Hierarchic control of a linear heat equation with
missing data

R. G. FOKO TIOMELA *G. MOPHOU T G. M. N’Guérékata,
January 27, 2020

Abstract

The paper is devoted to the Stackelberg control of a linear parabolic
equation with missing initial condition. The strategy involves two controls
called follower and leader. The objective of the follower is to bring the
state to a desired state while the leader has to bring the system to rest
at the final time. The results are obtained by means of Fenchel-Legendre
transform and appropriate Carleman inequalities.

Mathematics Subject Classification. 49J20, 92D25, 93B05; 93C41.
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1 Introduction

Let N € N* and Q be a bounded subset of RY with boundary I' of class C2.
Let w and O be two non-empty open subsets of Q with O ¢ w. For T' > 0, we
set Q =Qx (0,7), wr =w x (0,T), Op =0 x (0,T) and X =T x (0,T). We
consider the following controlled parabolic problem

Y Ay+ay = hyo+tvo in Q
y = 0 on X (1)
y(707 ) = g in Q7

where the potential ag € L*(Q), xx is the characteristic function of the set
X C Q. The controls h and v belong to L?(Q). The initial condition, g € L?()
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is unknown. Under these assumptions on the data, we have that y = y(h;v,g) =
y(@, t;h;v, g) = y(hyv, g) € W(0,T) where

W0.7) = {pl p € L2(0.1), 1Y) and P € L2(O.TRE @) ()

is a Hilbert space (see [13]).
Remark 1 Note that if p € W(0,T) then p € C([0,T]; L*(12)).
Define the set

2(Q) = L*((0,T7); H*(Q) N Hy () N H'((0,T); L*(2)).

Then = C W(0,T).

Any environment phenomena in a bounded domain which can be described
by linear reaction diffusion equation with missing initial condition can be mod-
elled by (1). For instance, the diffusion of a pollutant in a lake. In this case, the
state variable represents the concentration of the pollutant. The missing initial
condition is explained by the fact of missing information on the beginning of
a pollution. In such situation, it is important to control the phenomenon. In
this paper we use a two-objective optimization approach proposed by H. Von
Stackelberg in [22]. The goal of the first control (called follower) is to reduce
the concentration of the pollutant to a desired state while the second control
(called leader) has to clear the pollutant in the lake at a given final time T.
More precisely, we are interested in the following problems:

Problem 1 For a fived h € L*(wr) and v > 0, find the best control v¥ =
v (h) € L?(O7) solution of

. . . . B 2
A (ks 0,9) = J(0;0,9) = [l ey | (3)

where ) )
J(hiv,9) = [[y(h;v,9) = 2a[ ) + N[ 1200 (4)

with zq € L*(Q) and N > 0.

Problem 2 Let v7 = v7(h) be the control obtained in the first objective and
y? = y(x,t; h;v",0) be the associated state. Find the control hy, € L*(wr) such
that

y(-, T;hy; 07 (hy),0) =0 in Q. (5)

The optimization problem (3) is actually call Low-regret control problem. This
kind of robust control was introduce by J.L. Lions [1] in the early nineties in
order to solve problem with missing data. Since then many authors have used
this notion to control models with incomplete data. We refer for instance to
[3, 4, 5, 6, 7, 8,9, 10] and the reference therein. Problem (3) with v = 0 is



called No-regret control problem [1]. It can also be obtained if possible (it is
not always the case) as a limit of the Low-regret control. These notions of Low-
regret and No-regret controls were combined to the notion of average control
[12] to address a problem with missing boundary condition varying parameter
in the coefficient of diffusion. We also refer to [11], where such a control has
been consider for electromagnetic wave displacement with an unknown velocity
of propagation.

Problem 2 is a null controllability problem. There are many works in the
literature on null controllability of linear heat and nonlinear equation. Most
of them are achieved by means of inequality of observability of type Carleman.
We refer for instance to [16, 17, 19, 20] and the reference therein. Meanwhile,
Stackelberg strategy for the control of partial differential equation have been
studied by some authors. J. L. Lions [23] used the Stackelberg strategy on a
system governed by a parabolic equation subjected to two controls. The follower
acts on the system in order to bring the state not far from the desired state while
the leader has to steer the state at the final time to a small neighborhood of
a given state. O. Nakoulima [24] used this concept control for a backward
heat equation involving two controls to determine: one of null controllability
type with a constraint on the control, called follower, and the other of optimal
control type, called leader. The results were achieved by means of a Carleman
inequality adapted to the constraint. In [25, 26], M. Mercan revisited the notion
of controllability in the sense of Stackelberg given by O. Nakoulima [24] by
choosing the follower of the minimal norm. This new notion is then applied by
O. Nakoulima et al. in [27] on the controllability of a two-stroke problem with
the constraint on the states. The results were obtained by means of Carleman
inequality adapted to the constraints. Recently G. Mophou et al. [28] considered
the Stackelberg problem for coupled parabolic equations with a finite number
of constraints on one of the states. The first control was supposed to bring the
solution of the coupled system subjected to a finite number of constraints at
rest at time T while the second expresses that the states do not move too far
from a given state.

As far as we know there is no existing work on Stackelberg control for prob-
lem with missing data. So, using the decomposition of the state to eliminate
the unknown initial condition, we prove using Fenchel-Legendre transform that
problem (3) is equivalent to standard optimal control that we solve. To solve
the null controllability problem in Problem 2, we established an appropriate
Carleman inequality satisfying by the adjoint of system which characterises the
optimal control. More precisely, we prove the following results.

