 17) one can obtain the following formula which is inter-
changeable with the above expression.

r�nA =rnA��ns (b�A) + (�b + �) (n�A) : (18)

ii: Normal Fermi-Walker derivative in the principal normal direction is
de�ned by

(r�)Nn A =rnA�(n � A)rnn+ (rnn � A)n: (19)

By using Eqs. (9; 19) one can obtain the following formula which is inter-
changeable with the above expression.

(r�)Nn A =rnA��ns (b�A) + divb (t�A) : (20)
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iii: Modi�ed Fermi-Walker derivative in the principal normal direction
is de�ned by

(r�)Mn A =rnA�(b � A)rnb+ (rnb � A)b: (21)

By using Eqs. (9; 21) one can obtain the following formula which is inter-
changeable with the above expression.

(r�)Mn A =rnA+(�b + �) (n�A) + divb (t�A) : (22)

Theorem 2. i: Let A be any three-dimensional non-vanishing vector
�eld de�ned along with n�lines. The vector �eld A = A1t + A2n + A3b
is an ordinary Fermi-Walker parallel transported in the principal normal
direction if and only if

dA1
dn

= 0;
d

dn

�
A2
A3

�
=

�
0 �divb

divb 0

� �
A2
A3

�
; (23)

where rn = d=dn:
ii: Let A be any three-dimensional non-vanishing vector �eld de�ned

along with n�lines. The vector �eld A = A1t + A2n + A3b is a normal
Fermi-Walker parallel transported in the principal normal direction if and
only if

dA2
dn

= 0;
d

dn

�
A1
A3

�
=

�
0 (�b + �)

� (�b + �) 0

� �
A1
A3

�
; (24)

where rn = d=dn:
iii: Let A be any three-dimensional non-vanishing vector �eld de�ned

along with n�lines. The vector �eld A = A1t + A2n + A3b is a modi�ed
Fermi-Walker parallel transported in the principal normal direction if and
only if

dA3
dn

= 0;
d

dn

�
A1
A2

�
=

�
0 �ns

��ns 0

� �
A1
A2

�
; (25)

where rn = d=dn:

Proof. i: A be any three-dimensional non-vanishing vector �eld de-
�ned along with n�lines such that it has a form of A = A1t+A2n+A3b:
Let assume that A is an ordinary Fermi-Walker parallel transported in the
principal normal direction. Thus one has from the Eq. (18)

r�nA =0;

7



which implies that

rnA =�ns (b�A)� (�b + �) (n�A) :

Now if one reconsiders the Eq. (9) and solves the above equality then it is
obtained that

dA1
dn

= 0;
dA2
dn

= �divbA3;
dA3
dn

= divbA2:

The converse part of the proof is trivial.
The rest of the proof can be completed by using the similar argument as

in the �rst case.

Lemma 3. i: Let A be any three-dimensional non-vanishing vector �eld
de�ned along with n�lines. The derivative of the vector �eld A = A1t +
A2n + A3b in the principal normal direction coincides with the ordinary
Fermi-Walker derivative in the principal normal direction if and only if

A1 = 0; A2 = � (�b + �) ; A3 = �ns: (26)

ii: Let A be any three-dimensional non-vanishing vector �eld de�ned
along with n�lines. The derivative of the vector �eld A = A1t+A2n+A3b
in the principal normal direction coincides with the normal Fermi-Walker
derivative in the principal normal direction if and only if

A2 = 0; A1 = �divb; A3 = �ns: (27)

iii: Let A be any three-dimensional non-vanishing vector �eld de�ned
along with n�lines. The derivative of the vector �eld A = A1t+A2n+A3b
in the principal normal direction coincides with the modi�ed Fermi-Walker
derivative in the principal normal direction if and only if

A3 = 0; A1 = divb; A2 = (�b + �) : (28)

Proof. i: A be any three-dimensional non-vanishing vector �eld de�ned
along with n�lines such that it has a form of A = A1t + A2n + A3b: The
derivative of the vector �eld A in the principal normal direction coincides
with the ordinary Fermi-Walker derivative in the principal normal direction
if and only if r�nA =rnA, which is induced by Eqs. (17; 18) : If one considers
the Eq. (18) then one should have

�ns (b�A) = (�b + �) (n�A) :
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Thus it is obtained that this equality holds when A1 = 0; A2 = � (�b + �) ;
A3 = �ns: The rest of the proof can be completed by using the similar
argument as in the �rst case.

Lemma 4. i: Non-vanishing Serret-Frenet vectors de�ned along with
n�lines are ordinary Fermi-Walker parallel transported in the principal nor-
mal direction if and only if

divb =0: (29)

ii: Non-vanishing Serret-Frenet vectors de�ned along with n�lines are
normal Fermi-Walker parallel transported in the principal normal direction
if and only if

(�b + �)=0: (30)

iii: Non-vanishing Serret-Frenet vectors de�ned along with n�lines are
modi�ed Fermi-Walker parallel transported in the principal normal direction
if and only if

�ns=0: (31)

Proof. Non-vanishing Serret-Frenet vectors de�ned along with n�lines
are ordinary Fermi-Walker parallel transported in the principal normal di-
rection if and only if

r�nt =0; r�nn =0; r�nb =0:

Hence the proof is evident if one uses Eqs. (9; 18) : The rest of the proof can
be completed by using the similar argument as in the �rst case.

