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Summary

We consider three different diffusion processes in a system with a thin membrane:
normal diffusion, classical subdiffusion, and slow subdiffusion. We conduct the con-
siderations following the rule: If a diffusion equation is derived from a certain
theoretical model, boundary conditions at a thin membrane should also be derived
from this model with additional assumptions taking into account selective properties
of the membrane. To derive diffusion equations and boundary conditions at a thin
membrane, we use a particle random walk model in one-dimensional membrane sys-
tem in which space and time variables are discrete. Then we move from discrete to
continuous variables.We show that the boundary conditions depend on both selective
properties of the membrane and a type of diffusion in the system.
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1 INTRODUCTION

Normal diffusion and anomalous diffusion are stochastic processes that can be described by partial differential equations derived
from various stochastic models1,2,3,4,5,6,7. Diffusion is usually characterized by the time evolution of mean square displacement
of a particle

⟨

(Δx)2(t)
⟩

∼ f (t). (1)
The function f is very often used to define a type of diffusion, f (t) = t� with � > 1 for superdiffusion, � = 1 for normal
diffusion, 0 < � < 1 for classical subdiffusion, when f (t) is a slowly varying function we have slow subdiffusion (which is also
called ultraslow diffusion)8,9. In the following we consider normal diffusion and subdiffusion processes in a one–dimensional
system. Formally, normal diffusion can be treated as a special case of subdiffusion for which � = 1. However, the physical
interpretation of normal diffusion differs from the interpretation of subdiffusion. Namely, in the Continuous Time RandomWalk
(CTRW) model4,6, the average waiting time of a diffusing particle for a jump is finite for normal diffusion and infinite for both
types of subdiffusion. Subdiffusion occurs in media where the movement of molecules is very hindered comparing to diffusion
in ‘ordinary’ liquids. Classical subdiffusion can occur in gels or porous media10,11. This process is observed in various biological
systems, see for example12,13,14,15,16,17. To distinguish between classical subdiffusion and slow subdiffusion, it is required to
include in the considerations fractional moments of the distribution of time which is needed to take particle’s next step; this issue
is discussed in18. We mention that these processes are qualitatively different. It is supposed that slow subdiffusion can occur in
crowded disordered media, such as narrow membrane channels19.

†Boundary conditions at a thin membrane for normal diffusion, classical subdiffusion, and slow subdiffusion processes
0Abbreviations: CTRW, Continuous Time Random Walk
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Usually, modelling normal or anomalous diffusion in the natural sciences differential or differential-integral diffusion
equations are derived from certain theoretical models. An example is the fractional subdiffusion equation derived from the
CTRW model4,6. In biological systems, the diffusion of particles is additionally hindered by the presence of membranes. It is
essential to determine the boundary conditions at a thin membrane which is treated here as a partially absorbing or partially
reflecting wall. However, membrane boundary conditions are often just assumed. In our opinion, the boundary conditions should
take into account the characteristic features of the process that have been considered when deriving the diffusion equation. We
therefore postulate: If the diffusion equation is derived from a certain theoretical model, the boundary conditions at the thin
membrane should also be derived from this model with additional assumptions taking into account the selective properties of
the membrane. In other words, the boundary conditions should take into account not only the permeability of the membrane,
but also a type of particle transport in the system. In particular, the boundary conditions commonly used for normal diffusion
should not be applied, without any justification, for a system in which subdiffusion occurs. Assuming that particles diffuse inde-
pendently of each other, the diffusion equation can be derived from the model describing the random walk of a single particle.
To derive membrane boundary conditions, random walk of a particle models on a discrete lattice with continuous time have
been often used20,21,22,23,24,25. We mention that the classification of boundary conditions at a partially permeable or absorbing
wall for the diffusion process, especially using the Feller semigroup method, has been widely considered, see26,27,28.
In this paper we present a simple particle randomwalk model in a one-dimensional system with a thin membrane, which leads

