Literature Cited
[1] Zhou, W.; Liu, M.; Zhang, Q.; Liu, M.; Wei, Q.; Ding, S.; Zhou,
Y. Synthesis of NiMo Catalysts Supported on Gallium-Containing
Mesoporous Y Zeolites with Different Gallium Contents and Their High
Activities in the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene.
ACS Catal., 2017, 7, 7665-7679.
[2] Fan, Y.; Shi, G.; Bao, X. A process for producing ultraclean
gasoline by coupling efficient hydrodesulfurization and directional
olefin conversion. AIChE Journal, 2013, 59, 571-581.
[3] Wivel, C.; Clausen, B. S.; Candia, R.; Mørup, S.; Topsøe, H.
Mössbauer emission studies of calcined
CoMoAl2O3 catalysts: Catalytic
significance of Co precursors. J. Catal. 1984, 87, 497-513.
[4] Schweiger, H.; Raybaud, P.; Kresse, G.; Toulhoat, H. Shape and
edge sites modifications of MoS2 catalytic nanoparticles
induced by working conditions: a theoretical study. J. Catal. 2002, 207,
76-87.
[5] Sun, Y.; Prins, R. Mechanistic studies and kinetics of the
hydrodesulfurization of dibenzothiophene on
Co-MoS2/γ-Al2O3. J.
Catal. 267, 193-201.
[6] Moses, P. G.; Hinnemann, B.; Topsøe, H.; Nørskov, J. K. The
hydrogenation and direct desulfurization reaction pathway in thiophene
hydrodesulfurization over MoS2 catalysts at realistic
conditions: A density functional study. J. Catal. 2007, 248, 188-203.
[7] Chen, J.; Maugé, F.; El Fallah, J.; Oliviero, L. IR spectroscopy
evidence of MoS2 morphology change by citric acid
addition on MoS2/Al2O3catalysts - A step forward to differentiate the reactivity of M-edge and
S-edge. 2014, 320, 170-179.
[8] Topsoe, N. Y.; Topsoe, H. FTIR studies of
Mo/Al2O3-based catalysts: II. Evidence
for the presence of SH groups and their role in acidity and activity. J.
Catal. 1993, 139, 641-651.
[9] Han, W.; Nie, H.; Long, X.; Li, M.; Yang, Q.; Li, D. Preparation
of F-doped MoS2/Al2O3catalysts as a way to understand the electronic effects of the support
Brønsted acidity on HDN activity. J. Catal. 2016, 339, 135-142.
[10] Lauritsen, J. V.; Nyberg, M.; Nørskov, J. K.; Clausen, B. S.;
Topsøe, H.; Lægsgaard, E.; Besenbacher, F. Hydrodesulfurization reaction
pathways on MoS2 nanoclusters revealed by scanning
tunneling microscopy. J. Catal. 2004, 224, 94-106.
[11] Zhou, W.; Zhou, A.; Zhang, Y.; Zhang, C.; Chen, Z.; Liu, L.;
Zhou, Y.; Wei, Q.; Tao, X. Hydrodesulfurization of 4,
6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites
catalysts. J. Catal. 2019, 374, 345-359.
[12] Chiu, J. J.; Pine, D. J.; Bishop, S. T.; Chmelka, B. F.
Friedel-Crafts alkylation properties of aluminosilica SBA-15
meso/macroporous monoliths and mesoporous powders. J. Catal. 2004, 221,
400-412.
[13] Budi, C. S.; Saikia, D.; Chen, C. S.; Kao, H. M. Catalytic
evaluation of tunable Ni nanoparticles embedded in organic
functionalized 2D and 3D ordered mesoporous silicas from the
hydrogenation of nitroarenes. J. Catal. 2019, 370, 274-288.
[14] Huirache-Acuña, R.; Zepeda, T. A.; Rivera-Muñoz, E. M.; Nava,
R.; Loricera, C. V.; Pawelec, B. Characterization and HDS performance of
sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates.
Fuel 2015, 149, 149-161.
[15] Cao, Z.; Duan, A.; Zhao, Z.; Li, J.; Wei, Y.; Jiang, G.; Liu,
J. A simple two-step method to synthesize the well-ordered mesoporous
composite Ti-FDU-12 and its application in the hydrodesulfurization of
DBT and 4, 6-DMDBT. J. Mater. Chem. A 2014, 2, 19738-19749.
[16] Morales-Ortuño, J. C.; Ortega-Domínguez, R. A.;
Hernández-Hipólito, P.; Bokhimi, X.; Klimova, T. E. HDS performance of
NiMo catalysts supported on nanostructured materials containing titania.
