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Abstract

The paper is devoted to the Stackelberg control of a linear parabolic
equation with missing initial condition. The strategy involves two controls
called follower and leader. The objective of the follower is to bring the
state to a desired state while the leader has to bring the system to rest
at the final time. The results are obtained by means of Fenchel-Legendre
transform and appropriate Carleman inequalities.
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1 Introduction

Let N ∈ N∗ and Ω be a bounded subset of RN with boundary Γ of class C2.
Let ω and O be two non-empty open subsets of Ω with O  ω. For T > 0, we
set Q = Ω× (0, T ), ωT = ω × (0, T ), OT = O × (0, T ) and Σ = Γ× (0, T ). We
consider the following controlled parabolic problem

∂y
∂t −4y + a0y = hχω + vχO in Q

y = 0 on Σ
y(·, 0; ·) = g in Ω,

(1)

where the potential a0 ∈ L∞(Q), χX is the characteristic function of the set
X ⊂ Ω. The controls h and v belong to L2(Q). The initial condition, g ∈ L2(Ω)
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is unknown. Under these assumptions on the data, we have that y = y(h; v, g) =
y(x, t;h; v, g) = y(h; v, g) ∈W (0, T ) where

W (0, T ) =

{
ρ| ρ ∈ L2((0, T ), H1

0 (Ω)) and
∂ρ

∂t
∈ L2((0, T );H−1(Ω))

}
(2)

is a Hilbert space (see [13]).

Remark 1 Note that if ρ ∈W (0, T ) then ρ ∈ C([0, T ];L2(Ω)).

Define the set

Ξ(Q) = L2((0, T );H2(Ω) ∩H1
0 (Ω)) ∩H1((0, T );L2(Ω)).

Then Ξ ⊂W (0, T ).
Any environment phenomena in a bounded domain which can be described

by linear reaction diffusion equation with missing initial condition can be mod-
elled by (1). For instance, the diffusion of a pollutant in a lake. In this case, the
state variable represents the concentration of the pollutant. The missing initial
condition is explained by the fact of missing information on the beginning of
a pollution. In such situation, it is important to control the phenomenon. In
this paper we use a two-objective optimization approach proposed by H. Von
Stackelberg in [22]. The goal of the first control (called follower) is to reduce
the concentration of the pollutant to a desired state while the second control
(called leader) has to clear the pollutant in the lake at a given final time T.
More precisely, we are interested in the following problems:

Problem 1 For a fixed h ∈ L2(ωT ) and γ > 0, find the best control vγ =
vγ(h) ∈ L2(OT ) solution of

inf
v∈L2(OT )

sup
g∈L2(Ω)

[
J(h; v, g)− J(0; 0, g)− γ

∣∣∣∣g∣∣∣∣2
L2(Ω)

]
, (3)

where
J(h; v, g) =

∣∣∣∣y(h; v, g)− zd
∣∣∣∣2
L2(Q)

+N
∣∣∣∣v∣∣∣∣2

L2(OT )
(4)

with zd ∈ L2(Q) and N > 0.

Problem 2 Let vγ = vγ(h) be the control obtained in the first objective and

yγ = y(x, t;h; vγ , 0) be the associated state. Find the control ĥγ ∈ L2(ωT ) such
that

y(·, T ; ĥγ ; vγ(ĥγ), 0) = 0 in Ω. (5)

The optimization problem (3) is actually call Low-regret control problem. This
kind of robust control was introduce by J.L. Lions [1] in the early nineties in
order to solve problem with missing data. Since then many authors have used
this notion to control models with incomplete data. We refer for instance to
[3, 4, 5, 6, 7, 8, 9, 10] and the reference therein. Problem (3) with γ = 0 is
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called No-regret control problem [1]. It can also be obtained if possible (it is
not always the case) as a limit of the Low-regret control. These notions of Low-
regret and No-regret controls were combined to the notion of average control
[12] to address a problem with missing boundary condition varying parameter
in the coefficient of diffusion. We also refer to [11], where such a control has
been consider for electromagnetic wave displacement with an unknown velocity
of propagation.

Problem 2 is a null controllability problem. There are many works in the
literature on null controllability of linear heat and nonlinear equation. Most
of them are achieved by means of inequality of observability of type Carleman.
We refer for instance to [16, 17, 19, 20] and the reference therein. Meanwhile,
Stackelberg strategy for the control of partial differential equation have been
studied by some authors. J. L. Lions [23] used the Stackelberg strategy on a
system governed by a parabolic equation subjected to two controls. The follower
acts on the system in order to bring the state not far from the desired state while
the leader has to steer the state at the final time to a small neighborhood of
a given state. O. Nakoulima [24] used this concept control for a backward
heat equation involving two controls to determine: one of null controllability
type with a constraint on the control, called follower, and the other of optimal
control type, called leader. The results were achieved by means of a Carleman
inequality adapted to the constraint. In [25, 26], M. Mercan revisited the notion
of controllability in the sense of Stackelberg given by O. Nakoulima [24] by
choosing the follower of the minimal norm. This new notion is then applied by
O. Nakoulima et al. in [27] on the controllability of a two-stroke problem with
the constraint on the states. The results were obtained by means of Carleman
inequality adapted to the constraints. Recently G. Mophou et al. [28] considered
the Stackelberg problem for coupled parabolic equations with a finite number
of constraints on one of the states. The first control was supposed to bring the
solution of the coupled system subjected to a finite number of constraints at
rest at time T while the second expresses that the states do not move too far
from a given state.

As far as we know there is no existing work on Stackelberg control for prob-
lem with missing data. So, using the decomposition of the state to eliminate
the unknown initial condition, we prove using Fenchel-Legendre transform that
problem (3) is equivalent to standard optimal control that we solve. To solve
the null controllability problem in Problem 2, we established an appropriate
Carleman inequality satisfying by the adjoint of system which characterises the
optimal control. More precisely, we prove the following results.

Theorem 1.1 Let Ω be a bounded subset of Rn, n ≥ 1 with boundary Γ of class
C2. Let ω and O be nonempty subsets of Ω. Let also γ > 0. Then for any
h ∈ L2(ωT ) there exists qγ = qγ(x, t;h) ∈ Ξ(Q), pγ = pγ(x, t;h) ∈ W (0, T )
and ζγ = ζγ(x, t;h; vγ) ∈ Ξ(Q) such that the optimization problem (3) has a
unique solution vγ = vγ(h) associate to the state yγ = y(x, t;h; vγ(h), 0) which
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is characterized by the following optimality systems:

vγ = − q̂γ
N

in OT , (6)


∂yγ

∂t
−∆yγ + a0y

γ = hχω + vγχO in Q,

yγ = 0 on Σ,
yγ(·, 0;h; vγ , 0) = 0 in Ω,

(7)


−∂ζ

γ

∂t
−∆ζγ + a0ζ

γ = yγ in Q,

ζγ = 0 on Σ,
ζγ(·, T ;h; vγ) = 0 in Ω,

(8)


∂pγ

∂t
−∆pγ + a0p

γ = 0 in Q,

pγ = 0 on Σ,

pγ(·, 0;h) =
1
√
γ
ζγ(·, 0;h) in Ω,

(9)

and 
−∂q

γ

∂t
−∆qγ + a0q

γ = yγ − zd +
1
√
γ
pγ in Q,

qγ = 0 on Σ,
qγ(·, T ;h) = 0 in Ω.

