References
1. Frenzel A, Schirrmann T, Hust M. Phage display-derived human
antibodies in clinical development and therapy. MAbs
2016;8 (7):1177-94 doi:
10.1080/19420862.2016.1212149[published Online First: Epub
Date]|.
2. Wang Y, Gao S, Lv J, Lin Y, Zhou L, Han L. Phage Display Technology
and its Applications in Cancer Immunotherapy. Anti-cancer agents in
medicinal chemistry 2019;19 (2):229-35
doi:10.2174/1871520618666181029140814[published Online First: Epub
Date]|.
3. Aghebati-Maleki L, Bakhshinejad B, Baradaran B, et al. Phage display
as a promising approach for vaccine development. Journal of biomedical
science 2016;23 (1):66-66 doi:
10.1186/s12929-016-0285-9[published Online First: Epub
Date]|.
4. Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display
in the Quest for New Selective Recognition Elements for Biosensors. ACS
Omega 2019;4 (7):11569-80 doi:
10.1021/acsomega.9b01206[published Online First: Epub
Date]|.
5. Barderas R, Benito-Pena E. The 2018 Nobel Prize in Chemistry: phage
display of peptides and antibodies. Analytical and bioanalytical
chemistry 2019;411 (12):2475-79 doi:
10.1007/s00216-019-01714-4[published Online First: Epub
Date]|.
6. Bakhshinejad B, Zade HM, Shekarabi HS, Neman S. Phage display
biopanning and isolation of target-unrelated peptides: in search of
nonspecific binders hidden in a combinatorial library. Amino acids
2016;48 (12):2699-716 doi: 10.1007/s00726-016-2329-6[published
Online First: Epub Date]|.
7. Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease
pathophysiology and its management: an update. Pharmacological Reports
2015;67 (2):195-203 doi:
https://doi.org/10.1016/j.pharep.2014.09.004[published
Online First: Epub Date]|.
8. van Groen T, Wiesehan K, Funke SA, Kadish I, Nagel-Steger L, Willbold
D. Reduction of Alzheimer’s Disease Amyloid Plaque Load in Transgenic
Mice by D3, a D-Enantiomeric Peptide Identified by Mirror Image Phage
Display. ChemMedChem 2008;3 (12):1848-52 doi:
10.1002/cmdc.200800273[published Online First: Epub Date]|.
9. Dammers C, Yolcu D, Kukuk L, et al. Selection and Characterization of
Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of
Alzheimer Disease. PLOS ONE 2016;11 (12):e0167432 doi:
10.1371/journal.pone.0167432[published Online First: Epub
Date]|.
10. Rudolph S, Klein AN, Tusche M, et al. Competitive Mirror Image Phage
Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity.
PLOS ONE 2016;11 (2):e0147470 doi:
10.1371/journal.pone.0147470[published Online First: Epub
Date]|.
11. Read J, Suphioglu C. Identification of a BACE1 Binding Peptide
Candidate for the Prevention of Amyloid Beta in Alzheimer’s Disease.
Cellular physiology and biochemistry: international journal of
experimental cellular physiology, biochemistry, and pharmacology
2019;53 (2):413-28
12. Cai C, Dai X, Zhu Y, et al. A specific RAGE-binding peptide
biopanning from phage display random peptide library that ameliorates
symptoms in amyloid β peptide-mediated neuronal disorder. Applied
Microbiology and Biotechnology 2016;100 (2):825-35 doi:
10.1007/s00253-015-7001-7[published Online First: Epub
Date]|.
13. Rauth S, Hinz D, Börger M, et al. High-affinity Anticalins with
aggregation-blocking activity directed against the Alzheimer β-amyloid
peptide. Biochemical Journal 2016;473 (11):1563-78 doi:
10.1042/bcj20160114[published Online First: Epub Date]|.
14. Munke A, Persson J, Weiffert T, et al. Phage display and kinetic
selection of antibodies that specifically inhibit amyloid
self-replication. Proceedings of the National Academy of Sciences
2017;114 :201700407 doi: 10.1073/pnas.1700407114[published
Online First: Epub Date]|.
15. Chen J, Huang Y, Zhu C, et al. Early detection of Alzheimer’s
disease by peptides from phage display screening. Brain Res
2019;1721 :146306 doi:
10.1016/j.brainres.2019.146306[published Online First: Epub
Date]|.
