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Abstract 
 

The ultimate goal of this work is to find a region where the 

response surface of a function that is not well characterized 

in terms of optimality resembles one that is well-

characterized in such terms to find, at least, a local optimum. 

The region in the functions’ input space where this 

resemblance occurs, we call a Window of Maximal 

Similarity (WMS) and is identified by formulating and 

solving an optimization problem. The method is one of 

minimization of squared errors and can be used to explore 

experimental, or simulated data. A series of examples, that 

include several typical global optimization test functions in 

literature, are presented in order to demonstrate the method’s 

feasibility and capability for generating a two-dimensional 

WMS. This tool is a viable element that will serve for the 

future development of Optimization by Similarity.   
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1    |   INTRODUCTION 8 

Response surfaces are typically used for optimization since they provide a visual estimate of 9 

the behavior of a function across its input space. Their employment for this purpose implies a 10 

forward mapping in the sense that, after data is sampled and an equation that can best 11 

approximate it is constructed, an experimental procedure is realized until an attractive solution 12 

-hopefully an optimum- is found.  As an alternative, in this work the idea of inverse mappings 13 

is explored towards the optimization end, where desired output characteristics are associated 14 

to a specific region in a function’s input space.  15 

Consider the following hypothetical example of fitting a linear regression to predict student 16 

weight based on their height for a sample of size 7 (Please see Figure 1). As can be noted from 17 

the graph, there are some points (regions) where the line is a better predictor than others. The 18 

points in black show where data ‘behaves’ in a desirable manner. Note that desirable behavior 19 

is defined as that region where the data is most similar to a particular function, in this case, to 20 

the line that minimizes the sum of squared errors. Since this phenomenon can occur whenever 21 
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using modeling to approximate datasets, we propose extending the concept of desirable 1 

behavior - output characteristics - to include regions in datasets where it could ‘look like’ a 2 

function that has optimality properties; if we could identify a region in the dataset where the it 3 

is most similar to a function with optimality properties, we would have had found an area of 4 

potential optimality. But how may two models generated from the same data be compared?  5 

 6 

 7 

Figure 1 Hypothetical regression example, points in black show regions where model is 8 

better predictor. 9 

 10 

Metamodeling is when a complex model, like the ones frequently used for simulations, is 11 

approximated by another, typically simplified, one. Metamodels are often used for optimization 12 

purposes and require forward mapping procedures to experimentally find optimality conditions 13 

for a particular process. It is also common that a metamodel’s parameters are estimated via 14 

minimization of an error function until the most competitive fit is found. In this work, 15 

metamodels are fitted in a different manner but also towards an optimization end; since we are 16 

searching for the region of maximum resemblance between a data generating model and a 17 

metamodel with optimality properties, the parameter estimates will differ. By finding a region 18 

of maximal similarity, we are looking to generate an inverse map in order identify a window 19 

in the input space where optimality may be present.  20 

Inverse mappings, when a function’s input is a specific desired performance and its output 21 

its associated controllable variable settings, was approached in [3]. From the intricacies the 22 

author mentions, it was noted that the task of inverse mappings is often reduced to finding one 23 

(or more) input parameter combinations for only one certain output characteristic. As in the 24 

method here proposed, solving inverse problems by the identification of the regions, instead of 25 

points, was assessed in [4]. The Window of Maximum Similarity (WMS) method differs from 26 

the latter in the sense that it was constructed to be applicable to detect zones of interest in 27 

different kinds of data and does not use probability density functions, but rather least squares 28 

estimation and linear programming 29 

As was first done in [6], our Optimization by Similarity method aims to search for a region 30 

where a metamodel fits best. Their study addresses a common problem faced in modeling 31 

polymers: the relationship between deformation and viscosity. In contrast, we propose applying 32 

the method to any problem, that is, any that requires modeling, abstracting it to the 33 

mathematical space of functions. We also consider a two-dimensional input, or ‘controllable 34 

variable’ space, as opposed to only one. Our method entails matching a (simulated) function -35 

one that represents, or rather, generates random data- to another one that has desired optimality 36 

properties-a specific form - and find their region of maximum resemblance, through least 37 