(10)

Moreover, there exist two constants C(a0, T ) > 0 and C(a0, T, γ) > 0 such that

‖vγ‖L2(OT ) ≤ C(a0, T )
(
‖zd‖L2(Q) + C(a0, T, γ)‖h‖L2(ωT )

)
, (11)

where from now on, C(X) is used to denote a positive constant whose value
varies from a line to another but depends on X.

Theorem 1.2 under the assumption of Theorem 1.1, there exists a unique ĥγ ∈
L2(ωT ) such that if (v̂γ = vγ(ĥγ), ŷγ = y(x, t; ĥγ ; vγ(ĥγ), 0), ζ̂γ = ζγ(x, t; ĥγ ; vγ(ĥγ)), p̂γ =

pγ(x, t; ĥγ), q̂γ = qγ(x, t; ĥγ)) satisfies (6)-(10) then y(x, T ; ĥγ ; vγ(ĥγ), 0) = 0 in
Ω. Moreover,

ĥγ = ρ̂γ in ωT , (12)

where {
−∂ρ̂γ
∂t
−∆ρ̂γ + a0ρ̂γ = φ̂γ + ψ̂γ in Q,

ρ̂γ = 0 on Σ,
(13)


∂ψ̂γ
∂t
−∆ψ̂γ + a0ψ̂γ = 0 in Q,

ψ̂γ = 0 on Σ,

ψ̂γ(·, 0) = 1√
γ ς̂γ(·, 0; ·) in Ω,

(14)
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
∂φ̂γ
∂t
−∆φ̂γ + a0φ̂γ = − 1

N ρ̂γχO in Q,

φ̂γ = 0 on Σ,

φ̂γ(·, 0) = 0 in Ω,

(15)

and 
−∂ς̂γ
∂t
−∆ς̂γ + a0ς̂γ = 1√

γ φ̂γ in Q,

ς̂γ = 0 on Σ,
ς̂γ(·, T ) = 0 in Ω.

(16)

More over there exists C = C(a0, T,N, ω, zd) > 0 such that

‖ĥγ‖L2(ωT ) ≤ C.

The rest of this paper is organized as follows. In Section 2, we prove using
Fenchel-Legendre transform that the optimization problem (3) is equivalent to
an optimal control problem that we solve and, give the optimality system that
characterizes the optimal control. In Section 3, we start by establishing some
inequalities of Carleman type associate to the adjoint states of the optimality
system characterizing the optimal control of Problem 1 and, prove that null
controllability problem stated in Problem 2 holds true. A conclusion is given in
Section 4.

2 Resolution of Problem 1

Solving Problem 1 is equivalent to prove Theorem 1.1. But before going further,
we need to transform the optimization problem (3) into an equivalent optimal
control type problem.

Lemma 2.1 Let h ∈ L2(ωT ) and γ > 0. Then, the optimization problem (3) is
equivalent to the following standard optimal control problem: find vγ = vγ(h) ∈
L2(OT ) such that

Jγ(h; vγ) = inf
v∈L2(OT )

Jγ(h; v), (17)

where

Jγ(h; v) = J(h; v, 0)− ‖zd‖2L2(Q) +
1

γ
||ζ(·, 0;h; v)||2L2(Ω) , (18)

with the functional J given by (4) and ζ := ζ(x, t;h; v) ∈W (0, T ), solution of
−∂ζ
∂t
−∆ζ + a0ζ = y(h; v, 0) in Q,

ζ = 0 on Σ,
ζ(·, T ;h; v) = 0 in Ω.

(19)

Proof. Let y = y(h; v, g) := y(x, t;h; v, g) be the solution of (1). Then,

y(h; v, g) = y(h; v, 0) + y(0; 0, g), (20)
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where y(h; v, 0) and y(0; 0, g) are respectively solutions of
∂y(h; v, 0)

∂t
−∆y(h; v, 0) + a0y(h; v, 0) = hχω + vχO in Q,

y(h; v, 0) = 0 on Σ,
y(·, 0;h; v, 0) = 0 in Ω,

(21)

and 
∂y(0; 0, g)

∂t
−∆y(0; 0, g) + a0y(0; 0, g) = 0 in Q,

y(0; 0, g) = 0 on Σ,
y(·, 0; 0; 0, g) = g in Ω.

(22)

Then in view of the data, we have that y(h; v, 0) = y(x, t;h; v, 0) ∈ Ξ(Q) and
y(0; 0, g) = y(x, t; 0; 0, g) ∈W (0, T ).
Using the decomposition (20) and the fact that

J(h; v, 0) = ‖y(h; v, 0)− zd‖2L2(Q) +N ||v||2L2(OT )

and
J(0; 0, g) = ‖y(0; 0, g)− zd‖2L2(Q),

we have that,

J(h; v, g) = ‖y(;h; v, 0) + y(0; 0, g)− zd‖2L2(Q) +N ||v||2L2(OT )

= ‖y(h; v, 0)− zd‖2L2(Q) + ‖y(0; 0, g)‖2L2(Q)

+N ||v||2L2(OT ) + 2

∫
Q

(y(h; v, 0)− zd)y(0; 0, g)dxdt

= J(h; v, 0) + J(0; 0, g)− ‖zd‖2L2(Q) + 2

∫
Q

y(h; v, 0)y(0; 0, g)dxdt.

Hence,

J(h; v, g)−J(0; 0, g) = J(h; v, 0)−‖zd‖2L2(Q)+2

∫
Q

y(h; v, 0)y(0; 0, g)dxdt. (23)

Now, if we multiply the first equation of (19) by y(0; 0, g) and integrate by parts
over Q, we have that∫

Q

y(h; v, 0)y(0; 0, g)dxdt =

∫
Ω

ζ(·, 0;h; v)gdx. (24)

Combining (24) and (23), we obtain:

J(h; v, g)− J(0; 0, g) = J(h; v, 0)− ‖zd‖2L2(Q) + 2

∫
Ω

ζ(·, 0;h; v)gdx. (25)

Thus, for any γ > 0, we have

sup
g∈L2(Ω)

[
J(h; v, g)− J(0; 0, g)− γ||g||2L2(Ω)

]
= J(h; v, 0)− ‖zd‖2L2(Q) + 2 sup

g∈L2(Ω)

[∫
Ω

ζ(·, 0;h; v)gdx− γ

2
||g||2L2(Ω)

]
.
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Using the Fenchel-Legendre transform, we have that

2 sup
g∈L2(Ω)

(
〈ζ(·, 0;h; v), g〉L2(Ω) −

γ

2
||g||2L2(Ω)

)
=

1

γ
||ζ(·, 0;h; v)||2L2(Ω) .

Consequently,

sup
g∈L2(Ω)

[
J(h; v, g)− J(0; 0, g)− γ||g||2L2(Ω)

]
= J(h; v, 0)− ‖zd‖2L2(Q) +

1

γ
||ζ(·, 0;h; v)||2L2(Ω)

= Jγ(h; v),

and the optimization problem (3) is equivalent to the following optimal control
problem: Let h ∈ L2(ωT ). For any γ > 0, find vγ = vγ(h) ∈ L2(OT ) such that
(17) holds true.

Remark 2 If we consider problem (3) with γ = 0:

inf
u∈L2(OT )

sup
g∈L2(Ω)

[J(h; v, g)− J(0; 0, g)] , (26)

then, we deal with the No-regret control problem. Therefore, in view of (25),
the No-regret control has a sense if it belongs to the set

U =

{
v ∈ L2(OT ) such that

∫
Ω

ζ(·, 0;h; v)gdx = 0 ∀ g ∈ L2(Ω)

}
.