to both diffusion equations and boundary conditions at the membrane. Unlike in the papers cited above, we assume that a particle
is not temporarily retained at a point representing the membrane. The results obtained are qualitatively different from the results
presented in the above cited papers. We show that the boundary conditions depend on both a membrane permeability coefficient
and a type of diffusion. First, we consider a particle’s random walk in a system in which spatial and time variables are discrete.
Then we move from discrete to continuous variables. The model differs from the CTRW model because a random variable is
only the time between particle’s jumps, while the jump length is a parameter. We show that this model is useful for modelling
diffusion in a membrane system. In our considerations, we first derive the probability distributions of finding a diffusing particle
in both parts of the system separated by a thin membrane. Then, we derive boundary conditions from the obtained distributions.
We mention that such a way of deriving boundary conditions at fully reflecting or fully absorbing wall for normal diffusion has
been presented in29. The model presented in this paper has been used to model different diffusion processes in systems with a
thin membrane18,30,31,32,33,34. The aim of this paper is to show that boundary conditions at the membrane should depend on the
type of diffusion. We also present the new form of boundary condition at the membrane for the slow subdiffusion process.
The organization of paper is as follows. In Sec. 2 we show equations for different types of diffusion and their fundamental

solutions derived by means of the Laplace transform method. In Sec. 3 we show that the equations and their fundamental
solutions can be derived from a simple random walk model of a particle in a discrete system. In Sec. 4 we show that this model
can be simply generalized to a system with a thin membrane. We also derive fundamental solutions for the membrane system
by means of the method presented in Sec. 3, taking into account the selective properties of the membrane. From the solutions
we obtain general forms of boundary conditions at a thin membrane. Explicit forms of fundamental solutions and boundary
conditions at the membrane for normal diffusion, classical subdiffusion, and slow subdiffusion are presented in Sec. 5. A brief
discussion of the results is in Sec. 6.

2 NORMAL DIFFUSION AND SUBDIFFUSION EQUATIONS AND THEIR
FUNDAMENTAL SOLUTIONS

We assume that the general form of subdiffusion equation reads (to shorten the description, we treat here normal diffusion as a
special case of subdiffusion for � = 1)

t

∫
0

F (t − t′)
)P (x, t′; x0)

)t′
dt′ = D

)2P (x, t; x0)
)x2

, (2)

where P (x, t; x0) denotes a probability of finding a diffusing particle at a point x at time t, x0 denotes the initial position of the
particle, D is a diffusion coefficient,

P (x; 0; x0) = �(x − x0), (3)
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� is the delta–Dirac function. A solution to diffusion equation which fulfils the initial condition (3) is usually called a fundamental
solution. Considering diffusion in the interval (−∞,∞) the boundary conditions are assumed to be

P (±∞; t; x0) = 0. (4)

If the Laplace transform, [f (t)] = f̂ (s) = ∫ ∞
0 e−stf (t)dt, of the function F exists, in terms of the Laplace transform Eq. (2)

reads
v(s)
s

[

sP̂ (x, s; x0) − P (x, 0; x0)
]

= D
)2P̂ (x, s; x0)

)x2
. (5)

where
v(s) = sF̂ (s). (6)

The fundamental solution to Eq. (5) with initial condition (3) and the Laplace transform of boundary conditions (4) is

P̂ (x, s; x0) =

√

v(s)

2s
√

D
e−|x−x0|

√

v(s)
D . (7)
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FIGURE 1 Plots of fundamental solutions to normal diffusion (9), classical subdiffusion (12), and slow subdiffusion (20)
equations for a homogeneous system without a membrane, D = 10, x0 = 0, and t = 1000, the values of other parameters
are given in the legend, the lines labelled by � and by r represent the solutions to classical subdiffusion and slow subdiffusion
equation, respectively, the case of � = 1 corresponds to normal diffusion. All quantities are given in arbitrarily chosen units.