16. San Segundo-Acosta P, Montero-Calle A, Garranzo-Asensio M, et al.
ANALYSIS OF THE HUMORAL RESPONSE IN ALZHEIMER’S DISEASE USING
THE HIGH-THROUGHPUT SCREENING COMBINATION OF T7 PHAGE LIBRARIES AND
PROTEIN MICROARRAYS. Alzheimer’s & Dementia: The Journal of the
Alzheimer’s Association 2017;13 (7):P1034 doi:
10.1016/j.jalz.2017.06.1458[published Online First: Epub
Date]|.
17. San Segundo-Acosta P, Montero-Calle A, Fuentes M, Rábano A, Villalba
M, Barderas R. Identification of Alzheimer’s Disease Autoantibodies and
Their Target Biomarkers by Phage Microarrays. Journal of Proteome
Research 2019;18 (7):2940-53 doi:
10.1021/acs.jproteome.9b00258[published Online First: Epub
Date]|.
18. Mann AP, Scodeller P, Hussain S, et al. Identification of a peptide
recognizing cerebrovascular changes in mouse models of Alzheimer’s
disease. Nature Communications 2017;8 (1):1403 doi:
10.1038/s41467-017-01096-0[published Online First: Epub
Date]|.
19. Tai C-Y, Ma H-T, Huang S-C, et al. IDENTIFICATION OF SYNAPTIC TAU
ANTIBODIES IN ALZHEIMER’S DISEASE AND RELATED TAUOPATHIES. Alzheimer’s
& Dementia: The Journal of the Alzheimer’s Association
2018;14 (7):P1440 doi: 10.1016/j.jalz.2018.06.2421[published
Online First: Epub Date]|.
20. Turner MD. The identification of TNFR5 as a therapeutic target in
diabetes. Expert Opinion on Therapeutic Targets
2017;21 (4):349-51 doi:
10.1080/14728222.2017.1297426[published Online First: Epub
Date]|.
21. Ndisang JF, Vannacci A, Rastogi S. Insulin Resistance, Type 1 and
Type 2 Diabetes, and Related Complications 2017. J Diabetes Res
2017;2017 :1478294-94 doi: 10.1155/2017/1478294[published
Online First: Epub Date]|.
22. King R, Tiede C, Simmons K, Fishwick C, Tomlinson D, Ajjan R.
Inhibition of complement C3 and fibrinogen interaction: a potential
novel therapeutic target to reduce cardiovascular disease in diabetes.
The Lancet 2015;385 :S57 doi:
https://doi.org/10.1016/S0140-6736(15)60372-5[published
Online First: Epub Date]|.
23. Tucker DF, Sullivan JT, Mattia KA, et al. Isolation of
state-dependent monoclonal antibodies against the 12-transmembrane
domain glucose transporter 4 using virus-like particles. Proc Natl Acad
Sci U S A 2018;115 (22):E4990-e99 doi:
10.1073/pnas.1716788115[published Online First: Epub
Date]|.
24. Ngoh Y-Y, Lim TS, Gan C-Y. Screening and identification of five
peptides from pinto bean with inhibitory activities against α-amylase
using phage display technique. Enzyme and Microbial Technology
2016;89 :76-84 doi:
https://doi.org/10.1016/j.enzmictec.2016.04.001[published
Online First: Epub Date]|.
25. Tenspolde M, Zimmermann K, Weber LC, et al. Regulatory T cells
engineered with a novel insulin-specific chimeric antigen receptor as a
candidate immunotherapy for type 1 diabetes. Journal of Autoimmunity
2019;103 :102289 doi:
https://doi.org/10.1016/j.jaut.2019.05.017[published
Online First: Epub Date]|.
26. Kim D, Jeon H, Ahn S, Choi WI, Kim S, Jon S. An approach for
half-life extension and activity preservation of an anti-diabetic
peptide drug based on genetic fusion with an albumin-binding aptide.
Journal of Controlled Release 2017;256 :114-20 doi:
https://doi.org/10.1016/j.jconrel.2017.04.036[published
Online First: Epub Date]|.