Theorem 1.1 Let 2 be a bounded subset of R™, n > 1 with boundary I' of class
C?. Let w and O be nonempty subsets of Q. Let also v > 0. Then for any
h € L?*(wr) there exists ¢7 = ¢ (z,t;h) € 2(Q), p? = p?(z,t;h) € W(0,T)
and ¢V = ("(x,t; h;vY) € Z(Q) such that the optimization problem (3) has a
unique solution v¥ = vV(h) associate to the state y? = y(x,t; h;vY(h),0) which



18 characterized by the following optimality systems:

v = —% in Or, (6)
8yv 2 2 Y ;
W_Ay +aoy” = hxot+tv'xo in Q,
y' = 0 on X, (7)
y'(-,0;h;07,0) = 0 in  Q,
Y
_%T A" +ae¢? = Yy in Q,
o= 0 on %
C"/(.,T;h;v’Y) =0 in Qv
an
% —Ap” 4+app” = 0 m Q)
p’T =0 on X, (9)
1
p’Y ,O,h = 7<,Y 7O7h’ n Qv
(-,0;h) Ve (-,0;h)
and 547 )
_ai —A¢ +aq” = y'—zat—p in Q,
' v (10)
q7 = 0 on X,
(-, T;h) = 0 in Q.

Moreover, there exist two constants C(ag,T) > 0 and C(ag,T,~y) > 0 such that
[V llz2(07) < Clao, T) (lzall L2 (@) + Clao, T,V 17l 2 (wr)) » (11)

where from now on, C(X) is used to denote a positive constant whose value
varies from a line to another but depends on X.

Theorem 1.2 under the assumption of Theorem 1.1, there exists a unique /sz €
LZ(WT) such that if (0, = U'y(il'y)vg'y =y(, }Al'ywv(il'y)vo)a 6’}/ = (x,t }Al'ywv(il'y))aﬁ
p(x,t; }Al,y),(jfy =q"(x,t; iAL,Y)) satisfies (6)-(10) then y(z, T ﬂv;vv(ﬁy),O) =01n

Q. Moreover,

’Y:

hy = py inwr, (12)
where )
{—%?—AﬁWraoﬁv = O+, i Q 13
pyr = 0 on X,
O Ady tandy = 0 in Q,
K dAJV = 0 on X, (14)
b0 = E&(.00) i 9,



6,

ot - Aqg'y + aOi”y = 7%@7)(0 n  Q,
q37 =0 on X, (15)
(40 = 0 in 9,
and e
§’y N ~ _ 1 7 .
5~ A, + aogj = ﬁaﬁ,y m  Q, 16)
& =0 on X,
&GT) = 0 mn L.
More over there exists C = C(ag, T, N,w, zq4) > 0 such that

1Al L2 (o) < C-

The rest of this paper is organized as follows. In Section 2, we prove using
Fenchel-Legendre transform that the optimization problem (3) is equivalent to
an optimal control problem that we solve and, give the optimality system that
characterizes the optimal control. In Section 3, we start by establishing some
inequalities of Carleman type associate to the adjoint states of the optimality
system characterizing the optimal control of Problem 1 and, prove that null
controllability problem stated in Problem 2 holds true. A conclusion is given in
Section 4.

2 Resolution of Problem 1

Solving Problem 1 is equivalent to prove Theorem 1.1. But before going further,
we need to transform the optimization problem (3) into an equivalent optimal
control type problem.

Lemma 2.1 Let h € L*(wr) and v > 0. Then, the optimization problem (3) is
equivalent to the following standard optimal control problem: find v¥ = vY(h) €
L?(O7) such that

JV(h:v") = inf  JY(h; 17
(h;v") weiibo s (h;v), (17)

where L
T (hv) = J(h;0,0) — |lzall 32 ) + = 1IG0: 20 (18)

with the functional J given by (4) and ¢ := ((x, t; h;v) € W(0,T), solution of

—ar - Al +ag¢ = y(hv,0) in Q,
¢ =0 on X, (19)
¢(Tihiw) = 0 in Q.

Proof. Let y = y(h;v,g) := y(z,t; h;v,g) be the solution of (1). Then,

y(h;v,g9) = y(h;v,0) +y(0;0,9), (20)



where y(h; v,0) and y(0;0, g) are respectively solutions of

h.
W*Ay(h;v,O)Jraoy(h;v,O) = hxw+tovxo in Q,
y(h;v,0) = 0 on X, (21)
y(-,0;h;0v,0) = 0 in Q
and 9u(0:0
way(O;O,g)Jraoy(O;O,g) = 0 in Q,
y(0;0,g) = 0 on X, (22)
y(-,0;0;0,9) = g in €.

Then in view of the data, we have that y(h;v,0) = y(z,t; h;v,0) € Z(Q) and
y(0;0,9) = y(,t0;0,9) € W(0,T).
Using the decomposition (20) and the fact that

J(h;0,0) = [ly(h; v,0) = zallF2(q) + Nvl|72(0,9
and
J(0;0,9) = [[y(0;0,9) — zall 72y
we have that,

J(h;v,9) = ly(h;v,0) +y(0;0,9) = zal 72y + Nvll72(00
= ly(h;v,0) = 24l 720y + [4(0; 0, 9) |72

+Nvl[Z20,) + Q/Q(y(h;v,o) — 24)y(0; 0, g)dxdt

= J(h;v,0) + J(0;0,9) — IIZdH%z(Qﬁ?/ y(h;v,0)y(0; 0, g)dzdt.
Q
Hence,
J(h;v,9)—J(0;0,9) = J(h;v70)—||2d||%z@)+2/ y(h;v,0)y(0;0, g)dzdt. (23)
Q

Now, if we multiply the first equation of (19) by y(0;0, g) and integrate by parts
over (), we have that