The function v defines a diffusion type. We choose this function so that it leads to the relation (1) defining an appropriate type
of diffusion,

⟨

(Δx)2(t)
⟩

= ∫ ∞
−∞(x− x0)

2P (x, t; x0)dx. For normal diffusion we assume v(s) = s. Then, F (t− t′) = �(t− t′) and



4 KOSZTOŁOWICZ ET AL

we get the well–known normal diffusion equation
)P (x, t; x0)

)t
= D

)2P (x, t; x0)
)x2

. (8)

The fundamental solution to Eq. (8) is the Gaussian distribution

P (x, t; x0) =
1

2
√

�Dt
e−

(x−x0)
2

4Dt . (9)

Eq. (9) provides
⟨

(Δx)2(t)
⟩

= 2Dt.
Considering classical subdiffusion we suppose v(s) = s� , 0 < � < 1. Using the formula −1[s�f̂ (s) − s�−1f (0)] =

d�Cg(t)∕dt
� ∶= (1∕Γ(1 − �)) ∫ t

0 dt
′(df (t′)∕dt′)∕(t − t′)� , 0 < � < 1, where d�Cg(t)∕dt

� is the Caputo fractional derivative, we
obtain the classical subdiffusion equation

)�CP (x, t; x0)
)t�

= D
)2P (x, t; x0)

)x2
, (10)

0 < � < 1. In this case we have F (t−t′) = 1∕Γ(1−�)(t−t′)� , Γ denotes the Gamma–Euler function. Eq. (10) can be transformed
into the form in which the Riemann–Liouville fractional time derivative of the 1 − � order occurs on the right–hand side of the
equation; this form is most often used in the description of classical subdiffusion4,6. Using the formula35

−1
[

s�e−as�
]

≡ f�,�(t; a) =
1
t�+1

∞
∑

k=0

1
k!Γ(−k� − �)

(

− a
t�
)k
, (11)

we get

P (x, t; x0) =
1

2
√

D
f�∕2−1,�∕2

(

t;
|x − x0|
√

D

)

. (12)

Eq. (12) gives
⟨

(Δx)2(t)
⟩

= 2Dt�∕Γ(1 + �). The function f is related to theH–Fox function

f�,�(t; a) = �−1a−(1+�)∕�H10
11

(

a1∕�

t
|

|

|

|

1 1
(1 + �)∕� 1∕�

)

, (13)

and to theW Wright function, f�,�(t; a) = W (−a∕t� ; −�,−�)∕t�+1.
For slow subdiffusion we assume that v(s) is a slowly varying function9. The slow subdiffusion equation depends on the

detailed form of v(s). Below we assume
v(s) = 1

lnr(1∕s)
, r > 0, (14)

0 < s < 1. Due to the relation36

−1
[

1
s ln�s

]

=
�(t, � − 1)
Γ(�)

, (15)

� > 0, where

�(t, �) =

∞

∫
0

d�
t���

Γ(1 + � )
(16)

is the Volterra–type function37, we get

1
Γ(r)

t

∫
0

�(t − t′, r − 1)
)P (x, t′; x0)

)t′
dt′ = D

)2P (x, t; x0)
)x2

. (17)

To calculate the inverse Laplace transform of fundamental solutions over the long time limit we use the following strong Taube-
rian theorem5: If �(t) ≥ 0, �(t) is ultimately monotonic like t ←→ ∞,  is slowly–varying and 0 < � < ∞, then each of the
relations

�̂(s) ≈
(s)
s�

(18)

as s ←→ 0 and
�(t) ≈

(1∕t)
Γ(�)t1−�

(19)
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as t ←→ ∞ implies the other. A slowly varying function is defined here by means of the following condition(as)∕(s)→ 1
when s→ 0+ for any a > 0. In the long time limit t ≫ 1 we have

P (x, t; x0) =
1

2
√

D lnrt
e−

|x−x0 |
√

D lnrt , (20)

and
⟨

(Δx)2(t)
⟩

= 2D lnrt.
Plots of the fundamental solutions (9), (12), and (20) are presented in Fig. 1 . The most focused around the maximum located

at x = 0 are the fundamental solutions to slow subdiffusion equation for the small values of the parameter r. Fundamental
solutions obtained for r < 1 are not shown in the plot due to their considerable height and very low variance.

