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Abstract:   

Asthma is a chronic inflammatory disease of the airways, which is considered to be mediated by the 

allergen-specific CD4+ T cells, Th2 cytokines, and allergen-specific IgE antibodies to play a key role in 

the initiation and perpetuation of chronic airway inflammation.  The most common clinical 

manifestations of asthma are characterized by airway inflammation, airway obstruction, airway 

hyperresponsiveness, and airway microvascular remodeling. 

In addition to inflammatory cells, a tiny population of T regulatory cells (Tregs) control immune 

homeostasis, suppress allergic responses and participate in the resolution of inflammation-associated 

tissue injuries. Preclinical studies from animal models have demonstrated the huge therapeutic 

potential of Tregs in asthma conditions. Increasing evidence indicates that Tregs could be used to 

inhibit pathogenic asthma inflammation, and airway microvascular remodeling during the progression 

of asthma. This review addresses the relationship between locally accumulated Tregs and the 

development of asthmatic inflammation, and associated airway remodeling during the disease 

progression. 

 

 

 

 

 

  



ASTHMA AND INFLAMMATION:  

Asthma is a chronic inflammatory disease of the bronchi arising because of inappropriate 

immunological responses and globally as many as 334 million people have been affected due to asthma 

pathogenesis [1-3]. The immune system guards the host against a broad range of pathogenic 

microorganisms and foreign tissue antigens while preventing unwarranted immune reactions that would 

be deleterious to the host tissue [4-7]. However, both protective and harmful immune reactions are 

principally mediated by T cells, B cells, which possess vast diversity in antigenic recognition, high 

antigenic specificity, potent effector activity, and long-lasting immunologic memory [6]. Because of this 

killing potency, serious damage to the tissue may ensue if aberrant immune responses during airway 

inflammation, hyper-responsiveness are triggered. Activated Th1 cells produce IL-2 and IFN-γ; they 

are important in immune responses in allergic inflammation while Th2 cells are essential in the allergic 

inflammation through IL-4, IL-5, IL-9 and IL-13 [1, 8-10]. Th1 cells secreted INF-γ has inhibitory effects 

on Th2 cells, and during allergic inflammation, it suppresses isotype switching of IgE and IgE production 

of Th cells and it can also stimulate cell-mediated cytotoxic effects[1]. Furthermore, Th17 cells are a 

distinct lineage of Th cells expressing IL-17 and mediate neutrophilic type inflammation and exacerbate 

Th2 mediated allergic inflammation [11, 12].  Immunoregulatory therapies that balance from Th2 to Th1 

paradigm have also been investigated but with very limited success in clinical trials[13]. Numerous 

mouse models have been used to investigate the immunological mechanism of asthma pathogenesis 

[14, 15].  

Clinical manifestations of asthma are characterized by airway inflammation, airway obstruction, airway 

hyperresponsiveness and massive infiltration of eosinophils, neutrophils, T lymphocytes and mast cells 

in the airway walls, and T helper lymphocyte subsets, defined by the cytokines they secrete, are thought 

to play a key role in the initiation and perpetuation of chronic airway inflammation and airway remodeling 

[10, 16-21]. Airway remodeling mainly represents structural changes associated with a reduction in lung 

functions, which includes sub-epithelial fibrosis, airway smooth muscle hypertrophy, and hyperplasia, 

tissue eosinophilia, epithelial injuries[22].  



REGULATORY T CELLS:  Tregs play a vital role in maintaining immunological unresponsiveness to 

self-antigens, and in suppressing heightened immune responses destructive to the tissue during 

asthma inflammation [18, 23-30]. Tregs are generated in the thymus as a functionally mature T cell 

subset and in the periphery of naive T cells [31, 32]. Tregs are a unique CD4+ T-cell subpopulation, 

which in mice is characterized by the surface expression of CD25, nuclear expression of FOXP3, and 

secrete IL-10, TGF-β to suppress heightened immune responses, and also trigger iTreg expansion  

[33]. CD4+FOXP3+ natural Tregs and peripheral induced Tregs are key in maintaining immunotolerance 

against mucosal injury, pathogenic alloimmunity, diabetes, and facilitate tolerance induction in murine 

models of organ transplantations [26, 34, 35]. In general, Tregs are known to be crucial in the 

maintenance of peripheral immune tolerance and are the key modulators of the immune reaction during 

asthma inflammations [30]. 