/Qy(h;v,())y(();o,g)dmdt = /QC(~,0; h;v)gdx. (24)
Combining (24) and (23), we obtain:
I(hi0,) = J(030.9) = J(10,0) = [zally +2 | (-0 hiv)ade. (25
Thus, for any v > 0, we have

sup |J(h;v,g9) — J(0;0,9) — '7”9”%2(52)}
geL?(Q)

v
geL?(Q) Q



Using the Fenchel-Legendre transform, we have that

~ 1
2 sup (<C(',0; h; ), 9) 20y — 5”9”%2(9)) =5 16( 05 B3 0)]1 72 -

geEL?(Q)
Consequently,
sup [J(h;v,g) — J(0;0,9) —llgll72(0)
geL?(Q)
1 2
= J(750,0) = |24l F2(q) + 5 1€ G505 7 0)[[ 720
= J7(h;v),

and the optimization problem (3) is equivalent to the following optimal control
problem: Let h € L*(wr). For any v > 0, find v7 = v7(h) € L*(Or) such that
(17) holds true. m

Remark 2 If we consider problem (3) with v = 0:

inf su J(h;v,g9) — J(0;0,9)], 26
LB s (J(50,9) = J(0:0,9) (26)

then, we deal with the No-regret control problem. Therefore, in view of (25),
the No-regret control has a sense if it belongs to the set

Z/{:{UEL2((’)T) such that /C(~,O;h;v)gdw=0 VgELZ(Q)}.
o

2.1 Proof of Theorem 1.1.

We proceed in three steps.
Step 1. We prove that for any h € L?(w7) and «y > 0, the optimization problem
(3) has a unique solution v¥ = v7(h) € L*(Or).

In view of Lemma 2.1, the optimization problem (3) is equivalent to the
optimal control problem (17). Thus, we need to prove that (17) has a unique
solution v¥ = v7(h) € L*(O7).

As for any v € L?(Or), we have J? (h;v) > 7HZd||%2(Q), it follows that  inf  J7(h;v)
veL2(Or)

exists. So, let (v"), C L*(Or) be a minimizing sequence so that

' Yih:o™) = i Y(h:
nEIEooJ (hyv )7veL1£1(fOT)J (hyv). (27)

Consequently, there exists a positive constant C'(y) > 0 depending on + such
that

JV(h;v™) < C(7). (28)
Set y" = y"(z,t) = y(z,t; h;v™,0). Then (v",y") satisfies:
oy" :
% —Ay" +ay" = hxo+v'xo in Q
y* = 0 on X (29)
y"(0) = 0 in €



and it follows from (28) and the definition of J7 given by (18) that

n n 1 n
ly™ = zallZ2(q) + NlIo" 11200 + ;HC("O;h;U N2 <
Cly) + ||ZdH%2(Q) = C(7, za)-

Hence, we deduce that

W"llL200) < C(7, 24), (30a)
(€5 05 hs0™)|| L2 () <V/AC (7, 24), (30b)
" lz20) £ C(v,2a)- (30c)
It follows from (29) that there exists a constant C(vy, z4, h) > 0 such that ,
" lw0,r) < C(v,2a, h). (31)
Since (" = (" (x,t) = ((x,t; h;v™) satisfies:
a n
SO AC rat = y0) i @
ot (32)
"™ =0 on X,
¢, T) = 0 in 0,

using (30c), we prove that

(33)
a’ € LA(Q),
" )ns (€

11" w0,y < C(v, 2a)-

From (30), (31) and (33), we have that there exist v € L?(Or),
yY € W(0,T), ¢" € W(0,T) and sub-sequences of (v"),,, (y™(T))n,
still denoted (v™)y,, (C"(0))n, (Y™)n, (¢™)n respectively such that

v™ =Y weakly in L*(Or), (34a)
C(-,0;h;v™) = ¢"(0) = a7 weakly in L*(), (34b)
y" —y7 weakly in W (0,T), (34c)
(" —(¢” weakly in W(0,T). (34d)
If we multiply the first equation in (29) by ® € C*(Q) such that ® = 0 on
3, ®(T) =0 in £ and integrate by parts over @), we have

/ <_68(f —AD + aO(I>> yrdrdt = / h®dzx dt
Q wr (35)

+ " ®dx dt.
Or

Taking in (35), ® € D(Q), then passing to the limit when n — oo while (30a)
and (30c), we obtain that

/ (8(1) — AD + a()@) yidedt = / h®dx dt
0 ot wr

+ VI®dxdt, YO e D(Q),
Or



which after an integration by parts gives

oy”
— — Ay +agy” | daxdt = h®dzx dt
o\ Ot wor
+ VI ®dxdt, VP € D(Q).
Or
Hence,
oy” .
5 AyY + agy” = hxe + 07 xoin Q. (36)

As yY € L2((0,7); H}(2)), we have that
y? =0on X. (37)

Since y” and (7 belong to W (0, T), we have from Remark 1 that y7(-,T"), y”(-,0),
¢V(-,T) and ¢7(-,0) exist and belong to L?*(). Passing again to the limit in
(35) when n — oo while using (30a) and (30c), we obtain that

0D
/ (— — A+ a0(1>> yldedt = / h®dx dt
Q ot wor

+ v ®dx dt,
% _
Vo€ C*(Q) such that ® =0 on ¥ and ®(T) =0 in ©,
which after an integration by parts gives

oy"

—— — Ay +apy” | dxdt + [ y?(0)P(0) =
Q ot Q

h®dx dt + v ®dzx dt,
w _ O

Vo e C>(Q) such that ® = 0 on X and O(T)=0in N

because y? = 0 on X. In view of (36), it follows from this latter identity that

[y @20 =0
Q _
Vo € C*°(Q) such that ® =0 on ¥ and ®(7T") =0 in Q.

Consequently
y7(0) =01in Q. (38)

From (36)-(38), we have that y7 = y7(z,t) = y(z,t;h;v7,0) is such that
(v7,y7) satisfies:

y” . ” .
DAy tay = hxe+vixo i Q
y"/ = 0 on Z’ (39)
y'(-,0) = 0 in Q.