squares estimation and optimization, where there could exist, at least, a local optimum (Please 38 
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refer to Figure 2). The development of the method is described below, and its applicability is 1 

tested on several common global optimization test functions and a function created by our 2 

research group; AOG_1.  3 

 4 

 5 
Figure 2 Example for construction of the Optimization by Matching of Responses where 6 

function to approximate data is quadratic and function to superimpose is linear; region in red 7 

represents Window of Maximal Similarity. 8 

 9 

2    |   TECNIQUES USED IN THIS WORK 10 

2.1  | LEAST SQUARES METHOD 11 

The least squares method is typically used to estimate regression parameters by minimization 12 

of the sum of squared errors (SSE). Let the experimental region, R, be the ith-dimensional 13 

hyper-space made up of all possible values that each input variable can take;  14 

 15 
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𝑹: { 𝑓(𝑥𝑖) | 𝑥𝑖 ∈ [ 𝑥𝑖
𝑚𝑖𝑛  , 𝑥𝑖

𝑚𝑎𝑥  ] }  1 

 2 

In this work, the SSE is given by: 3 

 4 

𝑆𝑆𝐸 =  ∑  (𝑌(𝑹) − 𝑍(𝑹))
2

𝑛

𝑗=1

 (1) 5 

 6 

Where , 𝒀 =  𝒇(𝑹), is the response of the function to approximate that needs to be optimally 7 

addressed and  𝒁 =  𝒇(𝑹), is the response of the model or function to superimpose, which has 8 

desired and well-established optimality properties, i.e. it is convex and has a global optimum. 9 

 10 

2.2  | EXPERIMENTAL REGION DISCRETIZATION 11 

To generate the grid of experimental points used in the proposed method, a discretization 12 

size, or step size, ∆x can be chosen when the input variable initialization values are selected 13 

not to be integers. This step size can be user-defined, and its use is presented later on in the 14 

evaluation of the method using global optimization test functions. 15 

 16 

2.3  | MULTIPLE STARTING POINTS 17 

The multiple starting points technique, a heuristic method, is frequently used in order to 18 

increase the chance of finding an attractive solution close to the global optimum. When a local 19 

optimization method is used, this method is executed many times using different starting points 20 

to increase the chance of convergence to a competitive solution [7].  21 

 22 

3    |   PROPOSED METHOD  23 

The aim of this work is to find a region where the response of function that is not well 24 

characterized in terms of optimality resembles another one that is well-characterized in such 25 

terms, to find at least a local optimum. This well-characterized function, 𝒁 =  𝒇(𝑹), could be 26 

fixed or be, ideally, an adjustable metamodel like, for example, a second order polynomial 27 

regression with unknown parameters. Once the forms are picked, an experimental region for 28 

both functions has to be defined. The region where the maximum similarity occurs is identified 29 

by formulating an optimization problem (2) which minimizes the functions’ SSE. The solution 30 

will be the location and size of a window in the experimental region where the maximum 31 

similarity between the responses occurs, except when Z is a metamodel in which case the 32 

solution includes the metamodel parameter estimates. The optimization problem formulation 33 

and an example are illustrated below: 34 

 35 

Find  36 

𝑥𝑖
𝐿, 𝑥𝑖

𝑈, to 37 

Min  38 
1

3
( [𝑙𝑜𝑔 (𝑆𝑆𝐸 + 1)] − [𝑙𝑜𝑔(|𝑥1

𝑈 − 𝑥1
𝐿| + 1)] − [𝑙𝑜𝑔(|𝑥2

𝑈 − 𝑥2 
𝐿 | + 1)] ) (2) 39 

Subject to  40 

𝑥𝑚𝑖𝑛
𝐿  

≤ 𝑥𝑖
𝐿 

≤ 𝑥𝑚𝑎𝑥
𝐿  * 41 

𝑥𝑚𝑖𝑛
𝑈  

≤ 𝑥𝑖
𝑈 

≤ 𝑥𝑚𝑎𝑥
𝑈  * 42 

𝑥𝑖
𝑈 − 𝑥𝑖

𝐿 ≥  𝜀 **    𝑖 = [1,2] 43 

 44 
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* Constraints for experimental region bounds, respectively. 1 