3 DISCRETE MODEL OF SUBDIFFUSION

We consider random walk of a particle in a one-dimensional homogeneous system in which the time n and the position of the
particle m are discrete. In the simplest model, the particle’s jump can be made only to adjacent positions with probability equals
1∕2. This process can be described by the following difference equation

Pn+1(m;m0) =
1
2
Pn(m − 1;m0) +

1
2
Pn(m + 1;m0) , (21)

where Pn(m;m0) is a probability that the particle is in the positionm after n steps,m0 is the initial particle’s position, P0(m;m0) =
�m,m0 .
We move from discrete to continuous variables in two steps. In the first step, we move from discrete to continuous time using

the equation

P (m, t;m0) =
∞
∑

n=0
Pn(m,m0)Φn(t) , (22)

whereΦn(t) is the probability that the particle takes n steps over a time interval [0, t]. This probability is described by the equation

Φn(t) = Ψn(t′)U (t − tn) , (23)

where ! is the probability density of waiting time for the particle’s jump, Ψn(t′) is the probability of making n jumps in the
time interval [0, t′] with the last jump being made exactly at time t′, Ψn(t′) = ∫ t

0 Ψn−1(t
′)!(t − t′)dt′ for n > 1, Ψ1(t′) = !(t′),

U (t− t′) = 1− ∫ t−t′

0 !(t′′)dt′′ is the probability that the particle does not jump in the time interval [t− t′, t]. Due to the formulas


[

∫ t
0 f (t

′)g(t − t′)dt′
]

= f̂ (s)ĝ(s) and [1] = 1∕s we get Φ̂n(s) = !̂n(s)(1 − !̂(s))∕s. In further considerations we use the
generating function of the difference equation defined as

S(m, z;m0) =
∞
∑

n=0
znPn(m;m0) . (24)

The above equations provide7

P̂ (m, s;m0) =
1 − !̂(s)

s
S
(

m, !̂(s);m0
)

. (25)

In the next step, we use the following equations to move from discrete to continuous spatial variable

x = �m , x0 = �m0 , P (x, t; x0) =
P (m, t;m0)

�
, (26)

where � is the distance between adjacent positions. The parameter � can be interpreted as a mean value of the length of a single
particle jump, which is very small but non–zero. The frequency of jumps between adjacent points, and thus the waiting time of
the particle for a jump, depends on the distance between the discrete points. As shown in32, there is

!̂(s) = 1
1 + �2v(s)

2D

, (27)

where the diffusion coefficient D is independent of �. Due to the normalization condition !̂(0) = 1, the function v fulfils the
condition v(s)→ 0 when s→ 0.
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The generating function of Eq. (21) reads

S(m, z;m0) =
[�(z)]|m−m0|
√

1 − z2
, (28)

where �(z) = (1−
√

1 − z2)∕z. From Eqs. (22)–(28) we get Eq. (7) in the limit of small �. The Laplace transform of the diffusion
equation Eq. (5) can also be derived from Eq. (21). From Eqs. (21), (24), and (25) we get

1
z
[

S(m, z;m0) − P0(m;m0)
]

= 1
2
S(m − 1, z;m0) +

1
2
S(m + 1, z;m0) . (29)

Subtracting S(m, z;m0) from both sides of (29) and using Eqs. (25) and (27) we get Eq. (5) in the limit of small �.

4 DISCRETE MODEL OF SUBDIFFUSION IN A SYSTEMWITH A THIN MEMBRANE

Let a thin membrane be placed in a discrete system between points N and N + 1. A particle that tries to jump through the
membrane can do it with a probability 1 − q or can be stopped by the membrane with a probability q, see Fig. 2 . This process
is described by the following difference equations

PA,n+1(m;m0) =
1
2
PA,n(m − 1;m0) +

1
2
PA,n(m + 1;m0), m ≤ N − 1, (30)

PA,n+1(N ;m0) =
1
2
PA,n(N − 1;m0) +

1 − q
2

PB,n(N + 1;m0) +
q
2
PA,n(N ;m0), (31)

PB,n+1(N + 1;m0) =
1 − q
2

PA,n(N ;m0) +
1
2
PB,n(N + 2;m0) +

q
2
PB,n(N + 1;m0), (32)

PB,n+1(m;m0) =
1
2
PB,n(m − 1;m0) +

1
2
PB,n(m + 1;m0), m ≥ N + 2, (33)

where the index A means that the point m is located in the region A = (−∞, N] and B means that the position of the point is in
the region B = [N + 1,∞).