Proceeding as above for y", we prove that (7 = (7(z,t) = ((x,t;h;v7) €
W(0,T) is solution to

¢ ¥ ¥ 5 :
ot A" +ap¢” = y(h?,0) in Q,
v =0 on X, (40)
¢, T;h;v7) = 0 in  Q,
and
¢"(.,0) = ¢7(+,0; h;v7) = 7 weakly in L*(Q). (41)

Using (34a), (34b), (34c), (41), the convexity and the lower semi-continuity
(Ls.c) of J7, we have:

JV(h;v") <liminf JY(h;o™) = lim JY(h;o") = inf  JY(h;v),
n—-+oo n—-+oo veL2(Or)

which implies that

J7(h;v7) = inf  J7(h;v). 42

(o) = _jnf T(0sv) (42)

In addition, the strictly convexity of J7 allows us to conclude that for any v > 0,
the control v7 is unique.
Step 2. We prove that the optimal control v7, solution to the optimization
problem (3) (equivalently (17)) is characterized by (6)-(10).

We already have (7) and (8) in the Step 1 (see (39) and (40)). To prove (9),
(10) and (6), we write the Euler-lagrange optimality condition which character-
izes v7:

Y(h: Y — TV (h- )Y
lim JV(h;0Y + Au) — JV(h;v7)
A—0 A

=0 YueL*Or). (43)

We have after some calculations,

/ 7' (y(h;v7,0) — zq)dwdt + N | vYVudwdt
Q

Or
1 [ -
i [ om0t de =0 Vue IHOn, (1)
Q
where s A0 w0
T::T(x,t):y( 07+, 0) — y(hsv7, 0)
A
. (o, 11 + M) = (o, 1B o)
= z, thivY 4+ Au) — C(@, 5 hs v
?\/ = C’Y(‘r’t) = )\
are respectively solutions of
%~ AP +ay’ = uxo i Q
7 =0 on X, (45)
70 = 0 i 9

10



and

S -al+all = 7 i Q
=0 on I (46)
'T) = 0 in Q

To interpret (44), we consider p" := p?(x,t; h) and ¢7 := ¢7(z, t; h) respectively
solutions of (9) and (10).

If we multiply the first equation of (45) by ¢7 and the first equation of (46) by
%p“’ and integrate by parts over () we have respectively

1
uq” dzdt = / 77 (y h;v7,0) — zq + p’y) dxdt (47
L o (v, 0~ )

and
1

1 —
0= 7/ —pvyvdxdtJr/ ¢ (,0)=C(-,0; h;v")dx 48
o A ( )7 ( ) (48)
Combining (44), (47) and (48), we obtain

/ uq’dzdt + N vViudrdt =0 Y u € L*(Or)
Or Or

which is equivalent to
/ u(q? + NvY)dzdt =0 V u € L*(O7).
Or

Therefore, we deduce (6).
Step 3. We prove (11).
We consider the linear an continuous operators

L : L*07) — L*Q)
u 2

and
T : L*(Or) — L*9Q)
u —  9(.,0),

where z and ¥ are respectively solutions to

% —Az+4+az = uxo in @Q
z = 0 on X (49)
z(,0) = 0 in Q
and 59
T AV +apd = 2z in Q
9 = 0 on ¥ (50)
9¢,T) = 0 in Q

11



Then y” and ¢” respectively solution of (39) and (40) can be decomposed as

y’Y:Z’Y_;'_w

and
C’Y =97 + 7
where 27 = L(v7), 97 = T (v7), w and 7 are solution to
88—1: —Aw+ayw = hx, in Q
w = 0 on X (51)
w(,0) = 0 in Q
and 5
78—7; —An+ar = w in @
™ = 0 on X (52)
w(,T) = 0 in £

Remark 3 Note that in view of (49),(50), (51) and (52), we have that there
exists a constant C(ag,T) > 0 such that

I Lull L2 0,7y 52 (2)) = 2l L2 0.0y 2 (02)) < Clao, T)l[ullz2(07) (53a)
lwllz2 (0,182 (2)) < Clao, DIl 2 (wr), (53b)
I Tullz2 (0,2 (2)) = [19(., )||L2 < C(ao, T)|[Lul|L2(@), (53c)
7 (-, 0l L2(0) < Clao, T)llwll L2 (wr)- (53d)
Hence the Euler-Lagrange condition (44)can be rewritten as
/ Lu (LY7 4+ w — zg) dedt + N vY udzdt
Ql Or
*/ Tu (TvY +7(0))de =0 Y uc L*(Or).
Q
Taking v = v” in this latter identity, we deduce that
1071 Z2q) + Nl I7200) ||7'U7HL2(Q
(54)
/ LuY(zq — w)dadt — f/ 7'1)7

Hence using Cauchy-Schwarz inequality, we obtain from (54) that there exist
constants C(ag,T) > 0 and C(ag,T,~) > 0 such that

N[V 20,y < L0712 lI(za — w)lL2@) + 2 I TV (|22 () 17 (0) || 2 (0
< Clao, DoV L2(00) (I2all2(@) + Clao, T, IRl £2(wr)) -

It then follows from this latter inequality that

07| 2(07) < Clao, T, N) (|lzallL2(@) + Clao, T,)||Bll 2 (wy)) -

12



3 Resolution of Problem 2

In this section we are concerned with the prof of Theorem 1.2. More precisely,
we study the null controllability problem: For any vy > 0, find h € L*(wr) such
that if (vY,y7,q",p", (") is solution to (6)-(10) then

y(.,T;h;v7(h),0) =0 in Q. (55)

To solve this null controllability problem, we use a penalization method (see
[14]). So, we consider the optimal control problem

inf Y(h 56
peinf e (h), (56)
where 1 L

with y7 solution of (7).