2.1 Proof of Theorem 1.1.

We proceed in three steps.
Step 1. We prove that for any h ∈ L2(ωT ) and γ > 0, the optimization problem
(3) has a unique solution vγ = vγ(h) ∈ L2(OT ).

In view of Lemma 2.1, the optimization problem (3) is equivalent to the
optimal control problem (17). Thus, we need to prove that (17) has a unique
solution vγ = vγ(h) ∈ L2(OT ).
As for any v ∈ L2(OT ), we have Jγ(h; v) ≥ −‖zd‖2L2(Q), it follows that inf

v∈L2(OT )
Jγ(h; v)

exists. So, let (vn)n ⊂ L2(OT ) be a minimizing sequence so that

lim
n→+∞

Jγ(h; vn) = inf
v∈L2(OT )

Jγ(h; v). (27)

Consequently, there exists a positive constant C(γ) > 0 depending on γ such
that

Jγ(h; vn) ≤ C(γ). (28)

Set yn = yn(x, t) = y(x, t;h; vn, 0). Then (vn, yn) satisfies:
∂yn

∂t
−∆yn + a0y

n = hχω + vnχO in Q

yn = 0 on Σ
yn(·, 0) = 0 in Ω,

(29)
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and it follows from (28) and the definition of Jγ given by (18) that

‖yn − zd‖2L2(Q) +N ||vn||2L2(OT ) +
1

γ
||ζ(·, 0;h; vn)||2L2(Ω) ≤

C(γ) + ‖zd‖2L2(Q) = C(γ, zd).

Hence, we deduce that

||vn||L2(OT ) ≤ C(γ, zd), (30a)

‖ζ(·, 0;h; vn)‖L2(Ω) ≤
√
γC(γ, zd), (30b)

||yn||L2(Q) ≤ C(γ, zd). (30c)

It follows from (29) that there exists a constant C(γ, zd, h) > 0 such that ,

||yn||W (0,T ) ≤ C(γ, zd, h). (31)

Since ζn = ζn(x, t) = ζ(x, t;h; vn) satisfies:
−∂ζ

n

∂t
−∆ζn + a0ζ

n = y(h; vn, 0) in Q,

ζn = 0 on Σ,
ζn(·, T ) = 0 in Ω,

(32)

using (30c), we prove that

||ζn||W (0,T ) ≤ C(γ, zd). (33)

From (30), (31) and (33), we have that there exist vγ ∈ L2(OT ), αγ ∈ L2(Ω),
yγ ∈W (0, T ), ζγ ∈W (0, T ) and sub-sequences of (vn)n, (yn(T ))n, (yn)n, (ζn)n
still denoted (vn)n, (ζn(0))n, (yn)n, (ζn)n respectively such that

vn ⇀vγ weakly in L2(OT ), (34a)

ζ(·, 0;h; vn) = ζn(0) ⇀ αγ weakly in L2(Ω), (34b)

yn ⇀yγ weakly in W (0, T ), (34c)

ζn ⇀ζγ weakly in W (0, T ). (34d)

If we multiply the first equation in (29) by Φ ∈ C∞(Q̄) such that Φ = 0 on
Σ, Φ(T ) = 0 in Ω and integrate by parts over Q, we have∫

Q

(
−∂Φ

∂t
−∆Φ + a0Φ

)
yndx dt =

∫
ωT

hΦdx dt

+

∫
OT

vnΦdx dt.
(35)

Taking in (35), Φ ∈ D(Q), then passing to the limit when n → ∞ while (30a)
and (30c), we obtain that∫

Q

(
−∂Φ

∂t
−∆Φ + a0Φ

)
yγdx dt =

∫
ωT

hΦdx dt

+

∫
OT

vγΦdx dt, ∀Φ ∈ D(Q),
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which after an integration by parts gives∫
Q

(
∂yγ

∂t
−∆yγ + a0y

γ

)
Φdx dt =

∫
ωT

hΦdx dt

+

∫
OT

vγΦdx dt, ∀Φ ∈ D(Q).

Hence,
∂yγ

∂t
−∆yγ + a0y

γ = hχω + vγχOin Q. (36)

As yγ ∈ L2((0, T );H1
0 (Ω)), we have that

yγ = 0 on Σ. (37)

Since yγ and ζγ belong toW (0, T ), we have from Remark 1 that yγ(·, T ), yγ(·, 0),
ζγ(·, T ) and ζγ(·, 0) exist and belong to L2(Ω). Passing again to the limit in
(35) when n→∞ while using (30a) and (30c), we obtain that∫
Q

(
−∂Φ

∂t
−∆Φ + a0Φ

)
yγdx dt =

∫
ωT

hΦdx dt

+

∫
OT

vγΦdx dt,

∀Φ ∈ C∞(Q̄) such that Φ = 0 on Σ and Φ(T ) = 0 in Ω,

which after an integration by parts gives∫
Q

(
∂yγ

∂t
−∆yγ + a0y

γ

)
Φdx dt+

∫
Ω

yγ(0)Φ(0) =∫
ωT

hΦdx dt+

∫
OT

vγΦdx dt,

∀Φ ∈ C∞(Q̄) such that Φ = 0 on Σ and Φ(T ) = 0 in Ω

because yγ = 0 on Σ. In view of (36), it follows from this latter identity that∫
Ω

yγ(0)Φ(0) = 0

∀Φ ∈ C∞(Q̄) such that Φ = 0 on Σ and Φ(T ) = 0 in Ω.

Consequently
yγ(0) = 0 in Ω. (38)

From (36)-(38), we have that yγ = yγ(x, t) = y(x, t;h; vγ , 0) is such that
(vγ , yγ) satisfies:

∂yγ

∂t
−∆yγ + a0y

γ = hχω + vγχO in Q,

yγ = 0 on Σ,
yγ(·, 0) = 0 in Ω.

(39)
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Proceeding as above for yn, we prove that ζγ = ζγ(x, t) = ζ(x, t;h; vγ) ∈
W (0, T ) is solution to

−∂ζ
γ

∂t
−∆ζγ + a0ζ

γ = y(h; vγ , 0) in Q,

ζγ = 0 on Σ,
ζγ(·, T ;h; vγ) = 0 in Ω,

(40)

and
ζn(., 0) ⇀ ζγ(·, 0;h; vγ) = αγ weakly in L2(Ω). (41)

Using (34a), (34b), (34c), (41), the convexity and the lower semi-continuity
(l.s.c) of Jγ , we have:

Jγ(h; vγ) ≤ lim inf
n→+∞

Jγ(h; vn) = lim
n→+∞

Jγ(h; vn) = inf
v∈L2(OT )

Jγ(h; v),

which implies that
Jγ(h; vγ) = inf

v∈L2(OT )
Jγ(h; v). (42)

In addition, the strictly convexity of Jγ allows us to conclude that for any γ > 0,
the control vγ is unique.
Step 2. We prove that the optimal control vγ , solution to the optimization
problem (3) (equivalently (17)) is characterized by (6)-(10).