The role of Tregs in asthma is scanty, very few studies reported their clinical benefits which shows that 

depletion of CD4+CD25+FOXP3+ Tregs augments, whereas reconstitution of Tregs subdue lung allergic 

responses and in some studies of AHR[36-38].  On the other hand, Treg depletion before sensitization 

is proven sufficient to augments the severity of inflammation, and AHR in the lung [39]. These studies 

emphasized that the reconstitution of antigen-specific CD4+CD25+FOXP3+ Treg was found to subdue 

allergic inflammatory response and hyperreactivity via IL-10 dependent pathway [30, 40, 41], and 

further downregulates established inflammation and prevent airway remodeling when injected after the 

disease onset [42].  In subsequent studies, Joetham and colleagues examined the function of nTregs 

(CD4+CD25+FOXP3+) isolated from the lungs of naive mice [43, 44]. Although it is difficult to conclude 

from animal models to the clinic there is increasing evidence from preclinical models that highlights the 

therapeutic significance of CD4+CD25+FOXP3+ Tregs in the control of allergic diseases, including 

asthma. The therapeutic benefits of Tregs have been investigated both in clinical and preclinical 

studies, and based on previous research outcomes, Treg-mediated immunosuppression has been an 

increasing area of cell-based immunotherapies to rescue asthma inflammation[42, 45-48]. Several 

types of T cells with immunosuppressive properties have been identified, but FOXP3+ Treg have 



emerged as a dominant cell type; they are vitally involved in the tolerance induction, and maintenance 

of immune tolerance to alloantigens during asthma inflammation[49]. Recent research investigations 

highlighted the cellular and molecular basis of Tregs development and functions and implicate 

dysregulation of Tregs in major pulmonary diseases including asthma[50]. Naturally occurring 

CD4+CD25+FOXP3+ Tregs (nTregs) are thymic-derived, and a second population of 

CD4+CD25+FOXP3+ Tregs can be induced in vitro and in vivo through antigen stimulation, where both 

subsets regulate immune responses through the production of IL-10 and TGF-β[45, 51]. Both of these 

subsets appear to play an important role in regulating the development or expression of allergic 

diseases [49].  

MODE OF ACTION: Tregs have been reported in suppressing Th2 mediated immune responses to 

allergens and subdue allergic inflammatory conditions, and numerous preclinical studies have shown 

that the adoptive transfer of antigen-specific Tregs subdue the onset and progression of asthma in 

mice [38, 41, 52, 53]. In general, Tregs prevent the generation of immune responses to self-antigens 

and other foreign antigens, including allergens, also limit immune responses to pathogens, protecting 

tissue from severe injuries[30]. Tregs modulate Th2-mediated lung inflammation, and their therapeutic 

potential is best described by evidence that therapies with Treg in allergic and asthma disease are 

associated with the induction or restoration of Treg function, e.g. glucocorticoids, allergen 

immunotherapy[54]. Tregs mediated immunosuppression have the potential to protect against allergic 

inflammation and asthma pathogenesis [52, 55, 56]. The primary immunosuppressive and regulatory 

function of Tregs is to control immune responsiveness and regulate hyper-airway response [56, 57]. 

Tregs also play a crucial role in maintaining immunological unresponsiveness to self-antigens, inhibit 

antigen-specific inflammatory responses [28], prevent pathological self-reactivity in the immune system, 

neutralizing killer T cells during inflammation [58], and more specifically participate in suppressing 

heightened immune responses destructive to the airway epithelium and normal physiological outcomes. 

Treg operates through a variety of immunosuppressive functions that regulate T lymphocyte, antigen-



presenting cell, and innate cell functions through cell- contact, competition for essential growth factors, 

cytotoxicity [50, 56].  

During allergic inflammation, Tregs suppress inflammation through the secretion of inhibitory cytokine 

IL-10, transforming growth factor (TGF) β or by cell surface molecules [57, 59]. IL-10 reduces the effects 

of pro-inflammatory cytokines, maintains epithelial layer integrity, tissue healing, and inhibits eosinophil 

survival and migration during allergic inflammation, also down-regulate IL-4 induced isotype switching 

of activated B-cells [52, 60, 61]. These modulatory effects have been mainly associated with the release 

of IL-10 and TGF-beta, thus, harnessing the therapeutic power of Tregs, their induction and activation 

may provide an important strategy in controlling Th2-mediated allergic inflammation [62].  In addition, 

Tregs have been associated with the maintenance of immune responses and secreted 

immunosuppressive cytokines such as TGF-β, IL-10, and IL-35 are involved in immune responses 

following antigens/ allergen exposure [63, 64]. Figure 1 

In addition to cytokine-mediated suppressive activity, Tregs are also mediate suppressive functions 

through the release of perforin and granzymes B and the release of cAMP [62]. However, some 

clinical studies also validated these roles, when the treatment with glucocorticosteroids in asthmatics 

might increase this FOXP3 protein expression within Tregs in human, and revealed suppression of 