Using minimizing sequence, we prove that there exists a unique optimal
control h) € L?(wr) solution to (56). Writing the Euler Lagrange first order
optimality condition that characterizes the optimal control , we prove that there
exists (pY, ¢2,1Y,<2) such that

hY =p) in wr, (58)
_9d _ ApY 4+ app? = &Y + Y i
8t ps aOPs - (bs + ws mn Q?
pl =0 on X, (59)
1
p2(,T) = ——y( TihZv(R),0) in
o7 .
VA e = 0 in Q.
vl =0 on X, (60)
W60 = L0 i 9
0p) .
NG ad) = —dixo i @
o) = 0 on X, (61)
¢2(-,0) = 0 in Q,
o< Y Y o= Lagv o
i Agl +aps] = que in @, 0
7 =0 on X, (62)
<J2¢T) =0 in Q,
where y (x,t) = y(z,t; h2; 07 (hY),0) is such that (y2,h),v7,q7,p2,(Y) satisfies
Oyl v Y y Yver i
8t _Ays +a0ys = thw+”gX(’) m Q7
y? = 0 on X, (63)
y2(0,.) = 0 in  Q,

13



vl = N in Or, (64)
oq 1 .
- 8t€ —Aq¢l +aoq] = yl—zat ﬁpl in @,
(65)
g2 =0 on X,
on?Y
gf —Apl +appl = 0 in Q,
o= 0 on %, (66)
pg 7O’h’€Y = 7C’Y 707h"gyavg in Qa
( ) 7 ( )
and
a¢l v v v
- 8t - ACE +a’OCg = ye m Q?
T =0 on ¥, (67)
QG Tih07) = 0 in Q,

with vY = v7(h2), (7 = ¢V (x,t; hY; 07 (RY)), p? = pY(x,t;hY) and ¢7 = ¢" (x,t; hY).

In order to pass to the limit when ¢ — 0 in (58)-(67), we need some a priori
estimates on the variables h7, pY, ¢2,v2,¢7,y2,v7,q7,p] and (7. To this end,
we use the so-called Carleman inequality [16, 17]. So, let wy be an open subset
of Q. We know [17] that there exits a function ¥ € C?(Q2) such that

Tx) > 0 VeeQ,
U(z) = 0 Vrel, (68)
IVU(z)| # 0 Vo€ w\wo.

For any A > 0, we consider the weight function ¢ and 7 defined by

A (@)+m1)
(,O(Qf,t) = W, (69&)
eAM¥lootmz) _ oA(¥(z)+m1)
n(z,t) = =1 ; (69b)

where m; and mq are two reals such that mo > my. For any f € Lz(Q) and
ap € L®(Q), we consider the following system

ap .
{ ot —Ap+ap = [f in Q, (70)

p = 0 on X.

Then the following result holds true [16, 17].

Proposition 3.1 (Global Carleman’s inequality) Let ¥, ¢ and n be the
functions defined respectively as in (68)-(69b). Let also w’ be such that wy C
w' C w Then, there exist numbers Ao > 1 and so = $9(, a0, T) > 1 and there

14



exists some number C = C(Q,T) > 0 such that, for any X\ > Ao, for any s > sg
and for any p solution of (70) the following inequality holds:
—2sm 2 —2sn
/ ¢\l qwdt + / C \ApP dadt+
o sp |0t Q S¥

/ sA2pe 2 |Vp|? dadt +/ A3 e | p|? dadt < (71)

Q Q .
C (/ e~ f)? dxdt+/ / S ALp3e= 2 | p|? dacdt) .
Q w’ JO

Remark 4 Note that by the change of variable t — T —t, inequality (71) holds
also true for p solution to

{apAPJraoP - f o Q

dp

ot
p = 0 on X

with f € L?(Q) and ag € L=(Q).
Proposition 3.2 Under the assumptions of Proposition 3.1, there exist s1 =

max{sg,2C(2,T)} > 0, Ay = max{\,2C(Q,T)} >0 and C = C(¥,N,T,Q) >
0 such that for any A\ > A1 and s > s1, we have

/6‘25" 9p2
Q SP ot

AP | p) |2 dadt < C’/ STAOGT =25 | pY | du dt,
Q

2
+ |Apz|2> dmdt+/ sA2pe= 2 |Vl |° dadt+
@ (72)

wr
for all pY which satisfies (59)-(62),

Proof. Let w’ be such that w’ C w C Q. We consider as in [18], the function
6 € C§° (Q) and such that

0<f6<lonw,f=1onw,f=00nQ\w

Af o Vo 0o N
WEL (w),%e{L (w)} .

We set u = s2A*@3e=2%", Then it follows from the definition of the functions 7
and ¢ given by (69) that

u(xz,0) =u(z,T) =0,

Vu=  uB\+2sAp)VT, (73a)
O [y 08 500
il 3p T 2s 7 | (73Db)

15



and
Aul) = uf (14sX%p + 45 A2p? + 9N?) [VU|? + uAb
+ub (3X + 25Ap) AV + u (6A + 4shp) VE.VE.

If we multiply the first equation in (59) by Qu(¢? + ¢2), where ¢2 and ¢2
are respectively solution of (61) and (60) and integrate by parts over @), we have

(74)

1
[+t aa —f/eu (o7 Pxodz dt
¢ ou
+ /9 ¢57+1/17)p5—dxdt
- /(¢z+¢z)pEA(9u)dxdt
Q
- Q/ng(eu).V(¢z+¢2)dxdt
Q
K; + Ky + K3 + Ky,
where )
K= -5 HU(/)E) Xodz dt,
K = /9¢z+wz)pz@)da:dt,
Q ot
Ko = [ (6 +02)28 0u) dear
Q
Ky = —Q/ng(Hu).V(qﬁg—l—wg)dxdt.
Q
So,
/ u(¢? + )2 drdt = Ky + Ko + K3 + Ky. (75)
K, < N/w dmdt
< )/ 3N pBe ™25 p7 |2 d dt.

wT

Using (73b), (74) and Young inequality, we obtain that

o
= 2

wr

Ko w|¢) + 2| dzdt + C(V,T) / sSA1pTe 2 | p2 |2 da dt.