Main Results 1. So far it has been given a mathematical insight of
the Fermi-Walker parallel transportation in the principal normal direction
based on the basic de�nitions and some elementary computations. Now, we
will present the geometric and physical interpretation of the obtained data.

i: The ordinary Fermi-Walker derivative in the principal normal direc-
tion is de�ned by Eqs. (17; 18) in De�nition 1. The Eq. (23) in Theorem
2 explains an ordinary Fermi-Walker parallel transportation for any three-
dimensional non-vanishing vector �eld de�ned along with n�lines. Accord-
ing to the Eq. (23) it is obtained that the angular velocity of the normal
plane, which is spanned by (n;b) ; while it rotates around the tangent vec-
tor t is given by divb along with n�lines. Thus the ordinary geometric
phase, which is improved by the system between the principal normal and
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binormal vectors, is computed by (B1)n =
R n0
0 divbdn when n has increased

from n = 0 to n = n0 in the principal normal direction:
One can also obtain an ordinary Darboux vector of the non-rotating

frame, which is de�ned along with n-lines if one considers Eqs. (26; 29) :
Thus the ordinary Darboux vector in the principal normal direction is writ-
ten by

rnt =Dn�t; rnn =Dn�n; rnb =Dn�b;

where Dn=� (�b + �)n+�nsb and rn = d=dn:
ii: The normal Fermi-Walker derivative in the principal normal direc-

tion is de�ned by Eqs. (19; 20) in De�nition 1. The Eq. (24) in Theo-
rem 2 explains a normal Fermi-Walker parallel transportation for any three-
dimensional non-vanishing vector �eld de�ned along with n�lines. Accord-
ing to the Eq. (24) it is obtained that the angular velocity of the rectifying
plane, which is spanned by (t;b) ; while it rotates around the principal nor-
mal vector n is given by (�b + �) along with n�lines. Thus the normal
geometric phase, which is improved by the system between the tangent and
binormal vectors, is computed by (B1)Nn =

R n0
0 (�b + �) dn when n has in-

creased from n = 0 to n = n0 in the principal normal direction:
One can also obtain a normal Darboux vector of the non-rotating frame,

which is de�ned along with n-lines if one considers Eqs. (27; 30) : Thus the
normal Darboux vector in the principal normal direction is written by

rnt =DNn �t; rnn =DNn �n; rnb =DNn �b;

where DNn =� (divb) t+ �nsb and rn = d=dn:
iii: The modi�ed Fermi-Walker derivative in the principal normal direc-

tion is de�ned by Eqs. (21; 22) in De�nition 1. The Eq. (25) in Theorem
2 explains a modi�ed Fermi-Walker parallel transportation for any three-
dimensional non-vanishing vector �eld de�ned along with n�lines. Accord-
ing to the Eq. (25) it is obtained that the angular velocity of the osculating
plane, which is spanned by (t;n) ; while it rotates around the tangent vec-
tor t is given by divb along with n�lines. Thus the modi�ed geometric
phase, which is improved by the system between the tangent and principal
normal vectors, is computed by (B1)Mn =

R n0
0 �nsdn when n has increased

from n = 0 to n = n0 in the principal normal direction:
One can also obtain a modi�ed Darboux vector of the non-rotating frame,

which is de�ned along with n-lines if one considers Eqs. (28; 31) : Thus the
modi�ed Darboux vector in the principal normal direction is written by

rnt =DMn �t; rnn =DMn �n; rnb =DMn �b;
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where DMn = � (divb) t� (�b + �)n and rn = d=dn:

3.2 Fermi-Walker Derivative and Geometric Phases in the
Binormal Direction

In this subsection, we consider a three-dimensional non-vanishing vector
�eld de�ned along with b�lines, which are vortex lines whose tangent vector
is b; to investigate its Fermi-Walker parallelism in the binormal direction.

De�nition 5. A be any three-dimensional non-vanishing vector �eld
de�ned along with b�lines.

i: Ordinary Fermi-Walker derivative in the binormal direction is de�ned
by

r�bA =rbA�(t � A)rbt+ (rbt � A)t: (32)

By using Eqs. (10; 32) one can obtain the following formula which is inter-
changeable with the above expression.

r�bA =rbA+�bs (n�A) + (�n + �) (b�A) : (33)

ii: Normal Fermi-Walker derivative in the binormal direction is de�ned
by

(r�)Nb A =rbA�(n � A)rbn+ (rbn � A)n: (34)

By using Eqs. (10; 34) one can obtain the following formula which is inter-
changeable with the above expression.