We already have (7) and (8) in the Step 1 (see (39) and (40)). To prove (9),
(10) and (6), we write the Euler-lagrange optimality condition which character-
izes vγ :

lim
λ−→0

Jγ(h; vγ + λu)− Jγ(h; vγ)

λ
= 0 ∀ u ∈ L2(OT ). (43)

We have after some calculations,

∫
Q

yγ(y(h; vγ , 0)− zd)dxdt+N

∫
OT

vγudxdt

+
1

γ

∫
Ω

ζ̄γ(·, 0;h;u)ζ(·, 0;h; vγ)dx = 0 ∀ u ∈ L2(OT ), (44)

where

yγ := yγ(x, t) =
y(h; vγ + λu, 0)− y(h; vγ , 0)

λ

and

ζ
γ

:= ζ
γ
(x, t) =

ζ(x, t;h; vγ + λu)− ζ(x, t;h; vγ)

λ

are respectively solutions of
∂yγ

∂t −∆yγ + a0y
γ = uχO in Q,
yγ = 0 on Σ,

yγ(·, 0) = 0 in Ω,

(45)
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and 
−∂ζ

γ

∂t −∆ζ
γ

+ a0ζ
γ

= yγ in Q,

ζ
γ

= 0 on Σ,

ζ
γ
(·, T ) = 0 in Ω.

(46)

To interpret (44), we consider pγ := pγ(x, t;h) and qγ := qγ(x, t;h) respectively
solutions of (9) and (10).
If we multiply the first equation of (45) by qγ and the first equation of (46) by

1√
γ p

γ and integrate by parts over Q we have respectively∫
OT

uqγdxdt =

∫
Q

yγ
(
y(h; vγ , 0)− zd +

1
√
γ
pγ
)
dxdt (47)

and

0 = −
∫
Q

1
√
γ
pγyγdxdt+

∫
Ω

ζ
γ
(., 0)

1

γ
ζ(·, 0;h; vγ)dx (48)

Combining (44), (47) and (48), we obtain∫
OT

uqγdxdt+N

∫
OT

vγudxdt = 0 ∀ u ∈ L2(OT )

which is equivalent to∫
OT

u(qγ +Nvγ)dxdt = 0 ∀ u ∈ L2(OT ).

Therefore, we deduce (6).
Step 3. We prove (11).

We consider the linear an continuous operators

L : L2(OT ) → L2(Q)
u 7→ z

and
T : L2(OT ) → L2(Ω)

u 7→ ϑ(., 0),

where z and ϑ are respectively solutions to
∂z

∂t
−∆z + a0z = uχO in Q

z = 0 on Σ
z(·, 0) = 0 in Ω

(49)

and 
−∂ϑ
∂t
−∆ϑ+ a0ϑ = z in Q

ϑ = 0 on Σ
ϑ(·, T ) = 0 in Ω.

(50)

11



Then yγ and ζγ respectively solution of (39) and (40) can be decomposed as

yγ = zγ + w

and
ζγ = ϑγ + π

where zγ = L(vγ), ϑγ = T (vγ), w and π are solution to
∂w

∂t
−∆w + a0w = hχω in Q

w = 0 on Σ
w(·, 0) = 0 in Ω

(51)

and 
−∂π
∂t
−∆π + a0π = w in Q

π = 0 on Σ
π(·, T ) = 0 in Ω.

(52)

Remark 3 Note that in view of (49),(50), (51) and (52), we have that there
exists a constant C(a0, T ) > 0 such that

‖Lu‖L2((0,T );H1
0 (Ω)) = ‖z‖L2((0,T );H1

0 (Ω)) ≤ C(a0, T )‖u‖L2(OT ), (53a)

‖w‖L2((0,T );H1
0 (Ω)) ≤ C(a0, T )‖h‖L2(ωT ), (53b)

‖T u‖L2((0,T );H1
0 (Ω)) = ‖ϑ(., 0)‖L2(Ω) ≤ C(a0, T )‖Lu‖L2(Q), (53c)

‖π(., 0)‖L2(Ω) ≤ C(a0, T )‖w‖L2(ωT ). (53d)

Hence the Euler-Lagrange condition (44)can be rewritten as∫
Q

Lu (Lvγ + w − zd) dxdt+N

∫
OT

vγ udxdt

+
1

γ

∫
Ω

T u (T vγ + π(0)) dx = 0 ∀ u ∈ L2(OT ).

Taking u = vγ in this latter identity, we deduce that

‖Lvγ‖2L2(Q) +N‖vγ‖2L2(OT ) +
1

γ
‖T vγ‖2L2(Ω) =∫

Q

Lvγ(zd − w)dxdt− 1

γ

∫
Ω

T vγ π(0)dx.
(54)

Hence using Cauchy-Schwarz inequality, we obtain from (54) that there exist
constants C(a0, T ) > 0 and C(a0, T, γ) > 0 such that

N‖vγ‖2L2(OT ) ≤ ‖Lvγ‖L2(Q)‖(zd − w)‖L2(Q) + 1
γ ‖T v

γ‖L2(Ω)‖π(0)‖L2(Ω)

≤ C(a0, T )‖vγ‖L2(OT )

(
‖zd‖L2(Q) + C(a0, T, γ)‖h‖L2(ωT )

)
.

It then follows from this latter inequality that

‖vγ‖L2(OT ) ≤ C(a0, T,N)
(
‖zd‖L2(Q) + C(a0, T, γ)‖h‖L2(ωT )

)
.

�
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3 Resolution of Problem 2

In this section we are concerned with the prof of Theorem 1.2. More precisely,
we study the null controllability problem: For any γ > 0, find h ∈ L2(ωT ) such
that if (vγ , yγ , qγ , pγ , ζγ) is solution to (6)-(10) then

y(., T ;h; vγ(h), 0) = 0 in Ω. (55)

To solve this null controllability problem, we use a penalization method (see
[14]). So, we consider the optimal control problem

inf
h∈L2(ωT )

J γε (h), (56)

where

J γε (h) =
1

2ε
‖y(., T ;h; vγ(h), 0)‖2L2(Ω) +

1

2
‖h‖2L2(ωT ) (57)

with yγ solution of (7).
Using minimizing sequence, we prove that there exists a unique optimal

control hγε ∈ L2(ωT ) solution to (56). Writing the Euler Lagrange first order
optimality condition that characterizes the optimal control , we prove that there
exists (ργε , φ

γ
ε , ψ

γ
ε , ς

γ
ε ) such that

hγε = ργε in ωT , (58)


−∂ρ

γ
ε

∂t
−∆ργε + a0ρ

γ
ε = φγε + ψγε in Q,

ργε = 0 on Σ,

ργε (·, T ) = −1

ε
y(., T ;hγε ; vγ(hγε ), 0) in Ω,

(59)


∂ψγε
∂t
−∆ψγε + a0ψ

γ
ε = 0 in Q,

ψγε = 0 on Σ,
ψγε (·, 0) = 1√

γ ς
γ
ε (·, 0; ·) in Ω,

(60)


∂φγε
∂t
−∆φγε + a0φ

γ
ε = − 1

N ρ
γ
εχO in Q,

φγε = 0 on Σ,
φγε (·, 0) = 0 in Ω,

(61)


−∂ς

γ
ε

∂t
−∆ςγε + a0ς

γ
ε = 1√

γφ
γ
ε in Q,

ςγε = 0 on Σ,
ςγε (·, T ) = 0 in Ω,

(62)

where yγε (x, t) = y(x, t;hγε ; vγ(hγε ), 0) is such that (yγε , h
γ
ε , v

γ
ε , q

γ
ε , p

γ
ε , ζ

γ
ε ) satisfies

∂yγε
∂t
−∆yγε + a0y

γ
ε = hγεχω + vγεχO in Q,

yγε = 0 on Σ,
yγε (0, .) = 0 in Ω,

(63)
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vγε = −q
γ
ε

N
in OT , (64)

−∂q
γ
ε

∂t
−∆qγε + a0q

γ
ε = yγε − zd +

1
√
γ
pγε in Q,

qγε = 0 on Σ,
qγε (·, T ;hγε ) = 0 in Ω,

(65)