wr
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Ko = = [ (67 + 00 (bu)duds
Q
= —/ Ou(p? +12)pY (145X + 45*X2p* + 9N?) V| da dt
Q
~ [ wter + v avdedr
Q
— / Ou(p) + v2)p7 (BA + 2shp) AUdzx dt
Q

_ / w( @Y +42)p7 (3 + 25M0) V. VOdar di
Q

= K31+ Ksp + K33 + K3y,

where
Ks = 7/ Ou(¢? +v2)p2 (14sX\%p + 45222 + 902 |V |* da dt
Q
_ / {91/2u1/2(¢g + ¢g)} {—91/%1/2,)3 (14502 + 4522202 + 9A%) |v\11|2} da dt
Q
5 .
< 2 ul¢) + Y2 *dz dt + C(\Il)/ sTA8pTe25| pY | 2dx dt,
2 wr wr
Koo = = [ ué+)oraods
Q
Af
— /69{91/2u1/2(¢z _,'_,(/);y)} {—Ul/szW}dxdt
5
< 5 ulél +9lPdrdt
wr
+ C A 3e 2| pY|? da dt,
wr
Kay = — / Bu(67 + 7 ) (3N + 25\p) AWdz dt
Q

/ {91/2u1/2(¢3 + qu)} {_91/2u1/2pz (3A 4 2s)p) A\I/} dx dt
Q

5

5 | wlel + 92 duedt

IN

wr

+ C(\IJ)/ sON6 @025 | 1|2 da: dt,
wr
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K = 2/ w(pY +2)pY (3\ + 25Ap) VU.VOdz dt
Q
= 012012 (g2 + 2127 (32 + 2500) VO~ 0\ g gt
- Q{ (b +w )} —2u ps( + SQD) 01/2 €z
< 5[ wjr+v2P dwat
2 wr
+ C(\If)/ P A0p%e 251 | p2|? da dt.
wr
Therefore

LN
KgﬁZé/

u|¢Y + 2 |*dx dt + C(¥ )/ STASQ e 257 | pY|? daz dt.

T wT

Now we compute the term K. Using (73a) and Young inequality, we have

Ky

and

Kyo

9 / IV (0u) V(67 + 7 )dar di
Q

—2/ Oup? (BN + 2sAp) VU.V (¢ + ¢ )dx dt — 2/ up’VO.N (o) + ) )dx dt
Q Q

Ky + Kyo,

—2/ Oup? (BX + 2sAp) VU.V (4] + ¢ )dx dt
Q

/ {51/2(,01/291/267577V(¢3 + 1/12)} {—255/2/\4905/291/2675";);’ (B + 2sAp) V\II} dx dt
Q

1

1 [ see v+ 0 dsds
wr

C(\I/)/ sTA0pTem 25 |pZ|2dxdt
wrp

—2 [ up VOV (¢Y + ¢ )dx dt

S—

Vo
51/2@1/291/26_577V(¢3 + wg)} . {_285/2)\4<p5/2@_577pg01/2} dz dt

»MH@\
a\s\,—/b\

spe 2|V (g2 +42)|* du dt

5

Q

sOAB e 25 | p2 |2 da dt.

T

18



Thus,

K, < / spe™2 V(g7 + 972 da dt

T

N | =

+ C(\I/)/ STAVG =251 | o7 | di dt.
wr
Finally, in view of (75), we have that
55,
/ ul¢? + ) 2drdt < 25/ ul @) + 2 |?dx dt
wT 1 wT
[ see 96+ ) dode
wr

+ C(\II,N,T)/ STAOGT =25 | pY | diz: dit.

+

5
0; 1
Choose in this latter identity d;, 1 <4 < 5 such that Z EZ =3 then using the
i=1
fact that w’ C w, we obtain that

T
/ /u|¢z+¢g|2d$dt§/ spe” 2|V (¢ + 92| da di+
0 w’ wr

C(¥, N, T)/ sTA0pTe=28m \pg|2 dz dt.

wT

(76)

Now, applying (71) to ¢2 + 12 where ¢ and 1)) are respectively solution of
(61) and (60), we have that there exist A > Ao > 1, s > sg(ao,,T) > 1 and
C=C(,T) > 0 such that

[ e (X902 + w2 + X068 67 + w7 dodt <
Q

1 T
Cﬁ / e 2 pY)? da dt + C’/ / S AYpPe ™2 |7 + 2| da dt,
OT 0 w’

which in view of (76), the fact that ¢~ € L®(Q) and X > 1 gives
[ e (019 + vl + X6 67 + 02 dode <
Q
cQ,T) / shpe 2|V (7 + ) |> dx dt + C (¥, N) / s2 X423 | p2 |2 da di+
Q Q

C(¥,N,T, Q) / STAOGTe =25 | pY | dis dit.
wr

(77)
Using the fact that s,A > 1 and ¢! is bounded, then choosing A > \; =
max{ Ao, 2C(Q, T} in (77) and we obtain that

/Q =20 (s\2p V(67 + 02)| + 5*No? 97 + 42 ) dwdt <
(78)
C’(\II,N,T,Q)/ STAVG =251 | 7| diz dt.

wr
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Taking into account the Remark 4 and applying (71) to p? solution of (59),

/628’7 p?
Q Sp ot

AP | p) | dadt <
Q

2

+ Apz|2> dxdt—l—/ sAZpe= 21 |Vl |* dadi+
Q

T
C(Q,T)/ 6’25"|¢z+¢g|2dxdt+C(Q,T)/ / S AYpPe 2 | p2 |2 da dt.
Q 0 w’

Using the fact that =1 € L°°(Q) and w’ C w, we deduce that

[ =2 (|9p1
Q S ot

AP e | p) | dadt <

2
+|Apg|2> dzdt + / sA2pe™ 2 |Vl |° dadt+
Q

c(Q, T)s2)\4/ @32 |¢Y 4+ 2| da dit+
Q

C’(Q,T)/ AP | p2 |2 da dt.
wr

Combining (78) and (79), then choosing s > s1 = max{sg, 2C(92,T)}, we deduce

that
/ e~ (19pY
Q S¢ ot

SN2 g1 dudt + $°A! / €213 (§ + 47 )da dt <
Q Q

2

+ |Apg|2> dxdt+/ sAZpe= 21 |V p2 |* dadi+
Q

C(V,N,T,Q) / sTAL0 T e 28m |p’y|2 dz dt,
wr
which implies that there exist s; = max{sg, 2C(2,T)} > 0, A\; = max{Ao,2C(Q,T)} >
0 and C = C(¥, N, T, ) > 0 such that (72) holds true.