(r�)Nb A =rbA� (�+ divn) (t�A) + (�n + �) (b�A) : (35)

iii:Modi�ed Fermi-Walker derivative in the binormal direction is de�ned
by

(r�)Mb A =rbA�(b � A)rbb+ (rbb � A)b: (36)

By using Eqs. (10; 36) one can obtain the following formula which is inter-
changeable with the above expression.

(r�)Mb A =rbA� (�+ divn) (t�A) + �bs (n�A) : (37)

Theorem 6. i: Let A be any three-dimensional non-vanishing vector
�eld de�ned along with b�lines. The vector �eld A = A1t+A2n+A3b is
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an ordinary Fermi-Walker parallel transported in the binormal direction if
and only if

dA1
db

= 0;
d

db

�
A2
A3

�
=

�
0 (�+ divn)

� (�+ divn) 0

� �
A2
A3

�
; (38)

where rb = d=db:
ii: Let A be any three-dimensional non-vanishing vector �eld de�ned

along with b�lines. The vector �eld A = A1t + A2n + A3b is a normal
Fermi-Walker parallel transported in the binormal direction if and only if

dA2
db

= 0;
d

db

�
A1
A3

�
=

�
0 �bs
��bs 0

� �
A1
A3

�
; (39)

where rb = d=db:
iii: Let A be any three-dimensional non-vanishing vector �eld de�ned

along with b�lines. The vector �eld A = A1t + A2n + A3b is a modi�ed
Fermi-Walker parallel transported in the binormal direction if and only if

dA3
db

= 0;
d

db

�
A1
A2

�
=

�
0 � (�n + �)

(�n + �) 0

� �
A1
A2

�
; (40)

where rb = d=db:

Proof. i: A be any three-dimensional non-vanishing vector �eld de-
�ned along with b�lines such that it has a form of A = A1t+A2n+A3b:
Let assume that A is an ordinary Fermi-Walker parallel transported in the
binormal direction. Thus one has from the Eq. (33)

r�bA =0;

which implies that

rbA = ��bs (n�A)� (�n + �) (b�A) :

Now if one reconsiders the Eq. (10) and solves the above equality then it is
obtained that

dA1
db

= 0;
dA2
db

= (�+ divn)A3;
dA3
db

= � (�+ divn)A2:

The converse part of the proof is trivial.
The rest of the proof can be completed by using the similar argument as

in the �rst case.
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Lemma 7. i: Let A be any three-dimensional non-vanishing vector �eld
de�ned along with b�lines. The derivative of the vector �eld A = A1t +
A2n + A3b in the binormal direction coincides with the ordinary Fermi-
Walker derivative in the binormal direction if and only if

A1 = 0; A2 = �bs; A3 = (�n + �) : (41)

ii: Let A be any three-dimensional non-vanishing vector �eld de�ned
along with b�lines. The derivative of the vector �eld A = A1t+A2n+A3b
in the binormal direction coincides with the normal Fermi-Walker derivative
in the binormal direction if and only if

A2 = 0; A1 = (�+ divn) ; A3 = � (�n + �) : (42)

iii: Let A be any three-dimensional non-vanishing vector �eld de�ned
along with b�lines. The derivative of the vector �eldA = A1t+A2n+A3b in
the binormal direction coincides with the modi�ed Fermi-Walker derivative
in the binormal direction if and only if

A3 = 0; A1 = (�+ divn) ; A2 = ��bs: (43)

Proof. i: A be any three-dimensional non-vanishing vector �eld de�ned
along with b�lines such that it has a form of A = A1t + A2n + A3b: The
derivative of the vector �eld A in the binormal direction coincides with the
ordinary Fermi-Walker derivative in the binormal direction if and only if
r�bA =rbA, which is induced by Eqs. (32; 33) : If one considers the Eq. (33)
then one should have

��bs (n�A) = (�n + �) (b�A) :

Thus it is obtained that this equality holds when A1 = 0; A2 = �ns; A3 =
� (�n + �) : The converse part of the proof is trivial.

The rest of the proof can be completed by using the similar argument as
in the �rst case.

Lemma 8. i: Non-vanishing Serret-Frenet vectors de�ned along with
b�lines are ordinary Fermi-Walker parallel transported in the binormal di-
rection if and only if

(�+ divn)=0: (44)
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ii: Non-vanishing Serret-Frenet vectors de�ned along with b�lines are
normal Fermi-Walker parallel transported in the binormal direction if and
only if

�bs=0: (45)

iii: Non-vanishing Serret-Frenet vectors de�ned along with b�lines are
modi�ed Fermi-Walker parallel transported in the binormal direction if and
only if

(�n + �)=0: (46)

Proof. i: Non-vanishing Serret-Frenet vectors de�ned along with b�lines
are ordinary Fermi-Walker parallel transported in the binormal direction if
and only if

r�bt =0; r�bn =0; r�bb =0:

Hence the proof is evident if one uses Eqs. (10; 33) :
The rest of the proof can be completed by using the similar argument as

in the �rst case.