∂pγε
∂t
−∆pγε + a0p

γ
ε = 0 in Q,

pγε = 0 on Σ,

pγε (·, 0;hγε ) =
1
√
γ
ζγ(·, 0;hγε ; vγε ) in Ω,

(66)

and 
−∂ζ

γ
ε

∂t
−∆ζγε + a0ζ

γ
ε = yγε in Q,

ζγε = 0 on Σ,
ζγε (·, T ;hγε ; vγε ) = 0 in Ω,

(67)

with vγε = vγ(hγε ), ζγ = ζγ(x, t;hγε ; vγ(hγε )), pγε = pγ(x, t;hγε ) and qγε = qγ(x, t;hγε ).
In order to pass to the limit when ε→ 0 in (58)-(67), we need some a priori

estimates on the variables hγε , ρ
γ
ε , φ

γ
ε , ψ

γ
ε , ς

γ
ε , y

γ
ε , v

γ
ε , q

γ
ε , p

γ
ε and ζγε . To this end,

we use the so-called Carleman inequality [16, 17]. So, let ω0 be an open subset
of Ω. We know [17] that there exits a function Ψ ∈ C2(Ω) such that Ψ(x) > 0 ∀x ∈ Ω,

Ψ(x) = 0 ∀x ∈ Γ,
|∇Ψ(x)| 6= 0 ∀x ∈ ω\ω0.

(68)

For any λ > 0, we consider the weight function ϕ and η defined by

ϕ(x, t) =
eλ(Ψ(x)+m1)

t(T − t)
, (69a)

η(x, t) =
eλ(||Ψ||∞+m2) − eλ(Ψ(x)+m1)

t(T − t)
, (69b)

where m1 and m2 are two reals such that m2 > m1. For any f ∈ L2(Q) and
a0 ∈ L∞(Q), we consider the following system{

∂ρ

∂t
−∆ρ+ a0ρ = f in Q,

ρ = 0 on Σ.
(70)

Then the following result holds true [16, 17].

Proposition 3.1 (Global Carleman’s inequality) Let Ψ, ϕ and η be the
functions defined respectively as in (68)-(69b). Let also ω′ be such that ω0 ⊂
ω′ ⊂ ω Then, there exist numbers λ0 > 1 and s0 = s0(Ω, a0, T ) > 1 and there
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exists some number C = C(Ω, T ) > 0 such that, for any λ ≥ λ0, for any s ≥ s0

and for any ρ solution of (70) the following inequality holds:∫
Q

e−2sη

sϕ

∣∣∣∣∂ρ∂t
∣∣∣∣2 dxdt+

∫
Q

e−2sη

sϕ
|∆ρ|2 dxdt+∫

Q

sλ2ϕe−2sη |∇ρ|2 dxdt+

∫
Q

s3λ4ϕ3e−2sη |ρ|2 dxdt ≤

C

(∫
Q

e−2sη |f |2 dxdt+

∫
ω′

∫ T

0

s3λ4ϕ3e−2sη |ρ|2 dxdt

)
.

(71)

Remark 4 Note that by the change of variable t 7→ T − t, inequality (71) holds
also true for ρ solution to{

−∂ρ
∂t
−∆ρ+ a0ρ = f in Q,

ρ = 0 on Σ

with f ∈ L2(Q) and a0 ∈ L∞(Q).

Proposition 3.2 Under the assumptions of Proposition 3.1, there exist s1 =
max{s0, 2C(Ω, T )} > 0, λ1 = max{λ0, 2C(Ω, T )} > 0 and C = C(Ψ, N, T,Ω) >
0 such that for any λ ≥ λ1 and s ≥ s1, we have∫

Q

e−2sη

sϕ

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2

)
dxdt+

∫
Q

sλ2ϕe−2sη |∇ργε |
2
dxdt+∫

Q

s3λ4ϕ3e−2sη |ργε |
2
dxdt ≤ C

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt,

(72)

for all ργε which satisfies (59)-(62),

Proof. Let ω′ be such that ω′ ⊂ ω ⊂ Ω. We consider as in [18], the function
θ ∈ C∞0 (Ω) and such that

0 ≤ θ ≤ 1 on ω, θ = 1 on ω′, θ = 0 on Ωr ω
∆θ√
θ
∈ L∞ (ω) ,

∇θ√
θ
∈ {L∞ (ω)}N .

We set u = s3λ4ϕ3e−2sη. Then it follows from the definition of the functions η
and ϕ given by (69) that

u (x, 0) = u (x, T ) = 0,

∇u = u(3λ+ 2sλϕ)∇Ψ, (73a)

∂u

∂t
=u

[
3ϕ−1 ∂ϕ

∂t
− 2s

∂η

∂t

]
, (73b)
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and
∆ (uθ) = uθ

(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2 + u∆θ

+uθ (3λ+ 2sλϕ) ∆Ψ + u (6λ+ 4sλϕ)∇Ψ.∇θ. (74)

If we multiply the first equation in (59) by θu(φγε + ψγε ), where φγε and ψγε
are respectively solution of (61) and (60) and integrate by parts over Q, we have∫

Q

uθ (φγε + ψγε )
2
dx dt = − 1

N

∫
Q

θu(ργε )2χOdx dt

+

∫
Q

θ (φγε + ψγε ) ργε
∂u

∂t
dx dt

−
∫
Q

(φγε + ψγε ) ργε∆ (θu) dx dt

− 2

∫
Q

ργε∇ (θu) .∇ (φγε + ψγε ) dx dt

= K1 +K2 +K3 +K4,

where

K1 = − 1

N

∫
Q

θu(ργε )2χOdx dt,

K2 =

∫
Q

θ (φγε + ψγε ) ργε
∂u

∂t
)dx dt,

K3 = −
∫
Q

(φγε + ψγε ) ργε∆ (θu) dx dt,

K4 = −2

∫
Q

ργε∇ (θu) .∇ (φγε + ψγε ) dx dt.

So, ∫
ωT

u(φγ + ψγ)2dx dt = K1 +K2 +K3 +K4. (75)

K1 ≤ 1

N

∫
ωT

u(ργε )2dx dt

≤ C(N)

∫
ωT

s3λ4ϕ3e−2sη|ργε |2dx dt.

Using (73b), (74) and Young inequality, we obtain that

K2 ≤ δ1
2

∫
ωT

u |φγε + ψγε |
2
dx dt+ C(Ψ, T )

∫
ωT

s5λ4ϕ7e−2sη |ργε |
2
dx dt.
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K3 = −
∫
Q

(φγε + ψγε )ργε∆ (θu) dx dt

= −
∫
Q

θu(φγε + ψγε )ργε
(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2 dx dt

−
∫
Q

u(φγε + ψγε )ργε∆θdx dt

−
∫
Q

θu(φγε + ψγε )ργ (3λ+ 2sλϕ) ∆Ψdx dt

− 2

∫
Q

u(φγε + ψγε )ργε (3λ+ 2sλϕ)∇Ψ.∇θdx dt

= K31 +K32 +K33 +K34,

where

K31 = −
∫
Q

θu(φγε + ψγε )ργε
(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2 dx dt

=

∫
Q

{
θ1/2u1/2(φγε + ψγε )

}{
−θ1/2u1/2ργε

(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2

}
dx dt

≤ δ2
2

∫
ωT

u|φγε + ψγε |2dx dt+ C(Ψ)