N+1N N+2N-1m+1m-1 m

A B

ε ε ε

 
PA,n(m;m )0

1/2 1/2
1/2

1/2
q/2

q/2

(1-q)/2

(1-q)/2

 
P      B,n (m;m ) 0

FIGURE 2 Random walk of a particle in a discrete system with a thin partially permeable wall located betweenN andN + 1
site, q is the probability of stopping the particle by the wall.

We assume that m0 ≤ N , the initial conditions are

PA,0(m;m0) = �m,m0 , PB,0(m;m0) = 0. (34)

The generating functions are defined separately for the regions A and B

Si(m, z;m0) =
∞
∑

n=0
znPi,n(m,m0) , (35)

i = A,B. After calculations we get

SA(m, z;m0) =
[�(z)]|m−m0|
√

1 − z2
+ ΛA(z)

[�(z)]2N−m−m0
√

1 − z2
, (36)
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SB(m, z;m0) =
[�(z)]m−m0−1
√

1 − z2
ΛB(z) , (37)

where ΛA(z) = [(1∕�(z) − q)(q − �(z)) + (1 − q)2]∕[(1∕�(z) − q)2 − (1 − q)2] and ΛB(z) = (1 − q)(1∕�(z) − �(z))∕[(1∕�(z) −
q)2−(1−q)2]. The Laplace transforms of fundamental solutions in the regions i = A,B are calculated by means of the equation

P̂i(m, s;m0) =
1 − !̂(s)

s
Si

(

m, !̂(s);m0
)

. (38)

The membrane permeability coefficient should be redefined in a continuous system. The reason for this is that the mean
number of particle steps over time interval [0, t] between adjacent positions n increases to infinity when � → 0, according to
the formula ⟨n(t)⟩ = !̂(s)∕[s(1 − !̂(s))] ∼ 1∕�2. However, a particle that tries to jump through a partially permeable membrane
any number of times in any short time interval will do it with a probability equals 1. In such a case, the membrane loses its
selective property. In order to avoid this ‘non-physical effect’, we assume that the probability of the particle jumping through the
membrane depends on �. Thus, we take the substitution q → q̃(�) in Eqs. (36) and (37). It has been shown32 that the membrane
permeability coefficient  defined in the continuous system as

1 − q̃(�) = �


(39)

ensures that the probability of the particle jumping through the membrane does not depend on �.
From Eqs. (34)–(38) we get in the limit of small �

P̂A(x, s; x0) =

√

v(s)

2s
√

D

⎛

⎜

⎜

⎜

⎝

e−|x−x0|
√

v(s)
D +


√

v(s)
D

2 + 
√

v(s)
D

e−(2xN−x−x0)
√

v(s)
D

⎞

⎟

⎟

⎟

⎠

, (40)

P̂B(x, s; x0) =

√

v(s)

s
√

D

⎛

⎜

⎜

⎜

⎝

1

2 + 
√

v(s)
D

⎞

⎟

⎟

⎟

⎠

e−(x−x0)
√

v(s)
D , (41)

where xN = N�. The Laplace transforms of probability fluxes in the regions i = A,B are defined as

Ĵi(x, s; x0) = −D
s
v(s)

)P̂i(x, s; x0)
)x

. (42)

Combining the values of functions P̂A, P̂B , ĴA, and ĴB calculated for x = xN from Eqs. (40)–(42), we get the following boundary
conditions at a thin membrane given in terms of the Laplace transforms

ĴA(x−N , s; x0) = ĴB(x
+
N , s; x0) , (43)

which provides
)P̂A(x, s; x0)

)x

|

|

|

|

|x=x−N

=
)P̂B(x, s; x0)

)x

|

|

|

|

|x=x+N

, (44)

and

P̂A(x−N , s; x0) =

(

1 + 
√

v(s)
D

)

P̂B(x+N , s; x0). (45)

In the time domain the boundary conditions are
)PA(x, t; x0)

)x
|

|

|

|x=x−N

=
)PB(x, t; x0)

)x
|

|

|

|x=x+N

, (46)