Main Results 2. So far it has been given a mathematical insight of the
Fermi-Walker parallel transportation in the binormal direction based on the
basic de�nitions and some elementary computations. Now, we will present
the geometric and physical interpretation of the obtained data.

i: The ordinary Fermi-Walker derivative in the binormal direction is de-
�ned by Eqs. (32; 33) in De�nition 5. The Eq. (38) in Theorem 6 explains
an ordinary Fermi-Walker parallel transportation for any three-dimensional
non-vanishing vector �eld de�ned along with b�lines. According to the Eq.
(38) it is obtained that the angular velocity of the normal plane, which is
spanned by (n;b) ; while it rotates around the tangent vector t is given by
(�+ divn) along with b�lines. Thus the ordinary geometric phase, which is
improved by the system between the principal normal and binormal vectors,
is computed by (B1)b =

R b0
0 (�+ divn) db when b has increased from b = 0

to b = b0 in the binormal direction:
One can also obtain an ordinary Darboux vector of the non-rotating

frame, which is de�ned along with b-lines if one considers Eqs. (41; 44) :
Thus the ordinary Darboux vector in the binormal direction is written by

rbt =Db�t; rbn =Db�n; rbb =Db�b;

where Db= ��bsn� (�n + �)b and rb = d=db:
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ii: The normal Fermi-Walker derivative in the binormal direction is de-
�ned by Eqs. (34; 35) in De�nition 5. The Eq. (39) in Theorem 6 explains a
normal Fermi-Walker parallel transportation for any three-dimensional non-
vanishing vector �eld de�ned along with b�lines. According to the Eq. (39)
it is obtained that the angular velocity of the recti�ying plane, which is
spanned by (t;b) ; while it rotates around the principal normal vector n is
given by �bs along with b�lines. Thus the normal geometric phase, which
is improved by the system between the tangent and binormal vectors, is
computed by (B1)Nb =

R b0
0 �bsdb when b has increased from b = 0 to b = b0

in the binormal direction:
One can also obtain a normal Darboux vector of the non-rotating frame,

which is de�ned along with b-lines if one considers Eqs. (42; 45) : Thus the
normal Darboux vector in the binormal direction is written by

rbt =DNb �t; rbn =DNb �n; rbb =DNb �b;

where DNb =(�+ divn) t� (�n + �)b and rb = d=db:
iii: The modi�ed Fermi-Walker derivative in the binormal direction is de-

�ned by Eqs. (36; 37) in De�nition 5. The Eq. (40) in Theorem 6 explains a
modi�ed Fermi-Walker parallel transportation for any any three-dimensional
non-vanishing vector �eld de�ned along with b�lines. According to the Eq.
(40) it is obtained that the angular velocity of the osculating plane, which
is spanned by (t;n) ; while it rotates around the tangent vector t is given by
(�n + �) along with b�lines. Thus the modi�ed geometric phase, which is
improved by the system between the tangent and principal normal vectors,
is computed by (B1)Mb =

R b0
0 (�n + �) db when b has increased from b = 0 to

b = b0 in the binormal direction:
One can also obtain a modi�ed Darboux vector of the non-rotating frame,

which is de�ned along with b-lines if one considers Eqs. (43; 46) : Thus the
modi�ed Darboux vector in the principal normal direction is written by

rbt =DMb �t; rbn =DMb �n; rbb =DMb �b;

where DMb =(�+ divn) t� �bsn and rb = d=db:

4 Directional Magnetic Vortex Lines

In the literature magnetic curves, magnetic �elds and magnetic �ows of
vortex �laments or charged particles have been intensively studied. For
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instance, Barros et al. used a variational method and Lorentz force equa-
tion to investigate the relation between Killing magnetic �elds and mag-
netic �ows. They have obtained a remarkable connection between the Hall
e¤ect and elastic theory [16]. Some other solutions of the Lorentz force
equation and some special magnetic �ows and magnetic curves have been
characterized by Bozkurt et al. [17] : A similar approach is used in various
studies to understand the behavior of magnetic curves and their �ows in
di¤erent geometric structure. For example, Druta-Romaniuc and Munteanu
[18; 19] studied on magnetic curves associated with the Killing magnetic
�elds in both Euclidean and Minkowski space separately. Munteanu and
Nistor [20] generalized local description of magnetic trajectories correspond-
ing to Killing vector �elds in S2�R: Classi�cation of the trajectories of the
charged particle corresponding to Kahler magnetic �elds in Kahler mani-
folds; Killing vector �elds in Walker manifold; contact magnetic �elds in
Sasakian, quasi-Sasakian, quasi-para-Sasakian, and cosymplectic manifolds
were given by [21� 26] : In [27; 28] ; we de�ned frictional and gravitational
magnetic curves together with their energy functionals and uniformity con-
ditions on the 3D Riemannian surface. Even though all these studies have
distinct consequences and physical interpretations magnetic �ows obtained
through the solution of the Lorentz force equation belong to s�lines, which
are vortex lines whose tangent vector is t: Following is the summary of the
common approach that has been mainly considered so far.