**For the integer variable cases, add to the formulation the following restriction: 2 

𝑥𝑖
𝐿, 𝑥𝑖

𝑈= integer 3 

 4 

 5 
Figure 3 Example of Window of Maximal Similarity found between Sphere and second 6 

order polynomial regression. 7 

 8 

In Figure 3, an example is presented to demonstrate the application of the proposed method, 9 

where function to approximate, 𝒀 =  𝒇(𝑹), is the sphere and the function to superimpose, 𝒁 =10 

 𝒇(𝑹), is a second order polynomial regression of the form: 11 

 12 

 𝑍 = 𝑓(𝑥1, 𝑥2) = 𝛽0 + 𝛽1𝑥1
2 + 𝛽2𝑥2

2 (3) 13 

 14 
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Since the function to superimpose is a metamodel, the optimization model had to additionally 1 

find metamodel parameters 𝜷𝟎, 𝜷𝟏, … 𝜷𝒏. For the special case where the two functions have 2 

the exact same shape, as was the case presented for Figure 3, the problem will evidently have 3 

infinitely many solutions since the window of maximum similarity could adjust itself in any 4 

range in the experimental region.  5 

The logarithm base 10, which is not defined for 0 or negative values, was used in the 6 

objective formulation to keep in the same order of magnitude between the SSE and the distance 7 

between bounds. Distances between bounds (𝒙𝒊
𝑼 − 𝒙𝒊

𝑳) are present:  8 

1. in the objective function in order to avoid window size dependency on parameters  9 

2. in the constraints because a minimum value had to be included for the formulation to 10 

be successful and not contain a single point. This suggested value,  𝜺 = 𝟏 × 𝟏𝟎−𝟔, is 11 

known as the non-archimedean constant, a value commonly used for computational 12 

purposes.  13 

Additional constraints include a range where to define the window’s upper and lower bounds, 14 

in accordance to the span in which each variable varies.   15 

An important quality of the method is its use of computational resources; all the optimization 16 

problems included in this work were solved using Excel Solver, a local optimizer included in 17 

MS Excel. MS Solver uses the Generalized Reduced Gradient (GRG) algorithm to solve non-18 

linear optimization problems and the Branch and Bound method to solve mixed-integer and 19 

constraint programming problems [7].  20 

 21 

4    |   METHOD EVALUATION 22 

Two scenarios for evaluation of the method were considered. First, the evaluation of the 23 

method using a function to approximate which was designed in our research group, AOG_1, is 24 

presented. Lastly, a case of an application of the proposed method using unconstrained global 25 

optimization test functions is presented. The figures were generated in QtiPlot software 26 

(version 0.9.8.9) (http://www.qtiplot.com/).  27 

 28 

4.1  | AOG_1 29 

It was of our interest to find the maximum similarity between function AOG_1 and a 30 

quadratic function with the form of a bowl because it was reasonable to understand that, 31 

potentially, the resulting WMS will match the curve region of the function AOG_1 with the 32 

quadratic function.  33 

 34 

1. The function to approximate, AOG_1, is a piece-wise function which mostly has 35 

the form of a plane except for a given interval in the central experimental region 36 

where it looks like a bowl (as shown in Figure 3). The ranges 𝒙𝟏 and 𝒙𝟐 were [-5, 5]. 37 

AOG_1 is given by:  38 

 39 

𝑌 = 𝑓(𝑥1, 𝑥2) =  {
  5𝑥1

2 + 5𝑥2
2    𝑖𝑓  𝑥1 ∈ [−2, 1] , 𝑥2 ∈ [−3, 0 ]

500 − 5𝑥1 +   5𝑥2  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 

(4) 40 

 41 

2. The function to superimpose was fixed for this case and given by 42 

 43 

 𝒁 = 𝒇(𝒙𝟏, 𝒙𝟐) =  𝟓𝒙𝟏
𝟐 + 𝟓𝒙𝟐

𝟐 (𝟓) 44 

 45 

http://www.qtiplot.com/
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The ranges 𝒙𝟏 and 𝒙𝟐were also [-5, 5].   1 