Catal. Today 2016, 271, 127-139.
[17] Nguyen, T. T.; Qian, E. W.
Synthesis
of mesoporous Ti-inserted SBA-15 and CoMo/Ti-SBA-15 catalyst for
hydrodesulfurization and hydrodearomatization. Microporous Mesoporous
Mater. 2018, 265, 1-7.
[18] Garg, S.; Soni, K.; Kumaran, G. M.; Kumar, M.; Gupta, J. K.;
Sharma, L. D.; Dhar, G. M. Effect of Zr-SBA-15 support on catalytic
functionalities of Mo, CoMo, NiMo hydrotreating catalysts[J]. Catal.
Today 2008, 130, 302-308.
[19] Berhault, G.; De la Rosa, M. P.; Mehta, A.; Yacaman, M. J.;
Chianelli, R. R. The single-layered morphology of supported
MoS2-based catalysts-The role of the cobalt promoter and
its effects in the hydrodesulfurization of dibenzothiophene. Appl.
Catal.; A 2008, 345, 80-88.
[20] Rodríguez, M. A.; Elizalde, I.; Ancheyta, J. Modeling the
performance of a bench-scale reactor sustaining HDS and HDM of heavy
crude oil at moderate conditions. Fuel, 2012, 100, 152-162.
[21] Gao, D.; Duan, A.; Zhang, X.; Zhao, Z.; E. H.; Li, J.; Wang,
H.. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with
different morphologies and their catalytic performance of DBT HDS, Appl.
Catal. B: Environmental, 2015, 165, 269-284.
[22] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D.;
Nonionic triblock and star diblock copolymer and oligomeric surfactant
syntheses of highly ordered, hydrothermally stable, mesoporous silica
structures, J. Am. Chem. Soc. 1998, 120, 6024-6036.
[23] Kumar, A.; Srinivas, D. Aminolysis of epoxides catalyzed by
three-dimensional, mesoporous titanosilicates, Ti-SBA-12 and Ti-SBA-16.
J. Catal. 2012, 293, 126-140.
[24] Dutoit, D. C. M.; Schneider, M.; Baiker, A. Titania-silica
mixed oxides: I. Influence of sol-gel and drying conditions on
structural properties. J. Catal. 1995, 153, 165-176.
[25] Liu, Y.; Cheng, B.; Wang, K.; Ling, G.; Cai, J.; Song, C.; Han,
G. Study of Raman spectra for γ-Al2O3models by using first-principles method. Solid State Commun. 2014, 178,
16-22.
[26] Riegel, B.; Hartmann, I.; Kiefer, W.; Groβ, J.; Fricke, J.
Raman spectroscopy on silica aerogels. J. Non-Cryst. Solids 1997, 211,
294-298.
[27] Tompsett, G. A.; Bowmaker, G. A.; Cooney, R. P.; Metson, J. B.;
Rodgers, K. A.; Seakins, J. M. The Raman spectrum of brookite,
TiO2 (PBCA, Z= 8). J. Raman Spectrosc. 1995, 26, 57-62.
[28] Bordiga, S.; Coluccia, S.; Lamberti, C.; Marchese, L.;
Zecchina, A.; Boscherini, F.; Buffa, F.; Genoni, F.; Leofanti, G. XAFS
Study of Ti-Silicalite: structure of framework Ti (IV) in the presence
and absence of reactive molecules (H2O,
NH3) and comparison with Ultraviolet-Visible and IR
results. J. Phys. Chem. 1994, 98, 4125-4132.
[29] Marchese, L.; Gianotti, E.; Dellarocca, V.; Maschmeyer, T.;
Rey, F.; Coluccia, S.; Thomas, J. M. Structure-functionality
relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic
studies. Phys. Chem. Chem. Phys. 1999, 1, 585-592.
[30] Hu, Y.; Martra, G.; Zhang, J.; Higashimoto, S.; Coluccia, S.;
Anpo, M. Characterization of the local structures of Ti-MCM-41 and their
photocatalytic reactivity for the decomposition of NO into
N2 and O2. J. Phys. Chem. B 2006, 110,
1680-1685.
[31] Blasco, T.; Corma, A.; Navarro, M. T.; Pariente, J. P.
Synthesis, characterization, and catalytic activity of Ti-MCM-41
structures. J. Catal. 1995, 156, 65-74.
[32] Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Preparation and
characterization of quantum-size titanium dioxide. J. Phys. Chem. 1988,
92, 5196-5201.