A magnetic �eld can be described on an n-dimensional Riemannian man-
ifold (Kn; �) as a closed two-form V 2 � (Kn; �) such that anti-symmetric
Lorentz force operator � satis�es

�(S) � Z =V (S;Z) ; (47)

where S;Z 2 (Kn; �) : Then magnetic trajectories associated with the mag-
netic �eld V are magnetic curves in (Kn; �) provided that their tangent
vectors t satisfy the non-linear second-order Lorentz force equation

rst =�(t) : (48)

In three-dimensional space, magnetic �elds possess very elegant features
that make this case special. In three dimensions, 2-forms and vector �elds,
magnetic �elds and divergence-free vector �elds, uniform magnetic �elds,
and parallel vector �elds are said to equivalent to each other and their de-
�nitions allow one to interchange each concept with other. Finally, these
facts imply that the Lorentz force equation (48) can be written in terms of
vector product by

rst =�(t) = V � t: (49)
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In the following subsections, the solution of the Lorentz force equation
on n�lines, which are vortex lines whose tangent vector is n and the Lorentz
force equation on b�lines, which are vortex lines whose tangent vector is b
are computed. Thus we de�ne directional magnetic vortex lines of n�lines
in the principal normal direction and directional magnetic vortex lines for
b�lines in the binormal direction, respectively. Consequently, it is aimed to
establish a relation between directional magnetic vector �elds of directional
magnetic vortex lines and angular velocity vectors of vortex lines with non-
rotating frame.

4.1 Magnetic Vector Fields of Directional Magnetic Vortex
Lines in the Principal Normal Direction

In this subsection, it is �rstly de�ned the adapted Lorentz force equation
for n�lines, which are vortex lines whose tangent vector is n: Later it is
de�ned directional magnetic vortex lines and associated magnetic �elds in
the principal normal direction.

De�nition 9. i: Tangent magnetic vortex lines along with n�lines
(nmt) are de�ned by

�n (t) = rnt = V1�t; (50)

where �n is the ordinary Lorentz force equation in the principal normal
direction and V1 is a vector �eld with div (V1) = 0:

ii: Principal normal magnetic vortex lines along with n�lines (nmn) are
de�ned by

�Nn (n) = rnn = V2�n; (51)

where �Nn is the normal Lorentz force equation in the principal normal
direction and V2 is a vector �eld with div (V2) = 0:

iii: Binormal magnetic vortex lines along with n�lines (nmb) are de�ned
by

�Mn (b) = rnb = V3�b; (52)

where �Mn is the modi�ed Lorentz force equation in the principal normal
direction and V3 is a vector �eld with div (V3) = 0:

Theorem 10. i. nmt is a magnetic trajectory of the magnetic �eld V1
if and only if V1 = "1t� (�b + �)n+�nsb along with n�lines.
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ii: nmn is a magnetic trajectory of the magnetic �eld V2 if and only if
V2 = � (divb) t�"2n+ �nsb along with n�lines.

iii: nmb is a magnetic trajectory of the magnetic �eld V3 if and only if
V3 = � (divb) t� (�b + �)n+"3b along with n�lines.

Proof. i: Let assume �rst that nmt is a magnetic trajectory of the mag-
netic �eld V1 along with n�lines: Then the ordinary Lorentz force equation
of the orthonormal frame (t;n;b) in the principal normal direction can be
computed if one considers the Eq. (50) and following identities

�n(t)�n = ��n(n)�t; �n(t)�b = ��n(b)�t; �n(n) � b = ��n(b) � n: (53)

Thus we have

�n(t) = �nsn+(�b + �)b; �n(n) = ��nst+"1b; (54)

�n(b) = � (�b + �) t�"1n;

where "1 is an arbitrarily choosen smooth function along with the nmt: Now,
one can observe that V1 can be spanned by (t;n;b) that is

V1 = v1t+ v2n+ v3b; (55)

where vj ; 1 � j � 3 are su¢ ciently smooth fucntions. If one considers Eqs.
(50; 54) then we have following two facts:

V1�t =�nsn+(�b + �)b;
0 = �n (V1) = v1�n(t) + v2�n(n) + v3�n(b): (56)

Finally, it is computed by the Eq. (56) that V1 = "1t� (�b + �)n+�nsb:
The rest of the proof can be completed by using the similar argument as

in the �rst case.