Tregs number as reported from lung tissues in a model of asthma[54] while asthmatic patients have 

been reported to show decreased FOXP3 protein expression within their CD4+CD25high T regulatory 

cells repertoire[65]. Data collected from asthmatic patients further highlighted the crucial role of Treg, 

which reported lower Tregs ratio and FOXP3 mRNA expression, and lower levels in peripheral blood 

mononuclear cells may be associated with the asthma pathogenesis in human[66]. A significant 

number of murine models of allergic inflammation/asthma have been adopted, although none replicates 

all pathological parameters of human asthma conditions [14, 67]. However, studies in animal models 

of allergic airway inflammation have investigated a fair number of preclinical and clinical research which 

included the key roles of CD4+CD25+ Treg, IL-10, and TGF-β in asthma prevention[52]. In other clinical 

studies, adoptive transfer of purified antigen-specific CD4+CD25+FOXP3+Treg cells in pre-sensitized 



mice suppressed airway hyper-responsiveness (AHR), eosinophil recruitment and Th2 cytokine release 

through the release of IL-10 and TGF-β, while depletion of CD25+ Tregs before allergen challenge 

shifted Th2 cytokine upregulation, IgE levels, eosinophilia and AHR in allergy-resistant mice (C3H 

strain), concluded that Treg control disease resolution[38, 39, 68]. Altogether these previous 

investigations proved the therapeutic value of Treg to resolve established allergen-induced pulmonary 

inflammation (eosinophilia, Th2 infiltration, IL-5, IL-13, and TGF-β), but also prevent the progression of 

airway remodeling, and reduce mucus hypersecretion and peribronchial collagen deposition [38, 39]. 

IL-10 is a key anti-inflammatory and immunoregulatory cytokine that has distinct pleiotropic effects on 

both innate and adaptive immunity [69]. Primarily, it restrains inflammation and immune response and 

extensively participates in immunity activities by regulating cell proliferation, differentiation and the 

function of T cells, B cells, macrophages and endothelial cells [52].  IL-10 is produced by 

CD4+CD25+FOXP3+ Tregs and also secreted by B cells, natural killer cells, antigen-presenting cells 

(APCs), mast cells, granulocytes.  IL-10 can subdue the release of major pro-inflammatory cytokines 

such as IFN-γ, IL-2, IL-3, and TNF-α produced by Th1 cells, activated T helper cells, mast cells, NK 

cells, endothelium, eosinophils, and macrophages[40, 52]. Further, IL-10 can modulate Tregs cells to 

conserve the intracellular expression of FOXP3 and also suppressive functions [70, 71]. IL-10 has wide 

immunosuppressive and anti-inflammatory properties suitable to attenuate asthma pathology [72, 73]. 

It is a powerful inhibitor of major proinflammatory cytokines and acts on antigen-presenting cells to 

subdue T lymphocyte activation (Th2), suppresses effector cells, mast cells, and eosinophils [40, 52, 

63]. In addition, IL-10 augments IgG4 release, which plays a key protective in allergic responses but 

inhibits IgE [74]. A number of clinical studies have reported higher IL-10 in allergic and asthmatics as 

compared to healthy individuals[75]. IL-10 has been involved in effective immunosuppression of allergic 

immune reactions in the lung [41, 44, 76], which signifies dependence on IL-10 and further highlights 

the T regulatory cell-mediated modulation of pulmonary immune responses. These preclinical reports 

validated the key role of Tregs during airway remolding and disease progression, and key secreted 

anti-inflammatory cytokine-IL-10 play a vital role in airway allergic immunomodulation to maintenance 

https://en.wikipedia.org/wiki/T_helper_cell
https://en.wikipedia.org/wiki/Mast_cell
https://en.wikipedia.org/wiki/Natural_killer_cell
https://en.wikipedia.org/wiki/Natural_killer_cell
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pulmonary physiological functions, and as reported, IL-10 suppresses Th1- and Th2-type immune 

responses, inhibits mast cells, eosinophils mediators, and pro-inflammatory cytokines [40, 52, 77]. In 

addition, decreased IL-10 has been observed in allergic and asthmatic diseases compared with healthy 

control subjects[40].   

Most of the ongoing therapies target the suppression of inflammatory response without modulating the 

actual pathogenic mechanism. Although glucocorticoids are the first drug choice to subdue airway 

inflammation, glucocorticoids treatment is also associated with the expression of IL-10, FOXP3 mRNA, 

and induction of Tregs in bronchoalveolar lavage of asthmatic patients [54, 78, 79]. These observations 

speculated that the presence of Tregs in BAL is crucial to play as an immunoregulatory role in mediating 

the suppressive effect of corticosteroids [80-83]. In the last decade, several therapeutic alternatives for 

asthma cure have been acquired; however, their selectivity limits their success because asthma 

pathology is a multifactorial event.  