PA(x−N , t; x0) = PB(x
+
N , t; x0) +


√

D

t

∫
0

G(t − t′)PB(x+N , t
′; x0)dt′, (47)

where G(t) = −1[
√

v(s)]. The boundary condition (46) shows that the flux is continuous at the membrane. This is an expected
result, because we consider the process in which a particle cannot be retained inside the membrane. The interpretation of bound-
ary condition (47) is that the difference in probability of finding the particle on the membrane surfaces is expressed by the
integral operator with a kernel G which depends on a type of diffusion. In the following, we find the boundary conditions for
different types of diffusion.
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5 FUNDAMENTAL SOLUTIONS IN A MEMBRANE SYSTEM AND THE BOUNDARY
CONDITIONS FOR NORMAL DIFFUSION AND SUBDIFFUSION

Below there are presented the fundamental solutions obtained from the Laplace transforms (40) and (41). We also present the
boundary condition at a thin membrane that complements the condition of the diffusion flux continuity (46).
For normal diffusion we get

PA(x, t; x0) =
1

2
√

�Dt
e−

(x−x0)
2

4Dt + 1

2
√

�Dt
e−

(2xN−x−x0)
2

4Dt (48)

− 1

e
2

(2xN−x−x0)+

4
2
Dt erfc

(

2xN − x − x0
2
√

Dt
+ 2


√

Dt

)

,

PB(x, t; x0) =
1

e
2

(x−x0)+

4
2
Dt erfc

(

x − x0
2
√

Dt
+ 2


√

Dt

)

, (49)

where erfc(u) = (2∕
√

�) ∫ ∞
u d� e−�2 is the complementary error function. The boundary condition contains the Riemann–

Liouville fractional time derivative of the order 1∕2 and reads

PA(x−N , t; x0) =

(

1 +


√

D

)1∕2

)t1∕2

)

PB(x+N , t; x0) , (50)

where the Riemann–Liouville fractional derivative is defined for 0 < � < 1 as

d�f (t)
dt�

= 1
Γ(1 − �)

d
dt

t

∫
0

dt′(t − t′)−�f (t′). (51)

For classical subdiffusion, from Eqs. (11), (40), (41) with v(s) = s� , 0 < � < 1, and using the relation 1∕(2 + 
√

s�∕D) =
(1∕2)

∑∞
n=0(−

√

s�∕(2
√

D))n, we obtain

PA(x, t; x0) =
1

2
√

D
f�∕2−1,�∕2

(

t;
|x − x0|
√

D

)

(52)

+ 1

2
√

D

∞
∑

n=0
(−1)n

(



2
√

D

)n+1

f�(1+n∕2)−1,�∕2

(

t;
2xN − x − x0

√

D

)

,

PB(x, t; x0) =
1

2
√

D

∞
∑

n=0

(

−


2
√

D

)n

f�((1+n)∕2)−1,�∕2

(

t;
x − x0
√

D

)

. (53)

The boundary condition is

PA(x−N , t; x0) =

(

1 +


√

D

)�∕2

)t�∕2

)

PB(x+N , t; x0) . (54)

For slow subdiffusion v(s) is a slowly varying function when s → 0. In the limit of long time we use the strong Tauberian
theorem to calculate the inverse Laplace transform. We obtain

PA(x, t; x0) =

√

v(1∕t)

2
√

D

⎛

⎜

⎜

⎜

⎝

e−|x−x0|
√

v(1∕t)
D +


√

v(1∕t)
D

2 + 
√

v(1∕t)
D

e−(2xN−x−x0)
√

v(1∕t)
D

⎞

⎟

⎟

⎟

⎠

, (55)

PB(x, t; x0) =

√

v(1∕t)
√

D

⎛

⎜

⎜

⎜

⎝

1

2 + 
√

v(1∕t)
D

⎞

⎟

⎟

⎟

⎠

e−(x−x0)
√

v(1∕t)
D . (56)



KOSZTOŁOWICZ ET AL 9

Plots of the functions (55) and (56) obtained for v(1∕t) = 1∕lnrt in the long time limit t ≫ 1 are presented in Fig. 3 . From Eqs.
(14), (15), (16), and (45), using the formulas −1[sf̂ (s)] = df (t)∕dt + f (0), d�(t, �)∕dt = �(t, � + 1)∕t, and �(0, �) = 0, we
get the following boundary condition at a thin membrane