27. Demartis A, Lahm A, Tomei L, et al. Polypharmacy through Phage
Display: Selection of Glucagon and GLP-1 Receptor Co-agonists from a
Phage-Displayed Peptide Library. Scientific Reports
2018;8 (1):585 doi: 10.1038/s41598-017-18494-5[published
Online First: Epub Date]|.
28. Gomes KFB, Semzezem C, Batista R, et al. Importance of Zinc
Transporter 8 Autoantibody in the Diagnosis of Type 1 Diabetes in Latin
Americans. Scientific Reports 2017;7 (1):207 doi:
10.1038/s41598-017-00307-4[published Online First: Epub
Date]|.
29. Wu Q, Wang X, Gu Y, et al. Screening and identification of human
ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes
phage display library. Science China Life Sciences
2016;59 (7):686-93 doi: 10.1007/s11427-016-5077-7[published
Online First: Epub Date]|.
30. Inoue H, Shintani N, Sakurai Y, et al. PACAP Inhibits β-cell Mass
Expansion in a Mouse Model of Type II Diabetes: Persistent Suppressive
Effects on Islet Density. Front Endocrinol (Lausanne)
2013;4 (27) doi: 10.3389/fendo.2013.00027[published Online
First: Epub Date]|.
31. Ma Y, Fang S, Zhao S, et al. A recombinant slow-release
PACAP-derived peptide alleviates diabetes by promoting both insulin
secretion and actions. Biomaterials 2015;51 :80-90 doi:
10.1016/j.biomaterials.2015.01.064[published Online First: Epub
Date]|.
32. Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives
in the development and management of type 2 diabetes. Nutrition &
Diabetes 2018;8 (1):8 doi: 10.1038/s41387-018-0017-1[published
Online First: Epub Date]|.
33. Abou El-Magd RM, Vozza NF, Tuszynski JA, Wishart DS. Isolation of
soluble scFv antibody fragments specific for small biomarker molecule,
L-Carnitine, using phage display. J Immunol Methods
2016;428 :9-19 doi: 10.1016/j.jim.2015.11.006[published Online
First: Epub Date]|.
34. Fahimi F, Sarhaddi S, Fouladi M, et al. Phage display-derived
antibody fragments against conserved regions of VacA toxin of
Helicobacter pylori. Applied Microbiology and Biotechnology
2018;102 (16):6899-913 doi:
10.1007/s00253-018-9068-4[published Online First: Epub
Date]|.
35. Xiong Y, Yang Z, Zhang J, Li J, Chen P, Xiang Y. Panning using a
phage-displayed random peptide library to identify peptides that
antagonize the Helicobacter pylori ArsS acid-sensing domain. Microbial
Pathogenesis 2019;135 :103614 doi:
https://doi.org/10.1016/j.micpath.2019.103614[published
Online First: Epub Date]|.
36. Facchin S, Digiglio L, D’Incà R, et al. Discrimination between
ulcerative colitis and Crohn’s disease using phage display identified
peptides and virus-mimicking synthetic nanoparticles. Nanomedicine:
Nanotechnology, Biology and Medicine 2017;13 (6):2027-36 doi:
https://doi.org/10.1016/j.nano.2017.04.007[published
Online First: Epub Date]|.
37. Cardona-Correa A, Rios-Velazquez C. Profiling lethal factor
interacting proteins from human stomach using T7 phage display
screening. Mol Med Rep 2016;13 (5):3797-804 doi:
10.3892/mmr.2016.5031[published Online First: Epub Date]|.
38. Park JP, Cropek DM, Banta S. High affinity peptides for the
recognition of the heart disease biomarker troponin I identified using
phage display. Biotechnol Bioeng 2010;105 (4):678-86 doi:
10.1002/bit.22597[published Online First: Epub Date]|.
39. Cooksley-Decasper S, Reiser H, Thommen DS, et al. Antibody phage
display assisted identification of junction plakoglobin as a potential
biomarker for atherosclerosis. PloS one 2012;7 (10):e47985-e85
doi: 10.1371/journal.pone.0047985[published Online First: Epub
Date]|.