  



AIRWAY MICROVASCULAR REMODELLING:  

In healthy lungs, the airway microvasculature supplies key vital functions necessary for maintaining a 

normal physiological process[84]. In particular, it delivers oxygen and nutrients, and act as a primary 

site for most of the humoral immune response to foreign antigens, which confers the first line of 

immunity before the onset of disease. Microvascular remodeling during airway inflammation mainly 

triggers though the pro-angiogenic action of growth factors and inflammatory mediators, and as seen 

in both human asthma and allergic reaction that the airway microvasculature affected during the 

progression of the disease, and affected during treatment further signifies the key involvement of 

microvasculature during asthma and airway remodeling phase and also in the pathology of a other 

chronic inflammatory, and ischemic pulmonary malfunctions[85]. Previous investigations on airway 

microvascular remodeling in chronic airway inflammation demonstrated that microvascular components 

of airway remodeling are the vital contributors to the alteration of the airway wall in asthma and COPD 

progression [20, 86]. Tregs adoptive transfer has been proven sufficient to subdue inflammation before 

the start of tissue inflammation and microvascular repair [26, 28].  

Airway microvascular alterations as seen in asthmatic patients are accompanied by a rise in airway 

blood flow and diminished β2- adrenergic vasodilator responsiveness, suggesting the presence of 

endothelial dysfunction. Increased microvascular permeability and edema are common features during 

vascular remodeling in bronchial asthma [87]. Clinical studies have shown the role of Tregs in human 

asthma but these studies have been hampered by the lack of a clear correlation between Tregs and 

airway microvascular remodeling, which is the main pathological symptom of asthma. Whilst most 

studies identify the immunosuppressive properties of CD4+CD25+ Tregs to control allergic airway 

inflammation, these studies do not explain any impact of Tregs in microvascular changes and 

associated remodeling as reported in clinical condition. The majority of the previous investigations on 

airway microvascular remodeling in chronic airway inflammation extracted clinical outcomes of asthma 

patients, and these data demonstrated that microvascular components of airway remodeling are the 

vital contributors to the alteration of the airway wall in asthma progression[20]. Interestingly, these 



airway microvascular perturbations are also seen during the development of COPDs [86]. Altogether, 

these airway microvascular changes in asthma and COPD are strongly associated with airway 

inflammation and may contribute to an increase in airway wall thickness which may be associated with 

disease progression[88]. Increased microvascular permeability and edema are common features 

during vascular remodeling in bronchial asthma [87].  

 

CONCLUSIONS:  

Clinical studies have shown the role of Tregs in human asthma but these studies have been hampered 

by the lack of a clear correlation between Tregs and airway microvascular remodeling, which is the 

main pathological symptom of asthma. The clinical demand of Treg cell-based 

immunotherapy is rapidly rising, and different Treg subsets have been described, including natural 

Tregs, induced Tregs, CD8+ Treg cells, and regulatory cells has been described [34, 56, 74].  Tregs 

mediated immunotherapy is relatively a new addition in the modern drug development repertoire and 

therapeutics. Treg-mediated immunotherapy is expanding, and tend to replace conventional 

immunotherapy without negligible side effects in asthma patients. In this review, we highlighted the key 

molecular mechanism of Treg mediated protection to airway inflammation, and implications for the 

development of therapeutic strategies for major life-threatening disease including asthma. Modern drug 

discovery plan is quickly drifting toward a biological mode of therapeutic agents, which involve cells 

and their unique products to rescue the disease with minimum side effects, and global research is now 

in a new era with the introduction of clinical trials investigating the safety and potential therapeutic role 

of Treg therapy to rescue asthma exacerbations. Treg cell-mediated immunotherapy showing 

superiority over the current immunosuppressive regimen makes this concept of cure more of 

therapeutic value and will significantly minimize the cost of current immunosuppression for future 

medicine. The conventional therapeutic formulations to control asthma have focused on the use of 

potent anti-inflammatory drugs, particularly steroids, which have broad-spectrum suppressive activity 

against effector cells and their mediators[89].  Most popular glucocorticoid regimens are potent in the 



majority of asthma patients but ineffective to support continuous respite of disease without repeated 

long term administration, which can be associated with serious toxic side-effects, and fail to control the 

disease in a large number of asthma patients, which are most at risk of hospitalization and death from 

their asthma[90]. These disturbing facts inspire the need for more specific therapies with the potential 

to support long-term recovery without side effects. The multi-regulatory action of Tregs recognized them 

as a potential candidate to rescue the occurrence of progressive inflammatory modulations. Therefore, 

the addition of Tregs to target effector responses may be the key approach to modulate the underlying 

cause of asthma disease. New immunotherapeutic, based on our understanding of Treg response to 

the pathophysiology of asthma, could have overwhelming benefits for the cure of asthma patients. 

Therefore, it is not surprising that the potential to utilize the immunoregulatory potency of Tregs as a 

therapeutic is of utmost requirement in asthma.  
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