∫
ωT

s7λ8ϕ7e−2sη|ργε |2dx dt,

K32 = −
∫
Q

u(φγε + ψγε )ργε∆θdx dt

=

∫
Q

{
θ1/2u1/2(φγε + ψγε )

}{
−u1/2ργε

∆θ

θ1/2

}
dx dt

≤ δ3
2

∫
ωT

u|φγε + ψγε |2dx dt

+ C

∫
ωT

s3λ4ϕ3e−2sη |ργε |
2
dx dt,

K33 = −
∫
Q

θu(φγε + ψγε )ργε (3λ+ 2sλϕ) ∆Ψdx dt

=

∫
Q

{
θ1/2u1/2(φγε + ψγε )

}{
−θ1/2u1/2ργε (3λ+ 2sλϕ) ∆Ψ

}
dx dt

≤ δ4
2

∫
ωT

u |φγε + ψγε |
2
dx dt

+ C(Ψ)

∫
ωT

s5λ6ϕ5e−2sη |ργε |
2
dx dt,
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K34 = −2

∫
Q

u(φγε + ψγε )ργε (3λ+ 2sλϕ)∇Ψ.∇θdx dt

=

∫
Q

{
θ1/2u1/2(φγε + ψγε )

}{
−2u1/2ργε (3λ+ 2sλϕ)∇Ψ.

∇θ
θ1/2

}
dx dt

≤ δ5
2

∫
ωT

u |φγε + ψγε |
2
dx dt

+ C(Ψ)

∫
ωT

s5λ6ϕ5e−2sη |ργε |
2
dx dt.

Therefore

K3 ≤
5∑
i=2

δi
2

∫
ωT

u|φγε + ψγε |2dx dt+ C(Ψ)

∫
ωT

s7λ8ϕ7e−2sη |ργε |
2
dx dt.

Now we compute the term K4. Using (73a) and Young inequality, we have

K4 = −2

∫
Q

ργε∇ (θu) .∇(φγε + ψγε )dx dt

= −2

∫
Q

θuργε (3λ+ 2sλϕ)∇Ψ.∇(φγε + ψγε )dx dt− 2

∫
Q

uργ∇θ.∇(φγε + ψγε )dx dt

= K41 +K42,

where

K41 = −2

∫
Q

θuργε (3λ+ 2sλϕ)∇Ψ.∇(φγε + ψγε )dx dt

=

∫
Q

{
s1/2ϕ1/2θ1/2e−sη∇(φγε + ψγε )

}{
−2s5/2λ4ϕ5/2θ1/2e−sηργε (3λ+ 2sλϕ)∇Ψ

}
dx dt

≤ 1

4

∫
ωT

sϕe−2sη |∇(φγε + ψγε )|2 dx dt

+ C(Ψ)

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt

and

K42 = −2

∫
Q

uργ∇θ.∇(φγε + ψγε )dx dt

=

∫
Q

{
s1/2ϕ1/2θ1/2e−sη∇(φγε + ψγε )

}
.

{
−2s5/2λ4ϕ5/2e−sηργε

∇θ
θ1/2

}
dx dt

≤ 1

4

∫
ωT

sϕe−2sη |∇(φγε + ψγε )|2 dx dt

+ C

∫
ωT

s5λ8ϕ5e−2sη |ργε |
2
dx dt.
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Thus,

K4 ≤ 1

2

∫
ωT

sϕe−2sη |∇(φγε + ψγε )|2 dx dt

+ C(Ψ)

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt.

Finally, in view of (75), we have that∫
ωT

u|φγε + ψγε |2dx dt ≤
5∑
i=1

δi
2

∫
ωT

u|φγε + ψγε |2dx dt

+
1

2

∫
ωT

sϕe−2sη |∇(φγε + ψγε )|2 dx dt

+ C(Ψ, N, T )

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt.

Choose in this latter identity δi, 1 ≤ i ≤ 5 such that

5∑
i=1

δi
2

=
1

2
, then using the

fact that ω′ ⊂ ω, we obtain that∫ T

0

∫
ω′
u|φγε + ψγε |2dx dt ≤

∫
ωT

sϕe−2sη |∇(φγε + ψγε )|2 dx dt+

C(Ψ, N, T )

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt.

(76)

Now, applying (71) to φγε + ψγε where φγε and ψγε are respectively solution of
(61) and (60), we have that there exist λ > λ0 > 1, s > s0(a0,Ω, T ) > 1 and
C = C(Ω, T ) > 0 such that∫

Q

e−2sη
(
sλ2ϕ|∇(φγε + ψγε )|2 + s3λ4ϕ3 |φγε + ψγε |

2
)
dx dt ≤

C
1

N2

∫
OT

e−2sη |ργε |
2
dx dt+ C

∫ T

0

∫
ω′
s3λ4ϕ3e−2sη |φγε + ψγε |

2
dx dt,

which in view of (76), the fact that ϕ−1 ∈ L∞(Q) and λ > 1 gives∫
Q

e−2sη
(
sλ2ϕ |∇(φγε + ψγε )|+ s3λ4ϕ3 |φγε + ψγε |

2
)
dx dt ≤

C(Ω, T )

∫
Q

sλϕe−2sη |∇(φγε + ψγε )|2 dx dt+ C(Ψ, N)

∫
Q

s2λ4e−2sηϕ3 |ργε |
2
dx dt+

C(Ψ, N, T,Ω)

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt.

(77)
Using the fact that s, λ > 1 and ϕ−1 is bounded, then choosing λ ≥ λ1 =
max{λ0, 2C(Ω, T} in (77) and we obtain that∫

Q

e−2sη
(
sλ2ϕ |∇(φγε + ψγε )|+ s3λ4ϕ3 |φγε + ψγε |

2
)
dx dt ≤

C(Ψ, N, T,Ω)

∫
ωT

s7λ10ϕ7e−2sη |ργε |
2
dx dt.

(78)
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Taking into account the Remark 4 and applying (71) to ργε solution of (59),∫
Q

e−2sη

sϕ

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2

)
dxdt+

∫
Q

sλ2ϕe−2sη |∇ργε |
2
dxdt+∫

Q

s3λ4ϕ3e−2sη |ργε |
2
dxdt ≤

C(Ω, T )

∫
Q

e−2sη |φγε + ψγε |
2
dx dt+ C(Ω, T )

∫ T

0

∫
ω′
s3λ4ϕ3e−2sη |ργε |

2
dx dt.

Using the fact that ϕ−1 ∈ L∞(Q) and ω′ ⊂ ω, we deduce that∫
Q

e−2sη

sϕ

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2

)
dxdt+

∫
Q

sλ2ϕe−2sη |∇ργε |
2
dxdt+∫

Q

s3λ4ϕ3e−2sη |ργε |
2
dxdt ≤

C(Ω, T )s2λ4

∫
Q

ϕ3e−2sη |φγε + ψγε |
2
dx dt+

C(Ω, T )

∫
ωT

s3λ4ϕ3e−2sη |ργε |
2
dx dt.

(79)

Combining (78) and (79), then choosing s ≥ s1 = max{s0, 2C(Ω, T )}, we deduce
that

∫
Q

e−2sη

sϕ

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2

)
dxdt+

∫
Q

sλ2ϕe−2sη |∇ργε |
2
dxdt+∫

Q

s3λ4ϕ3e−2sη |ργε |
2
dxdt+ s3λ4

∫
Q

e−2sηϕ3(φγε + ψγε )dx dt ≤

C(Ψ, N, T,Ω)

∫
ωT

s7λ10ϕ7e−2sη |ργ |2 dx dt,

which implies that there exist s1 = max{s0, 2C(Ω, T )} > 0, λ1 = max{λ0, 2C(Ω, T )} >
0 and C = C(Ψ, N, T,Ω) > 0 such that (72) holds true.