40. Hemadou A, Laroche-Traineau J, Antoine S, et al. An innovative flow
cytometry method to screen human scFv-phages selected by in vivo
phage-display in an animal model of atherosclerosis. Scientific Reports
2018;8 (1):15016 doi: 10.1038/s41598-018-33382-2[published
Online First: Epub Date]|.
41. Jacobin-Valat MJ, Hemadou A, Fontayne A, et al. In Vivo Human Scfv
Phage Display Assisted Identification Of Galectin-3 As A New Biomarker
For Atherosclerosis. Atherosclerosis 2019;287 :e166 doi:
10.1016/j.atherosclerosis.2019.06.502[published Online First: Epub
Date]|.
42. Unbiased Screening of Kawasaki Disease Sera for Viral Antigen
Exposure. Open forum infectious diseases; 2017. Oxford University Press.
43. Negi P, Lövgren J, Malmi P, et al. Identification and analysis of
anti-HDL scFv-antibodies obtained from phage display based synthetic
antibody library. Clinical Biochemistry 2016;49 (6):472-79 doi:
https://doi.org/10.1016/j.clinbiochem.2015.11.020[published
Online First: Epub Date]|.
44. Saw PE, Song EW. Phage display screening of therapeutic peptide for
cancer targeting and therapy. Protein & cell
2019;10 (11):787-807 doi: 10.1007/s13238-019-0639-7[published
Online First: Epub Date]|.
45. Choi J-S, Joo SH. Recent Trends in Cyclic Peptides as Therapeutic
Agents and Biochemical Tools. Biomolecules & therapeutics
2020;28 (1):18
46. Yang H, Park H, Lee YJ, et al. Development of Human Monoclonal
Antibody for Claudin-3 Overexpressing Carcinoma Targeting. Biomolecules
2020;10 (1):51
47. Shukla GS, Krag DN, Peletskaya EN, et al. Intravenous infusion of
phage-displayed antibody library in human cancer patients: enrichment
and cancer-specificity of tumor-homing phage-antibodies. Cancer Immunol
Immunother 2013;62 (8):1397-410 doi:
10.1007/s00262-013-1443-5[published Online First: Epub
Date]|.
48. Ten Haaf A, Pscherer S, Fries K, Barth S, Gattenlohner S, Tur MK.
Phage display-based on-slide selection of tumor-specific antibodies on
formalin-fixed paraffin-embedded human tissue biopsies. Immunology
letters 2015;166 (2):65-78 doi:
10.1016/j.imlet.2015.05.013[published Online First: Epub
Date]|.
49. Carneiro AP, Reis CF, Morari EC, et al. A putative OTU
domain-containing protein 1 deubiquitinating enzyme is differentially
expressed in thyroid cancer and identifies less-aggressive tumours. Br J
Cancer 2014;111 (3):551-58 doi: 10.1038/bjc.2014.331[published
Online First: Epub Date]|.
50. Liu Q, Pang H, Hu X, et al. Construction of human single-chain
variable fragment antibodies of medullary thyroid carcinoma and single
photon emission computed tomography/computed tomography imaging in
tumor-bearing nude mice. Oncology reports 2016;35 (1):171-8 doi:
10.3892/or.2015.4345[published Online First: Epub Date]|.
51. Jin W, Qin B, Chen Z, Liu H, Barve A, Cheng K. Discovery of
PSMA-specific peptide ligands for targeted drug delivery. Int J Pharm
2016;513 (1-2):138-47 doi:
10.1016/j.ijpharm.2016.08.048[published Online First: Epub
Date]|.
52. Wada A, Terashima T, Kageyama S, et al. Efficient Prostate Cancer
Therapy with Tissue-Specific Homing Peptides Identified by Advanced
Phage Display Technology. Mol Ther Oncolytics 2019;12 :138-46
doi: 10.1016/j.omto.2019.01.001[published Online First: Epub
Date]|.
53. Fitting J, Blume T, Ten Haaf A, et al. Phage display-based
generation of novel internalizing antibody fragments for
immunotoxin-based treatment of acute myeloid leukemia. MAbs
2015;7 (2):390-402 doi:
10.1080/19420862.2015.1007818[published Online First: Epub
Date]|.