Main Results 3. i: The ordinary Darboux vector �eld of the non-
rotating frame, which is de�ned along with n-lines, is said to coincide with
the magnetic vector �eld of tangent magnetic vortex lines in the principal
normal direction when the arbitrarily chosen smooth function "1 vanishes.

ii: The normal Darboux vector �eld of the non-rotating frame, which is
de�ned along with n-lines, is said to coincide with the magnetic vector �eld
of principal normal magnetic vortex lines in the principal normal direction
when the arbitrarily chosen smooth function "2 vanishes.

iii: The modi�ed Darboux vector �eld of the non-rotating frame, which is
de�ned along with n-lines, is said to coincide with the magnetic vector �eld
of binormal magnetic vortex lines in the principal normal direction when
the arbitrarily chosen smooth function "3 vanishes.
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4.2 Magnetic Vector Fields of Directional Magnetic Vortex
Lines in the Binormal Direction

In this subsection, it is �rstly de�ned the adapted Lorentz force equation
for b�lines, which are vortex lines whose tangent vector is b: Later it is
de�ned directional magnetic vortex lines and associated magnetic �elds in
the binormal direction.

De�nition 11. i: Tangent magnetic vortex lines along with b�lines
(bmt) are de�ned by

�b (t) = rbt =W1�t; (57)

where �b is the ordinary Lorentz force equation in the binormal direction
andW1 is a vector �eld with div (W1) = 0:

ii: Principal normal magnetic vortex lines along with b�lines (bmn) are
de�ned by

�Nb (n) = rbn =W2�n; (58)

where �Nb is the normal Lorentz force equation in the binormal direction
andW2 is a vector �eld with div (W2) = 0:

iii: Binormal magnetic vortex lines along with b�lines (bmb) are de�ned
by

�Mb (b) = rbb =W3�b; (59)

where �Mb is the modi�ed Lorentz force equation in the binormal direction
andW3 is a vector �eld with div (W3) = 0:

Theorem 12. i. bmt is a magnetic trajectory of the magnetic �eldW1

if and only ifW1 = �1t��bsn� (�n + �)b along with b�lines.
ii: bmn is a magnetic trajectory of the magnetic �eldW2 if and only if

W2 = (�+ divn) t� �2n� (�n + �)b along with b�lines.
iii: bmb is a magnetic trajectory of the magnetic �eldW3 if and only if

W3 = (�+ divn) t� �bsn+�3b along with b�lines.

Proof. i: Let assume �rst that bmt is a magnetic trajectory of the
magnetic �eld W1 along with b�lines: Then the ordinary Lorentz force
equation on the orthonormal frame (t;n;b) in the binormal direction can
be computed if one considers the Eq. (57) and following identities

�b(t) �n = ��b(n) � t; �b(t) �b = ��b(b) � t; �b(n) � b = ��b(b) � n: (60)
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Thus we have

�b(t) = � (�n + �)n+�bsb; �b(n) = (�n + �) t+�1b; (61)

�b(b) = ��bst��1n;

where �1 is an arbitrarily choosen smooth function along with the bmt: Now,
one can observe thatW1 can be spanned by (t;n;b) that is

W1 = w1t+ w2n+ w3b; (62)

where wj ; 1 � j � 3 are su¢ ciently smooth fucntions. If one considers Eqs.
(57; 61) then we have following two facts:

W1�t = � (�n + �)n+�bsb;
0 = �b (W1) = w1�b(t) + w2�b(n) + w3�b(b): (63)

Finally, it is computed by the Eq. (63) thatW1 = �1t��bsn� (�n + �)b:
The rest of the proof can be completed by using the similar argument as

in the �rst case.

Main Results 4. i: The ordinary Darboux vector �eld of the non-
rotating frame, which is de�ned along with b-lines, is said to coincide with
the magnetic vector �eld of tangent magnetic vortex lines in the binormal
direction when the arbitrarily chosen smooth function �1 vanishes.

ii: The normal Darboux vector �eld of the non-rotating frame, which is
de�ned along with b-lines, is said to coincide with the magnetic vector �eld
of principal normal magnetic vortex lines in the binormal direction when
the arbitrarily chosen smooth function �2 vanishes.

iii: The modi�ed Darboux vector �eld of the non-rotating frame, which
is de�ned along with b-lines, is said to coincide with the magnetic vector
�eld of binormal magnetic vortex lines in the binormal direction when the
arbitrarily chosen smooth function �3.

5 Directional Electric Vortex Lines

The idea of electric lines was �rstly presented by M. Faraday in his famous
research on electromagnetism. He discussed that the forces of gravity, mag-
netism and electricity are all well-de�ned by �elds, charactrized with �eld
lines.
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The fundamental of electrodynamics together with the electromagnetic
�eld, energy, force, and momentum, which are closely connected with each
other via the Lorentz force law and the theory of the Poynting vector, have
been constructed upon the theory of Maxwell. This theory also governs the
electromagnetic energy �ow and its exchange between magnetic �eld (V)
and electric �eld (E).

The well-known electromagnetic force on the moving particle whose tra-
jectory is de�ned to be a curve (�) in three dimensional space is given by

F =mrs(rs�) =q(E+rs��V); (64)

where q is the charge of the particle. For the sake of clarity, it is assumed
that no other forces acts on the given system. It is also considered a non-
relativistic case for the simplicity purpose.