We fix s = s1 = max{s0, 2C(Ω, T )} > 0 and λ = λ1 = max{λ0, 2C(Ω, T )} >
0. Then, we consider the weight functions

η̃(x, t) =

{
η(x, T2 ) if t ∈

]
0, T2

]
,

η(x, t) if t ∈
[
T
2 , T

[
,

(80)

and

ϕ̃(x, t) =

{
ϕ(x, T2 ) if t ∈

]
0, T2

]
,

ϕ(x, t) if t ∈
[
T
2 , T

[
,

(81)

where the functions ϕ and η are given by (69). Then applying Proposition 3.2
with s = s1 and λ = λ1, we have that there exists C = C(Ψ, N, T,Ω) > 0 such
that ργε solution of (59) satisfies
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∫
Q

e−2s1η̃

s1ϕ̃

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2

)
dxdt+

∫
Q

s1λ
2
1ϕ̃e
−2s1η̃ |∇ργε |

2
dxdt+∫

Q

s3
1λ

4
1ϕ̃

3e−2s1η̃ |ργε |
2
dxdt ≤ C

∫
ωT

s7
1λ

10
1 ϕ̃

7e−2s1η̃ |ργε |
2
dx dt,

(82)

from which we deduce that there exists C = C(Ψ, N, T,Ω) > 0 such that∫
Q

ϕ̃3e−2s1η̃ |ργε |
2
dxdt ≤ Cs4

1λ
6
1

∫
ωT

ϕ̃7e−2s1η̃ |ργε |
2
dxdt. (83)

We set
η̂(t) = max

x∈Ω
η̃(x, t).

Then η̂(t) > 0 and dη̂
dt (t) > 0 for t ∈ (0, T ). We define the weight function

κ(t) = e−s1η̂(t) (84)

and we have that
κ2(t) ≤ e−2s1η̃ for (x, t) ∈ Q. (85)

Proposition 3.3 Let λ and s in Proposition 3.2 be such s = s1 = max{s0, 2C(Ω, T )} >
0 and λ = λ1 = max{λ0, 2C(Ω, T )} > 0. Then there exists C = C(Ψ, N, T,Ω, s1, λ1, a0) >
0 such that for all ργε and φγε which satisfy (59)-(62),∫

Q

ϕ̃3e−2s1η̃ |ργε |
2
dxdt+

∫
Q

κ2|φγε |2dxdt ≤ C
∫
ωT

|ργε |
2
dxdt. (86)

Proof. If we multiply the first equation in (61) by κ2φγε and integrate by part
over Ω, we obtain that∫

Ω

1

2

∂

∂t
(κφγε )2dx+

∫
Ω

s1
∂η̂

∂t
(κφγε )2dx+ ||κ∇φγε ||2L2(Ω)

≤ ||a0||L∞(Q)||κφγε ||2L2(Ω) +
1

2N2
‖κργε‖L2(O) +

1

2
||κφγε ||2L2(Ω)

(87)

because

1

2

∂

∂t
(κφγε )2 = −s1

∂η̂

∂t
(κφγε )2 + κ2φγε

∂φγε
∂t

.

Observing that s1 > 0 and
dη̂

dt
(t) > 0 for t ∈ (0, T ), we deduce from (87) that

∂

∂t
||κφγε ||2L2(Ω) ≤ (2||a0||∞ + 1) ||κφγε ||2L2(Ω) +

1

N2
κ2(t)

∫
O
|ργε |2dx, ∀t ∈ (0, T ).

It then follows from Gronwall lemma that
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||κ(t)φγε (t)||2L2(Ω) ≤ e(2||a0||∞+1)t t

N2
κ2

∫
O
|ργε |2dx

≤ e(2||a0||∞+1)T T

N2
κ2(t)

∫
O
|ργε |2dx, ∀t ∈ (0, T ).

Hence ∫
Q

κ2(t)|φγε (x, t)|2dxdt ≤ C(a0, T,N)

∫
Q

κ2(t)|ργε |2dxdt. (88)

Using the expression of κ given by (84), the fact that ϕ̃−1 ∈ L∞(Q) and
(85), we obtain that∫

Q

κ2(t)|φγε |2dxdt ≤ C(a0, T,N)

∫
Q

ϕ̃3e−2s1η̃|ργε |2dxdt,

which in view of (83) gives∫
Q

κ2(t)|φγε |2dxdt ≤ C(a0, T,N,Ψ,Ω, s1, λ1)

∫
ωT

ϕ̃7e−2s1η̃|ργε |2dxdt, (89)

where C = C(a0, T,N,Ψ,Ω, s1, λ1) > 0.
Adding (83) to (89) and using the fact that ϕ̃7e−2s1η̃ ∈ L∞(Q) , we obtain

that there exists C = C(a0, T,N,Ψ,Ω, s1, λ1) > 0 such that (86) holds true.

Proposition 3.4 There exist positive constants C(a0, T,N,Ψ,Ω, s1, λ1, zd) and
C(a0, T,N,Ψ,Ω, s1, λ1, γ, zd) such that

||ργε ||L2(ωT ) ≤ C(a0, T,N,Ψ,Ω, s1, λ1, zd), (90a)

||hγε ||L2(ωT ) ≤ C(a0, T,N,Ψ,Ω, s1, λ1, zd), (90b)

||vγε ||L2(OT ) ≤C(a0, T,N,Ψ,Ω, s1, λ1, γ, zd), (90c)

||yγε ||W (0,T ) ≤C(a0, T,N,Ψ,Ω, s1, λ1, γ, zd), (90d)

||ζγε ||W (0,T ) ≤C(a0, T,N,Ψ,Ω, s1, λ1, γ, zd), (90e)

||pγε ||W (0,T ) ≤C(a0, T,N,Ψ,Ω, s1, λ1, γ, zd), (90f)

||qγε ||W (0,T ) ≤C(a0, T,N,Ψ,Ω, s1, λ1, γ, zd). (90g)

Proof. If we multiply the first equation of (63), (65), (66) and (67) respectively
by ργε , φγε , ςγε and ψγε , then integrate by parts over Q, we successively obtain
the following, using (64):∫

ωT

hγερ
γ
εdx dt+

1

ε
‖y(·, T ;hγε , v

γ(hγε ), 0)‖2L2(Ω) =∫
Q

yγεφ
γ
εdx dt+

∫
Q

yγεψ
γ
ε dx dt+

1

N

∫
OT

ργε q
γ
ε dx dt

, (91)

∫
Q

φγεy
γ
ε dx dt−

∫
Q

zdφ
γ
εdx dt+

1
√
γ

∫
Q

pγεφ
γ
εdx dt =

1

N

∫
OT

qγε ρ
γ
εdx dt, (92)
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0 =

∫
Q

1
√
γ
pγεφ

γ
εdx dt−

∫
Ω

1
√
γ
ζγε (·, 0; ·)ςγε (·, 0)dx (93)

and

0 = −
∫
Q

ψγε y
γ
ε dx dt+

∫
Ω

1
√
γ
ζγε (·, 0; ·)ςγε (·, 0)dx (94)

Adding the relations (91), (94), (92) and (93) together with hγε = ργεχω, we
obtain the following

‖ργε‖2L2(ωT ) +
1

ε
‖y(·, T ;hγε , v

γ(hγε ), 0)‖2L2(Ω) =

∫
Q

zdφ
γ
εdx dt,

from which we deduce that

‖ργε‖2L2(ωT ) ≤
∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

‖κφγε‖L2(Q)

≤ C(a0, T,N,Ψ,Ω, s1, λ1)
∥∥ 1
κzd
∥∥
L2(Q)

‖ργε‖L2(ωT )

because of (86). It then follows from this latter inequality that

‖ργε‖L2(ωT ) ≤ C(a0, T,N,Ψ,Ω, s1, λ1)

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

,

and in view of (58), we have (90b).
From (11), we have that there exist two constants C(a0, T ) > 0 and C(a0, T, γ) >
0 such that

|vγε ‖L2(OT ) ≤ C(a0, T )
(
‖zd‖L2(Q) + C(a0, T, γ)‖hγε‖L2(ωT )

)
.