[

We fix s = s1 = max{sg,2C(Q,T)} > 0 and A = A\ = max{)\,2C(,T)} >
0. Then, we consider the weight functions

ﬁ(:c,t)={ n(z, %) it te]o 3], (80)

and

~ B (z, L) if te]o,L],
go(x,t)—{ S0(,0(3:,15) if te][g,ZJ[, (81)

where the functions ¢ and 7 are given by (69). Then applying Proposition 3.2
with s = s; and A = Ay, we have that there exists C = C(¥, N, T,Q) > 0 such
that p2 solution of (59) satisfies
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/ e ?m (1 9p1
Q 51()5 ot

2
+ |Apg|2) dwdtJr/ 123727 |V ) |° dadi+
Q

(82)
/ sIALGPe 217 | Y|P ddt < C/ STALOGT =257 | 7|2 di dit,
Q wr
from which we deduce that there exists C = C(¥, N, T, Q) > 0 such that
/ @Pe 2511 )| dadt < C’s‘f)\?/ @Te 21 )2 dadt. (83)
Q wr
We set
7(t) = max7(z,1).
Then 7j(t) > 0 and %(t) > 0 for t € (0,T). We define the weight function
K(t) = e~ 517 (84)
and we have that i
K2(t) < e 27 for (z,t) € Q. (85)

Proposition 3.3 Let A and s in Proposition 8.2 be such s = s1 = max{so,2C(Q,T)} >
0 and A = A1 = max{Ag,2C(Q, T)} > 0. Then there exists C = C(VU, N, T, s1,A1,a9) >
0 such that for all pY and ¢Y which satisfy (59)-(62),

/@3672517’7‘ 12| dmdt+/ K2|¢Y [2dxdt < c/ 1p2| dadt. (86)
Q Q

wT

Proof. If we multiply the first equation in (61) by k?¢2 and integrate by part
over {2, we obtain that

/ 10 oran + [ 1200072 de + 11567 e
¢ Q Ot

, 20t (87)
< laol| (@) l1ke2 |72 + W””PQHLZ’(O) + 5”"@3”%2(9)
because
19 on 0¢7
— v)2 — g 1 v\2 2 1y 5
2 at("{(b&‘) 81 at ("i¢€) + K ¢E at °

g
Observing that s; > 0 and d—?(t) > 0 for t € (0,T), we deduce from (87) that

1o} 1
&H’%¢3H%2(Q) < (2llaolloo + 1) k2 [ 72(0) + m;ﬁ(t) /o |l [Pdx, Vit e (0,T).

It then follows from Gronwall lemma that
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IR Oy < e@l=br / 2
< e@llaolle+DT / |p?|2dx, VYt e (0,T).
Hence
/mz(t)\¢z(x,t)\2dmdtSC(aO,T,N)/ 2(4)\p2 [2ddt. (88)
Q Q

Using the expression of k given by (84), the fact that ~! € L°>°(Q) and
(85), we obtain that

/ W2(8)| 62 2dadt < Cla, T, N) / B o247 ) 2t
Q Q

which in view of (83) gives

/ W2 (1)]62 P dadt < Clao, T, N, W, 2, 51, A1) / FTe 0 1 Pdadt,  (89)
Q wr
where C' = C(ag, T, N, ¥,Q, 51, 1) > 0. _

Adding (83) to (89) and using the fact that ¢7e=2%17 € L>(Q) , we obtain
that there exists C = C(ag, T, N, ¥,Q, s1, A1) > 0 such that (86) holds true.

m

Proposition 3.4 There exist positive constants C(ag, T, N, ¥, 8, s1,\1, zq) and
Cl(ag, T,N,¥,Q, s1,A1,7, 24) such that

o222 wr) < Clao, T,N,¥,Q,s1,A1,24), (90a)
M2 22wy < Clao, T, N, ¥, Q, 51,1, 2a), (90b)
||U3||L2(OT) <C(ao,T,N,¥,Q,s1,A1,7, 2a), (90c)
llv2llw o) <C(ao, T, N, ¥,Q, 51, 1,7, 2a), (90d)
¢ w0,y <Cl(ao, T, N,¥,Q,s1,1,7, 2a), (90e)
[[p2[lw 0,7y <C(ao, T, N,¥,Q, 51, 1,7, za), (90f)
a2 |lw 0,1y <C(ao, T, N, ¥, 8, s1, 1,7, 2a)- (90g)

Proof. If we multiply the first equation of (63), (65), (66) and (67) respectively
by pY, ¢2, ¢ and 2, then integrate by parts over (), we successively obtain
the following, using (64):

1
hlpld dt + —||ly(, T; h2, 07 (h2), 0) [ 12(q) =

[/ (91)
/yz¢zdxdt—|—/ yzz/)gdxdt—i—f/ qudedt
Q Q N Or

1 1
/Q(bgy;’dxdt—/de(/)zdazdt—i—ﬁ/ Jpldr dt = N qepad:vdt (92)
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/—pwﬂdajdt—/ L 0: )67 (-, 0)dar (93)
Q

and

——/wa dxdt+/ L 0: )< (- 0)da (94)
Q RVAl

Adding the relations (91), (94), (92) and (93) together with h? = pYx., we
obtain the following