54. Muchima K, Todaka T, Shinchi H, et al. Development of sugar
chain-binding single-chain variable fragment antibody to adult T-cell
leukemia cells using glyco-nanotechnology and phage display method. The
Journal of Biochemistry 2018;163 (4):281-91 doi:
10.1093/jb/mvy005[published Online First: Epub Date]|.
55. FITC-Labelled Clone from Phage Display for Direct Detection of
Leukemia Cells in Blood; 2019; Cham. Springer International Publishing.
56. Ljungars A, Mårtensson L, Mattsson J, et al. A platform for
phenotypic discovery of therapeutic antibodies and targets applied on
Chronic Lymphocytic Leukemia. npj Precision Oncology
2018;2 (1):18 doi: 10.1038/s41698-018-0061-2[published Online
First: Epub Date]|.
57. Larsen SA, Meldgaard T, Fridriksdottir AJ, et al. Raising an
Antibody Specific to Breast Cancer Subpopulations Using Phage Display on
Tissue Sections. Cancer genomics & proteomics 2016;13 (1):21-30
“58. Sørensen KMJ, Meldgaard T, Melchjorsen CJ, et al. Upregulation of
Mrps18a in breast cancer identified by selecting phage antibody
libraries on breast tissue sections. BMC Cancer 2017;17 (1):19
doi: 10.1186/s12885-016-2987-5[published Online First: Epub
Date]|.
59. Mendes TFS, Kluskens LD, Rodrigues LR. Triple Negative Breast
Cancer: Nanosolutions for a Big Challenge. Advanced Science
2015;2 (11):1500053 doi: 10.1002/advs.201500053[published
Online First: Epub Date]|.
60. Liu F, Qi CL, Kong M, Liu TT, Li L, Li BJ. Screening specific
polypeptides of breast cancer stem cells from a phage display random
peptide library. Oncology letters 2016;12 (6):4727-31
61. Galbiati E, Gambini L, Civitarese V, et al. Blind targeting in
action: From phage display to breast cancer cell targeting with
peptide-gold nanoconjugates. Pharmacological Research
2016;111 :155-62 doi:
https://doi.org/10.1016/j.phrs.2016.06.007[published
Online First: Epub Date]|.
62. Jones KM, Karanam B, Jones-Triche J, et al. Phage Ligands for
Identification of Mesenchymal-Like Breast Cancer Cells and
Cancer-Associated Fibroblasts. Front Oncol 2018;8 (625) doi:
10.3389/fonc.2018.00625[published Online First: Epub
Date]|.
63. Hou L, Zhu D, Liang Y, et al. Identification of a specific peptide
binding to colon cancer cells from a phage-displayed peptide library.
British Journal Of Cancer 2017;118 :79 doi: 10.1038/bjc.2017.366
https://www.nature.com/articles/bjc2017366#supplementary-information[published
Online First: Epub Date]|.
64. Ferreira D, Silva AP, Nobrega FL, et al. Rational Identification of
a Colorectal Cancer Targeting Peptide through Phage Display. Scientific
Reports 2019;9 (1):3958 doi:
10.1038/s41598-019-40562-1[published Online First: Epub
Date]|.
65. He X-q, Guan J, Liu F, Li J, He M-r. Identification of the sAPRIL
Binding Peptide and Its Growth Inhibition Effects in the Colorectal
Cancer Cells. PLOS ONE 2015;10 (3):e0120564 doi:
10.1371/journal.pone.0120564[published Online First: Epub
Date]|.
66. Sahin D, Taflan SO, Yartas G, Ashktorab H, Smoot DT. Screening and
Identification of Peptides Specifically Targeted to Gastric Cancer Cells
from a Phage Display Peptide Library. Asian Pacific journal of cancer
prevention : APJCP 2018;19 (4):927-32 doi:
10.22034/apjcp.2018.19.4.927[published Online First: Epub
Date]|.
67. Wang JJ, Liu Y, Zheng Y, et al. Screening peptides binding
specifically to colorectal cancer cells from a phage random peptide
library. Asian Pacific journal of cancer prevention : APJCP
2012;13 (1):377-81 doi: 10.7314/apjcp.2012.13.1.377[published
Online First: Epub Date]|.
68. Ma C, Li C, Jiang D, et al. Screening of a specific peptide binding
to esophageal squamous carcinoma cells from phage displayed peptide
library. Mol Cell Probes 2015;29 (3):182-9 doi:
10.1016/j.mcp.2015.04.001[published Online First: Epub
Date]|.