3. The experimental region is a grid that contains 121 points; 𝒙𝟏 ∈ [𝟓, 𝟓], 𝒙𝟐 ∈ [𝟓, 𝟓].  2 

4. The optimization problem formulation is given by (2).  3 

5. The last step is to optimize the model. The global minimum for AOG_1 is given by 4 

solution (0, 0), with a corresponding objective value of 0. Essentially, the maximum 5 

similarity would be found if the WMS was adjusted within the quadratic region of 6 

both functions. The parameters for setting up the Solver that were used for this 7 

evaluation include:  8 

• The use of multiple starting points using a population size of 100.  9 

• A constraint precision of 𝟏 × 𝟏𝟎−𝟕. 10 

• A convergence of 𝟏 × 𝟏𝟎−𝟒. 11 

 12 

 13 
Figure 4 Window of Maximum Similarity between AOG_1 and (static) quadratic function.  14 

 15 
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Table 1 reports the best solutions for function AOG_1. The type of variables (ToV) is 1 

included since evaluations considered the bounds (𝒙𝟏
𝑼, 𝒙𝟏

𝑳, 𝒙𝟐
𝑼, 𝒙𝟐

𝑳) as both continuous and 2 

integer variables. Also, the best solution, the best objective function value (OFV) found, WMS 3 

dimensions and location for each case are reported. The function AOG_1, the quadratic 4 

function 𝒁 = 𝒇(𝒙𝟏, 𝒙𝟐) to superimpose, and the WMS of the composite objective function for 5 

the integer case are presented in Figure 4. In all cases, the stationary point (0, 0) is within the 6 

WMS. According to the results, it is possible to conclude that the method demonstrated 7 

potential to find regions of similarity between two responses, where optimality can be a pattern 8 

of interest.  9 

 10 

Table 1 Results for AOG_1, and quadratic (static) function to superimpose. 11 

 12 

ToV 
Best Solution (WMS Location)  Best Objective Value Found 

WMS Size 
𝒙𝟏

𝑳 𝒙𝟏
𝑼 𝒙𝟐

𝑳 𝒙𝟐
𝑼 OFV SSE 𝒙𝟏

𝑼 − 𝒙𝟏
𝑳 𝒙𝟐

𝑼 − 𝒙𝟐
𝑳 

C -2.17 1.11 -3.73 0.35 -0.45 0 3.28 4.08 3.28 x 4.08 

I -2 1 -3 0 -0.40 0 3 3 3 x 3 

 13 

4.2  | GLOBAL OPTIMIZATION TEST FUNCTIONS 14 

Considered in a two-dimensional input space, the unconstrained global optimization test 15 

functions in which the method was tested on included: Sphere, Rosenbrock, Rastrigin, 16 

Griewank, Goldstein-Price, Easom, and Schwefel*. The objective was to find a zone of data 17 

with maximum similarity between each test function and a quadratic function, which is 18 

presented below. The optimization problem was executed using two different initial solutions 19 

for each function, from which the best results were selected.  20 

*For more information, please refer to [2,8].   21 

1. Function(s) to approximate were typical optimization test functions in literature, as 22 

previously mentioned.  23 

2. The function to superimpose was a metamodel, a second order polynomial linear 24 

regression of the form  25 

 26 

 𝑍 = 𝑓(𝑥1, 𝑥2) = 𝛽0 + 𝛽1𝑥1
2 + 𝛽2𝑥2

2 . (6) 27 

 28 

The ranges of the variable bounds for this quadratic function were the same in which 29 

test function varies respectively.  30 

3. To generate the grid of experimental points, the ranges of the variables of each test 31 

function were divided according to a specific value of delta x (∆x) (see Table 2). 32 

 33 

Table 2 Step size used to generate grid of experimental points for global optimization test 34 