10213y + 9 752,07 (12),0) gy = /Q cad¥dz dt,

from which we deduce that

k]l L2(@)
L*(Q) L
C(a(h T, Nv \Ijv Qa 51, )\1) ||Ezd||L2(Q) ||p’g||L2(wT)

1
2
1020122 ry < HHZd

N

because of (86). It then follows from this latter inequality that

1
Z2y

P2l 2 (wr) < Clao, T, N, ¥, 8, 51, A1) -

)

L2(Q)

and in view of (58), we have (90b).
From (11), we have that there exist two constants C'(ag,T) > 0 and C(ag, T,7) >
0 such that

02|20, < Clao, T) (lzallz2@) + Clao, TNl z2(wr) ) -

Therefore using (90b), we deduce that there exists C = C(ag, T, N, U, Q, s1, A1,7) >

0 such that (90c) holds true. Using (90b) and (90c) while computing the energy
estimate of y2 solution of (63), we obtain (90d) and finally estimates (90e)-(90g).
[

3.1 Proof of Theorem 1.2

We proceed in three steps.
Step 1. We first pass to the limit in (58) and (63)-(67) when € — 0.

From (90), we have that there exist p., iApr, Uy Yoy, C.y, Py and ¢, and sub-
sequences of (p2), (h2), (12), (42, (¢2), (p2) and (q2) still denoted (p2), (A2),
(v2), (12), (€2), (p2) and (q2) such that
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p? —p- weakly in L*(wr), (95a

( )
hY —h., weakly in L?(wr), (95b)
v) —b, weakly in L*(Or), (95¢)
yJ =y, weakly in W (0,T), (95d)

2 —~ (., weakly in W(0,T), (95¢)
pl —p, weakly in W(0,T), (951)
g2 — ¢, weakly in W(0,T). (95g)

Hence passing to the limit in (58) and (64) while using (95a), (95¢) and (95g),
have that

hry - [),y iIl wTr, (96)
by = f% in Or. (97)

Because ¢, Cy, Py and ¢, belong to W(0,T), we know on the one hand that
(9(0),G(0),54(0),G,(0)) and (§(T), & (7). p9(T), G,(T)) exist and belong to
L2 (), and on the other the traces in space of ¢.,, {y, p, and g, exists and we
have .
y’Y:C’Y:ﬁ’Y:qA'YZOiHE

because yv,@,ﬁw,qy € L2((0,7); H}(£2)). Consequently using standard argu-
ment, we prove while using (95) that g, (x,t) = y(x,t; hy;04(hy),0), (4 (z,t) =
¢V (@, t; by 04()), Pry(,t) = P (2,5 hy) and Gy (,t) = ¢7 (2, t; b)) are respec-
tively solution to

0y - .
% - Ag'y + aOQ'y h'wa + @WXO in Q@
9y, = 0 on X, (98)
Uy(,0) = 0 in
a4 . . . . .
- Agy+aody = Yy—za+—=py In Q,
ot Nal (99)
G =0 on X,
QW( I) =0 in Q,
95
O%V Apy+aopy = 0 in Q,
Dy = 01 on %, (100)
ﬁ 70 = 76 ER U m Q,
7 (,0) Nl 7 (05 s )
and )
0 2 2 L
*% - AC’y + aOC’y = Yy 1M Q,
2 (101)
¢ = 0 on X,
G(GT) = 0 in £
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Step 2. We pass to the limit when ¢ — 0 in (59)-(62).
Using (90a) and the fact that O ¢ w, we have that there exists C(ag, T, N, ¥, Q, s1, A1, 24) >
0 such that

lp2l|22(07) < Clao, T, N, ¥, 51, A1, 2a)-

This latter estimation and (61), (62) and (60) allow us to prove that there exists
C =C(ag, T,N,V,Q,s1,A1,24) > 0 such that

|62 |lw 0,7) <C, (102a)
<2 {lw,7) <C, (102Db)
192 |lw o, <C. (102¢)

Hence there exist qﬁy, ¢y and 1/37 such that

¢2 — ¢, weakly in W(0,T), (103a
s — &, weakly in W(0,T), (103b)
Y2 =1, weakly in W(0,T). (103c)
Moreover using standard argument, we have that (wﬂ,, b-,<,) satisfies (14)-(16).
Step 3. We prove that when ¢ — 0, we have p} — p., with p, solution of (13).
Set
e—2s17
01 :min{ — s\ I pe 2 g NGB 25 }, (104)
S1¥

where ¢ and 7} is given by (81) and (80). Then it follows from (82) that there
exists C = C(U, N, T,Q, s1,A1) > 0 such that

N
/ 0, ’3;75
o\t
because $7e~2%17 is bounded. Using (90a) in this latter inequality yields
ap? |”
/ 5, ‘ p2
o\

where C' = C(ag, T, N, ¥,Q, s1, A1, zq) > 0. This implies that ApY, Vp? and p?
are bounded in L?(0;, Q) where

+ A2 + V2 |? dadt + || ) dxdth/ |p2|? da: dt
wr

+1Ap2 2 +|Vp2|? dadt + |p22) dedt < C (105)

L*(01,Q) = {p| /Hlpzdxdt< oo}.
Q

Therefore using the definitions of ¥, ¢ and 7} given respectively by (68), (81)
and (80), we have that there exists C(ag, T, N, ¥, Q, s1, A1, 24) > 0 such that

o212 (0,7 p); 2 () < C,s (106)

for some § > 0. Hence p) — p, weakly in D'(Q) and p} — p, weakly in D'(X).
Then passing to the limit in (59) when ¢ — 0 we obtain that p. satisfies (13).
|
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4

We

Conclusion

prove that the linear heat equation with missing initial condition is Stackel-

berg null controllable provided that the follower control set is strictly included
in the leader control set,i.e: O G w.

Notes
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