PA(x−N , t; x0) = PB(x
+
N , t; x0) +


√

DΓ(r∕2)

t

∫
0

�(t − t′; r∕2)
t − t′

PB(x+N , t
′; x0)dt′. (57)

- 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2
0 . 1 4
0 . 1 6

P(x
,t;x

0)

x

 r = 0 . 1 ,  t = 1 0
 r = 0 . 1 ,  t = 1 0 2

 r = 0 . 1 ,  t = 1 0 3

 α= 0 . 5 ,  t = 1 0
 α= 0 . 5 ,  t = 1 0 2

 α= 0 . 5 ,  t = 1 0 3

FIGURE 3 Plots of functions Eqs. (52), (53), (55), and (56) for parameters and times given in the legend, here x0 = −10,
xN = 0,  = 2, and D = 10.

The plots showing the time evolution of the functions (52) and (53) for classical subdiffusion with � = 0.5 and the functions
(55) and (56) for slow subdiffusion with r = 0.1 are presented in Fig. 3 . The function for slow subdiffusion changes very little
over a fairly long time interval, while the functions for classical subdiffusion change relatively quickly, although subdiffusion
with � = 0.5 is a very slow process compared to normal diffusion.

6 FINAL REMARKS

We have shown the model from which both subdiffusion equations and boundary conditions at a thin membrane can be derived.
The main issue considered in this paper is whether the boundary conditions depend on the type of diffusion. We have argued that
such a relationship exists. Below we present the additional argument that boundary conditions should take into account the type
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of diffusion. Let us consider the boundary condition commonly used in a system with normal diffusion, namely Eq. (46) and

JB(x+N , t; x0) = �
[

PA(x−N , t; x0) − PB(x
+
N , t; x0)

]

, (58)

the parameter � controls the membrane permeability. The Laplace transforms of fundamental solutions to Eq. (5) with boundary
conditions (46), (58), and PA(−∞, t; x0) = PB(∞, t; x0) = 0 for x0 < xN are

P̂A(x, s; x0) =
1
2s

√

v(s)
D

[

e−|x−x0|
√

v(s)
D + (1 − Ξ(s))e−(2xN−x−x0)

√

v(s)
D

]

, (59)

P̂B(x, s; x0) =
Ξ(s)
2s

√

v(s)
D

e−(2xN−x−x0)
√

v(s)
D , (60)

where Ξ(s) = 2∕(s
√

D∕�v(s) + 2). The functions Eqs. (59) and (60) coincide with Eqs. (40) and (41), respectively, only when
v(s) = s and � = D∕ . Thus, the boundary condition Eq. (58) is equivalent to boundary condition derived in this paper for
the case of normal diffusion only. The above example shows that the boundary condition (58) cannot be applied in the cases of
classical or slow subdiffusion unless the diffusion process in the membrane system meets the assumptions of the model, Sec. 4.
The boundary conditions have been derived for the probabilities PA and PB . However, if diffusing particles move indepen-

dently of each other, then the concentration of the particles C can be calculated by means of the formula

C(x, t) =

∞

∫
−∞

P (x, t; x0)C(x0, 0)dx0, (61)

where C(x0, 0) is the initial concentration. Due to Eq. (61), under the assumption presented above, the boundary conditions, as
well as the diffusion equations, are valid also for particle concentration for any initial condition, see the discussion in32.
The question arises whether the model presented in this paper is universal. In our opinion, this question should remain open,

although the following facts prove the model usefulness: (1) the model has a simple physical interpretation, (2) the model
provides equations of different types of diffusion that can also be derived from the other models such as the CTRWmodel4,6, (3)
the boundary condition derived from this model for normal diffusion (50) has been confirmed empirically38, (4) the boundary
condition for classical subdiffusion (54) have provided solutions to the subdiffusion equation that coincide with the empirical
results describing the release of antibiotics from the gel medium through a partially permeable membrane30. However, regardless
of the above arguments, the following conclusion seems to be universal: the boundary conditions at the membrane should take
into account the selective properties of the membrane as well as the type of diffusion in the system.
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