69. Yang X, Zhang F, Luo J, et al. A new non-muscle-invasive bladder
tumor-homing peptide identified by phage display in vivo. Oncology
reports 2016;36 (1):79-89
70. Guo Y, Ma C, Li C, et al. Screening and identification of a specific
peptide binding to hepatocellular carcinoma cells from a phage display
peptide library. Journal of peptide science : an official publication of
the European Peptide Society 2014;20 (3):196-202 doi:
10.1002/psc.2599[published Online First: Epub Date]|.
71. Wang J, Tan X, Guo Q, et al. FGF9 inhibition by a novel binding
peptide has efficacy in gastric and bladder cancer per se and reverses
resistance to cisplatin. Pharmacological Research
2020;152 :104575 doi:
https://doi.org/10.1016/j.phrs.2019.104575[published
Online First: Epub Date]|.
72. Zhou C, Kang J, Wang X, Wei W, Jiang W. Phage display screening
identifies a novel peptide to suppress ovarian cancer cells in vitro and
in vivo in mouse models. BMC Cancer 2015;15 (1):889 doi:
10.1186/s12885-015-1891-8[published Online First: Epub
Date]|.
73. Wang L, Hu Y, Li W, et al. Identification of a peptide specifically
targeting ovarian cancer by the screening of a phage display peptide
library. Oncology letters 2016;11 (6):4022-26 doi:
10.3892/ol.2016.4549[published Online First: Epub Date]|.
74. Li C, Gao N, Xue Q, et al. Screening and identification of a
specific peptide binding to cervical cancer cells from a phage-displayed
peptide library. Biotechnology letters 2017;39 (10):1463-69 doi:
10.1007/s10529-017-2381-7[published Online First: Epub
Date]|.
75. Xiao L, Ma N, He H, et al. Development of a novel drug targeting
delivery system for cervical cancer therapy. Nanotechnology
2019;30 (7):075604 doi: 10.1088/1361-6528/aaf3f8[published
Online First: Epub Date]|.
76. Grubb A. Cystatin C is Indispensable for Evaluation of Kidney
Disease. EJIFCC 2017;28 (4):268-76
77. Mi L, Wang P, Yan J, et al. A novel photoelectrochemical
immunosensor by integration of nanobody and TiO2 nanotubes for sensitive
detection of serum cystatin C. Analytica Chimica Acta
2016;902 :107-14 doi:
https://doi.org/10.1016/j.aca.2015.11.007[published
Online First: Epub Date]|.
78. Yoon J-W, Lee S-w, Haque ME, et al. Abstract 1147: A phage display
identified peptide selectively binds to kidney injury molecule-1(KIM-1)
and detects KIM-1-overexpressing tumors <em>in
vivo</em>. Cancer research 2019;79 (13
Supplement):1147-47 doi: 10.1158/1538-7445.am2019-1147[published
Online First: Epub Date]|.
79. Kim YC, Lee J, An JN, et al. Renoprotective effects of a novel cMet
agonistic antibody on kidney fibrosis. Scientific Reports
2019;9 (1):13495 doi: 10.1038/s41598-019-49756-z[published
Online First: Epub Date]|.
80. Titus JK, Kay MK, Glaser CJJ. Application of phage display for the
development of a novel inhibitor of PLA2 activity in Western cottonmouth
venom. J Venom Res 2017;8 :19-24
81. Nielsen KM, Kyneb MH, Alstrup AKO, et al. 68Ga-labeled phage-display
selected peptides as tracers for positron emission tomography imaging of
Staphylococcus aureus biofilm-associated infections: Selection,
radiolabelling and preliminary biological evaluation. Nuclear Medicine
and Biology 2016;43 (10):593-605 doi:
https://doi.org/10.1016/j.nucmedbio.2016.07.002[published
Online First: Epub Date]|.
82. Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display
antibody libraries: A robust approach for generation of recombinant
human monoclonal antibodies. International Journal of Biological
Macromolecules 2019;135 :907-18 doi:
https://doi.org/10.1016/j.ijbiomac.2019.06.006[published
Online First: Epub Date]|.