Therefore using (90b), we deduce that there exists C = C(a0, T,N,Ψ,Ω, s1, λ1, γ) >
0 such that (90c) holds true. Using (90b) and (90c) while computing the energy
estimate of yγε solution of (63), we obtain (90d) and finally estimates (90e)-(90g).

3.1 Proof of Theorem 1.2

We proceed in three steps.
Step 1. We first pass to the limit in (58) and (63)-(67) when ε→ 0.

From (90), we have that there exist ρ̂γ , ĥγ , v̂γ , ŷγ , ζ̂γ , p̂γ and q̂γ and sub-
sequences of (ργε ), (hγε ), (vγε ), (yγε ), (ζγε ), (pγε ) and (qγε ) still denoted (ργε ), (hγε ),
(vγε ), (yγε ), (ζγε ), (pγε ) and (qγε ) such that
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ργε ⇀ρ̂γ weakly in L2(ωT ), (95a)

hγε ⇀ĥγ weakly in L2(ωT ), (95b)

vγε ⇀v̂γ weakly in L2(OT ), (95c)

yγε ⇀ŷγ weakly in W (0, T ), (95d)

ζγε ⇀ζ̂γ weakly in W (0, T ), (95e)

pγε ⇀p̂γ weakly in W (0, T ), (95f)

qγε ⇀q̂γ weakly in W (0, T ). (95g)

Hence passing to the limit in (58) and (64) while using (95a), (95c) and (95g),
have that

ĥγ = ρ̂γ in ωT , (96)

v̂γ = − q̂γ
N

in OT . (97)

Because ŷγ , ζ̂γ , p̂γ and q̂γ belong to W (0, T ), we know on the one hand that

(ŷγ(0), ζ̂γ(0), p̂γ(0), q̂γ(0)) and (ŷγ(T ), ζ̂γ(T ), p̂γ(T ), q̂γ(T )) exist and belong to

L2(Ω), and on the other the traces in space of ŷγ , ζ̂γ , p̂γ and q̂γ exists and we
have

ŷγ = ζ̂γ = p̂γ = q̂γ = 0 in Σ

because ŷγ , ζ̂γ , p̂γ , q̂γ ∈ L2((0, T );H1
0 (Ω)). Consequently using standard argu-

ment, we prove while using (95) that ŷγ(x, t) = y(x, t; ĥγ ; v̂γ(ĥγ), 0), ζ̂γ(x, t) =

ζγ(x, t; ĥγ ; v̂γ(ĥγ)), p̂γ(x, t) = pγ(x, t; ĥγ) and q̂γ(x, t) = qγ(x, t; ĥγ) are respec-
tively solution to

∂ŷγ
∂t
−∆ŷγ + a0ŷγ = ĥγχω + v̂γχO in Q

ŷγ = 0 on Σ,
ŷγ(·, 0) = 0 in Ω,

(98)


−∂q̂γ
∂t
−∆q̂γ + a0q̂γ = ŷγ − zd +

1
√
γ
p̂γ in Q,

q̂γ = 0 on Σ,
q̂γ(·, T ) = 0 in Ω,

(99)


∂p̂γ
∂t
−∆p̂γ + a0p̂γ = 0 in Q,

p̂γ = 0 on Σ,

p̂γ(·, 0) =
1
√
γ
ζ̂γ(·, 0; ĥγ ; v̂γ) in Ω,

(100)

and 
−∂ζ̂γ
∂t
−∆ζ̂γ + a0ζ̂γ = ŷγ in Q,

ζ̂γ = 0 on Σ,

ζ̂γ(·, T ) = 0 in Ω.

(101)
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Step 2. We pass to the limit when ε→ 0 in (59)-(62).
Using (90a) and the fact thatO  ω, we have that there exists C(a0, T,N,Ψ,Ω, s1, λ1, zd) >
0 such that

||ργε ||L2(OT ) ≤ C(a0, T,N,Ψ,Ω, s1, λ1, zd).

This latter estimation and (61), (62) and (60) allow us to prove that there exists
C = C(a0, T,N,Ψ,Ω, s1, λ1, zd) > 0 such that

||φγε ||W (0,T ) ≤C, (102a)

||ςγε ||W (0,T ) ≤C, (102b)

||ψγε ||W (0,T ) ≤C. (102c)

Hence there exist φ̂γ , ς̂γ and ψ̂γ such that

φγε ⇀φ̂γ weakly in W (0, T ), (103a)

ςγε ⇀ ς̂γ weakly in W (0, T ), (103b)

ψγε ⇀ψ̂γ weakly in W (0, T ). (103c)

Moreover using standard argument, we have that (ψ̂γ , φ̂γ , ς̂γ) satisfies (14)-(16).
Step 3. We prove that when ε→ 0, we have ργε → ρ̂γ with ρ̂γ solution of (13).

Set

θ1 = min

{
e−2s1η̃

s1ϕ̃
, s1λ

2
1ϕ̃e
−2s1η̃, s3

1λ
4
1ϕ̃

3e−2s1η̃,

}
, (104)

where ϕ̃ and η̃ is given by (81) and (80). Then it follows from (82) that there
exists C = C(Ψ, N, T,Ω, s1, λ1) > 0 such that∫

Q

θ1

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2
+ |∇ργε |

2
dxdt+ |ργε |

2

)
dxdt ≤ C

∫
ωT

|ργε |
2
dx dt

because ϕ̃7e−2s1η̃ is bounded. Using (90a) in this latter inequality yields

∫
Q

θ1

(∣∣∣∣∂ργε∂t
∣∣∣∣2 + |∆ργε |

2
+ |∇ργε |

2
dxdt+ |ργε |

2

)
dxdt ≤ C (105)

where C = C(a0, T,N,Ψ,Ω, s1, λ1, zd) > 0. This implies that ∆ργε , ∇ργε and ργε
are bounded in L2(θ1, Q) where

L2(θ1, Q) =

{
ρ|

∫
Q

θ1ρ
2dx dt <∞

}
.

Therefore using the definitions of Ψ, ϕ̃ and η̃ given respectively by (68), (81)
and (80), we have that there exists C(a0, T,N,Ψ,Ω, s1, λ1, zd) > 0 such that

‖ργε‖L2((0,T−β);H2(Ω)) ≤ C, (106)

for some β > 0. Hence ργε ⇀ ρ̂γ weakly in D′(Q) and ργε ⇀ ρ̂γ weakly in D′(Σ).
Then passing to the limit in (59) when ε→ 0 we obtain that ρ̂γ satisfies (13).

�
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4 Conclusion

We prove that the linear heat equation with missing initial condition is Stackel-
berg null controllable provided that the follower control set is strictly included
in the leader control set,i.e: O  ω.

Notes
The authors declare that have no conflict of interest.
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