In the following subsections, the solution of the electromagnetic force
equation of the positively charged particle moving under the action of electric
and magnetic �elds along with n�lines, which are vortex lines whose tangent
vector is n and the solution of the electromagnetic force equation of the
positively charged particle moving under the action of electric and magnetic
�elds along with b�lines, which are vortex lines whose tangent vector is b
are computed. Thus we de�ne directional electric vortex lines of n�lines
in the principal normal direction and directional electric vortex lines for
b�lines in the binormal direction, respectively. Consequently, it is aimed to
investigate the physical and geometrical dynamics of the electric �eld lines
in the principal normal and binormal directions.

5.1 Electric Vector Fields of Directional Electric Vortex Lines
in the Principal Normal Direction

In this subsection, it is �rstly de�ned the adapted electromagnetic force
equations of the positively charged particle moving under the action of elec-
tric and magnetic �elds along with n�lines, which are vortex lines whose
tangent vector is n: Later it is obtained both electric �elds in the principal
normal direction and some further investigations on the dynamics of the
charged particle.

De�nition 13. i: Tangent electric vortex lines along with n�lines (net)
are de�ned by

F =mrn(rn�) =q(E1+rn��V1); (65)
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where V1 is the magnetic vector �eld of tangent magnetic vortex lines in
the principal normal direction.

Here if one considers Eqs. (9; 65) and the Theorem 10 (i) then electric
vector �eld of tangent electric vortex lines (E1) in the principal normal
direction is written by

E1 = ��ns(1 +
m

q
)t+ ("1 �

m

q
divb)b: (66)

ii: Principal normal electric vortex lines along with n�lines (nen) are
de�ned by

F =mrn(rn�) =q(E2+rn��V2); (67)

where V2 is the magnetic vector �eld of principal normal magnetic vortex
lines in the principal normal direction.

Here if one considers Eqs. (9; 67) and the Theorem 10 (ii) then electric
vector �eld of principal normal electric vortex lines (E2) in the principal
normal direction is written by

E2 = ��ns(1 +
m

q
)t�divb(1 + m

q
)b: (68)

iii: Binormal electric vortex lines along with n�lines (neb) are de�ned
by

F =mrn(rn�) =q(E3+rn��V3); (69)

where V3 is the magnetic vector �eld of binormal magnetic vortex lines in
the principal normal direction.

Here if one considers Eqs. (9; 69) and the Theorem 10 (iii) then electric
vector �eld of binormal electric vortex lines (E3) in the principal normal
direction is written by

E3 = �("3 +
m

q
�ns)t�divb(1 +

m

q
)b: (70)

5.2 Electric Vector Fields of Directional Electric Vortex Lines
in the Binormal Direction

In this subsection, it is �rstly de�ned the adapted electromagnetic force
equations of the positively charged particle moving under the action of elec-
tric and magnetic �elds along with b�lines, which are vortex lines whose
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tangent vector is b: Later it is obtained both electric �elds in the principal
normal direction and some further investigations on the dynamics of the
charged particle.

De�nition 14. i: Tangent electric vortex lines along with b�lines (bet)
are de�ned by

F =mrb(rb�) =q(G1+rb��W1); (71)

where W1 is the magnetic vector �eld of tangent magnetic vortex lines in
the binormal direction.

Here if one considers Eqs. (10; 71) and the Theorem 12 (i) then electric
vector �eld of tangent electric vortex lines (G1) in the binormal direction is
written by

G1 = ��bs(1 +
m

q
)t� (�1 +

m

q
(�+ divn))n: (72)

ii: Principal normal electric vortex lines along with b�lines (ben) are
de�ned by

F =mrb(rb�) =q(G2+rb��W2); (73)

whereW2 is the magnetic vector �eld of principal normal magnetic vortex
lines in the binormal direction.

Here if one considers Eqs. (10; 73) and the Theorem 12 (ii) then electric
vector �eld of principal normal electric vortex lines (G2) in the binormal
direction is written by

G2 = (��2 �
m

q
�bs)t� (�+ divn)(1 +

m

q
)b: (74)

iii: Binormal electric vortex lines along with b�lines (beb) are de�ned by

F =mrb(rb�) =q(G3+rb��W3); (75)

whereW3 is the magnetic vector �eld of binormal magnetic vortex lines in
the binormal direction.

Here if one considers Eqs. (10; 75) and the Theorem 12 (iii) then electric
vector �eld of binormal electric vortex lines (E3) in the binormal direction
is written by

G3 = ��bs(1 +
m

q
)t� (�+ divn)(1 + m

q
)n: (76)
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6 Conclusion

We have used anholonomic coordinates of a three-dimensional vector �eld,
which are supposed to govern the intrinsic features of vortex lines, to de-
duce particular geometric consequences of physical importance including the
Fermi-Walker transportations of vortex lines, the angular velocity vectors of
vortex lines, the magnetic �elds of vortex lines. We also give relations be-
tween the obtained consequences. As one of the most important conclusions
of the study, we �nalize the paper by presenting the uniformness of the
magnetic vector �elds of directional magnetic vortex lines.