functions. 35 

 36 

Function ∆x 

Sphere  1.024 

Rosenbrock 0.5 

Rastrigin 0.5 
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Griewank 2 

Goldstein Price 0.25 

Easom pi 

Schwefel 5 

 1 

4. The optimization problem formulation, as given by (2), also had to find metamodel 2 

parameters, 𝛽0, 𝛽1 and 𝛽2. An additional constraint to this linear programming 3 

formulation included a minimum and maximum value for each of the parameter 4 

estimates to vary in of [-1000, 1000]. The parameters for the Solver included: 5 

• The use of multiple starting points using a population of size 100.  6 

• A convergence of 1x10
-4

. 7 

• Bounds required on variables.  8 

• A level of precision of 1 × 10−3 for the functions Sphere, Rosenbrock, 9 

Griewank, Goldstein-Price, Easom, and Schwefel; a level of precision of  10 

1 × 10−9 for the function Rastrigin.  11 

 12 
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 1 

Figure 5 Griewank (s variables), given by: 𝑓(𝑋) =  ∑
𝑥𝑟

2

4000
− ∏ cos (

𝑥𝑟

√𝑟
) + 1, −50 ≤𝑠

𝑟=1
𝑠
𝑟=12 

𝑥𝑟 ≤ 70, and quadratic function.  3 

 4 

The best objective value found, SSE value and WMS are reported in Table 3 for each of the 5 

test functions. Although estimated metamodel parameters are omitted to emphasize analysis on 6 

window results, the Sphere’s, Griewank’s, and Schwefel’s quadratic function, 𝒁 =  𝒇(𝑹), 7 

followed the test function shape, as is shown in Figure 5 for Griewank case. The WMS 8 

generated for functions Griewank and Schwefel potentially detected a zone of maximum 9 

similarity. The global solution for each global test function is additionally included.  The 10 

solution is in all cases contained within the window of maximum similarity in, at least, one of 11 

the independent variables. For three other cases: Sphere, Griewank and Easom, the global 12 
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solution is contained within the window for all the independent variables. The simplest case, 1 

the Sphere, is the most evident case where the quadratic function is a good descriptor of the 2 

‘data at hand’, unlike the results of the remaining test functions which displayed quadratic 3 

functions of varied shapes and consequently their WMS were adjusted in varied zones. 4 

 5 

Table 3 Results for optimization test functions in literature and (movable) metamodel.  6 

 7 

 8 

5    |   CONCLUSION AND FUTURE WORK 9 

This work proposed the use of WMS for future optimization by similarity. The method 10 

intends to find the experimental region where a model with desirable characteristics is a good 11 

descriptor of the data at hand. An evaluation case using function AOG_1 was presented. 12 

According to these results, the method demonstrates the potential to find regions of similarity 13 

between two responses where optimality can be a pattern of interest.  14 

The evaluations of the method in seven unconstrained global optimization test functions 15 

served to show the use of window of maximum similarity in examples of functions with 16 

different shapes. Also, it was observed in the evaluations that the WMS method potentially 17 

detected zones of maximum similarity between the different test functions and a quadratic 18 

function.  19 

According to these results, the method demonstrates the potential to find regions of similarity 20 

between two responses where optimality can be a pattern of interest and can be a useful tool 21 

for exploration of simulated data to find, at least a local optimum.  22 

Function 

Best solution (WMS 

location) Global 

solution 

Solution 

within 

window? 

Best 

OFV  

WMS 

Size 
𝒙𝟏

𝑳 𝒙𝟏
𝑼 𝒙𝟐

𝑳 𝒙𝟐
𝑼 

 

Sphere 

 

-5.12 5.12 -5.12 5.12 (0,0) Y -0.70 
10.24 x 

10.24 

Rosenbrock  -2 5 -2 -1.5 (1,1) N -0.36 
7 x 

0.50 

Rastrigin  4.50 5 -5 5 (0,0) N -0.41 
0.50 x 

10 

Griewank  -50 70 32 34 (0,0) Y -0.85 
120 x 

2.00 

Goldstein-

Price  
-2 2 -0.25 0 (0, -1) N -0.27 

4 x 

0.25 

Easom  -

35.15 
31.55 

-

35.79 
66.64 (0,0) Y -1.01 

66.71 x 

102.43 

Schwefel  495 499.52 -500 500 
(420.97, 

420.97) 
N -1.26 

4.92 x 

1000 
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In many cases, the WMS obtained by the method were limited to take the minimum size or 1 

epsilon value assigned, which is why future work includes: 2 

1. Substitute single composite objective by multiple criterion optimization, as presented 3 

in [5].   4 

2. Include more variables to evaluate test functions on.  5 

3. Experiment using alternative metamodels with different forms.  6 

4. Use design of experiment to sample from the experimental region.  7 

 8 
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