Uniformness of a magnetic �eld in a surface is the signi�cant part of
Landau-Hall problem, which deals with obtaining constant curvature curves
in the given surface. Based on this study one can deduce the conditions of
being uniform for each magnetic vector �eld of directional magnetic vortex
lines in the principal normal and binormal direction by considering the fact
that uniform magnetic �elds are made up of parallel two forms. That is a
magnetic �eld V is said to uniform if and only if

r �V =0: (77)

For instance, magnetic vector �eld of tangent magnetic vortex lines
(V1) in the principal normal direction is said to uniform if and only if

d

ds
"1�

d

dn
(�b + �)+

d

db
�ns= �"1 (�ns + �bs) + (�b + �) divn+�ns divb:

(78)
One should consider the Theorem 10 (i) and the Eq. (77) for the validity
of the above expression: It is a known fact that uniform magnetic �elds are
Killing magnetic �elds. Then one can conclude that the magnetic �eld of
tangent magnetic vortex lines (V1) in the principal normal direction is also
a Killing magnetic �eld if the Eq. (78) is satis�ed.

As stated before uniform magnetic �elds correspond to parallel vector
�elds. Then a question which arises is whether a uniform magnetic �eld
corresponds to a Fermi-Walker parallel vector �eld or not. Even though
we have not reached a decisive answer for that question we can investigate
every single case that has been investigated so far and determine when the
uniform magnetic �eld is Fermi-Walker transported in these special cases.
For example, the magnetic vector �eld of tangent magnetic vortex lines
(V1) corresponds to an ordinary Fermi-Walker parallel transported in the
principal normal direction if and only if

d

dn
"1 = 0;

d

dn
(�b + �) = �ns divb;

d

dn
�ns = � (�b + �) divb;
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it corresponds to a normal Fermi-Walker transported in the principal normal
direction if and only if

d

dn
(�b + �) = 0;

d

dn
"1 = �ns (�b + �) ;

d

dn
�ns = �"1 (�b + �) ;

it corresponds to a modi�ed Fermi-Walker transported in the principal nor-
mal direction if and only if

d

dn
�ns = 0;

d

dn
"1 = ��ns (�b + �) ;

d

dn
(�b + �) = ��ns"1:

One should consider Theorem 10 (i) and Eqs. (17; 18; 23) for the validity
of the above expressions. We consider the magnetic vector �eld of tangent
magnetic vortex lines (V1) in the principal normal direction when we deter-
mine the relationship between the uniformness condition and Fermi-Walker
transportation as a sample case and other cases left to the reader.

In the three-dimensional space, an electric �eld line is supposed to be a
curve whose direction is equal to the electric �eld�s direction. Namely, the
electric �eld line 	 must meet the following equation:

d

dx
	 = E;

where E is the electric �eld and d
dx represents the derivative in the x direction

[29]. Since we have investigated distinct electric vortex lines in the principal
normal and binormal directions we can transform the above equation into
the following forms:

d

dn
	 = E; (79)

d

db
	 = E: (80)

Thus we can de�ne a curvature of the curve 	 in the principal normal and
binormal directions respectively in the following manner:

� =

�� d
dn	�

d
dn(

d
dn	)

���� d
dn	

��3 ; (81)

� =

�� d
db	�

d
db(

d
db	)

���� d
db	

��3 : (82)

Thanks to these de�nitions we are able to determine the electromagnetic
curvature of a tangent, principal normal, binormal electric vortex lines with
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n�lines, which are vortex lines whose tangent vector is n and tangent,
principal normal, binormal electric vortex lines with b�lines. For instance,
the electromagnetic curvature of the tangent electric vortex line along with
n�lines can be computed by

� =

��E1 � d
dn(E1)

��
jE1j3

where d
dnnet = E1 and E1 is given by the Eq. (66) : Hence the electro-

magnetic curvature of the tangent electric vortex line along with n�lines is
written by

� =
1

(�2ns(1 +
m
q )
2 + ("1 � m

q divb)
2)

3
2

((��2ns(1 +
m

q
)

+("1 �
m

q
divb) divb)2(�ns(1 +

m

q
)2 + ("1 �

m

q
divb)2)

+(��2ns(1 +
m

q
)2(�b + �) + �ns(1 +

m

q
)
d

dn
("1 �

m

q
divb)

�("1 �
m

q
divb)(1 +

m

q
)
d

dn
(�ns)� ("1 �

m

q
divb)2(�b + �))

2)
1
2 :

This study will be also a fundamental source for anyone whose aim is to
concentrate on the various type of �ows (inextensible �ows, Beltrami �ows,
Complex-Lamellar �ows, etc.) of vortex lines and directional magnetic (or
electric) vortex lines in principal and binormal direction. In the future, we
will further investigate solitonic behavior of directional magnetic vortex lines
and the directional electric vortex lines and their features of motions (uni-
formly accelerated motions, uniformly circular motion, unchanged direction
motion).
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