[33] Klimova, T.; Lizama, L.; Amezcua, J. C.; Roquero, P.; Terrés,
E.; Navarrete, J.; Domínguez, J. M. New NiMo catalysts supported on
Al-containing SBA-16 for 4,6-DMDBT hydrodesulfurization: Effect of the
alumination method. Catal. Today 2004, 98, 141-150.
[34] Zeng, S.; Blanchard, J.; Breysse, M.; Shi, Y.; Shu, X.; Nie,
H.; Li, D. Post-synthesis alumination of SBA-15 in aqueous solution: A
versatile tool for the preparation of acidic Al-SBA-15 supports.
Microporous Mesoporous Mater. 2005, 85, 297-304.
[35] Reddy, B. M.; Chowdhury, B.; Reddy, E. P.; Fernández, A. X-ray
photoelectron spectroscopy study of V2O5dispersion on a nanosized
Al2O3-TiO2 mixed oxide.
Langmuir 2001, 17, 1132-1137.
[36] Castillo, R.; Koch, B.; Ruiz, P.; Delmon, B. Influence of the
amount of titania on the texture and structure of titania supported on
silica. J. Catal. 1996, 161, 524-529.
[37] Matsumoto, R.; Nishizawa, Y.; Kataoka, N.; Tanaka, H.;
Yoshikawa, H.; Tanuma, S.; Yoshihara, K. Reproducibility of XPS analysis
for film thickness of SiO2/Si by active Shirley method.
J. Electron Spectrosc. Relat. Phenom. 2016, 207, 55-59.
[38] Dong, Z.; Ding, D.; Li, T.; Ning, C. High-efficiency photo
electrochemical water splitting with heterojunction photoanode of
In2O3-x nanorods/black Ti-Si-O
nanotubes. Int. J. Hydrogen Energy. 2019, 44, 17611-17621.
[39] An, H.; Chen, Z.; Yang, J.; Feng, Z.; Wang, X.; Fan, F.; Li, C.
An Operando-Raman study on oxygen evolution of manganese oxides: Roles
of phase composition and amorphization. J. Catal. 2018, 367, 53-61.
[40] Mestl, G.; Srinivasan, T. K. K. Raman spectroscopy of
monolayer-type catalysts: supported molybdenum oxides. Catal. Rev. 1998,
40, 451-570.
[41] Heegn, H.; Birkeneder, F.; Kamptner, A. Mechanical activation
of precursors for nanocrystalline materials. Cryst. Res. Technol., 2003,
38, 7-20.
[42] Kim, D. S.; Wachs, I. E.; Segawa, K. Molecular structures and
reactivity of supported molybdenum oxide catalysts. J. Catal. 1994, 149,
268-277.
[43] Williams, C. C.; Ekerdt, J. G.; Jehng, J. M.; Hardcastle, F.
D.; Turek, A. M.; Wachs, I. E. A Raman and ultraviolet diffuse
reflectance spectroscopic investigation of silica-supported molybdenum
oxide. J. Phys. Chem. 1991, 95, 8781-8791.
[44] Qu, L.; Zhang, W.; Kooyman, P. J.; Prins, R. MAS NMR, TPR, and
TEM studies of the interaction of NiMo with alumina and silica–alumina
supports. J. Catal. 2003, 215, 7-13.
[45] Cordero, R. L.; Agudo, A. L. Effect of water extraction on the
surface properties of Mo/Al2O3 and
NiMo/Al2O3 hydrotreating catalysts.
Appl. Catal., A 2000, 202, 23-35.
[46] Herrera, J. M.; Reyes, J.; Roquero, P.; Klimova, T. New
hydrotreating NiMo catalysts supported on MCM-41 modified with
phosphorus, Microporous Mesoporous Mater. 2005, 83, 283-291.
[47] Emeis, C. A. Determination of integrated molar extinction
coefficients for infrared absorption bands of pyridine adsorbed on solid
acid catalysts. J. Catal. 1993, 141, 347-354.
[48] Gallo, J. M. R.; Bisio, C.; Gatti, G.; Marchese, L.; Pastore,
H. O. Physicochemical characterization and surface acid properties of
mesoporous [Al]-SBA-15 obtained by direct synthesis. Langmuir 2010,
26, 5791-5800.
[49] Zakharova, M. V.; Kleitz, F.; Fontaine, F. G. Lewis acidity
quantification and catalytic activity of Ti, Zr and Al-supported
mesoporous silica. Dalton Trans. 2017, 46, 3864-3876.
[50] Wei, Z. B.; Yan, W.; Zhang, H.; Ren, T.; Xin, Q.; Li, Z.
Hydrodesulfurization activity of
NiMo/TiO2Al2O3catalysts. Appl. Catal., A 1998, 167, 39-48.
[51] Lai, W.; Song, W.; Pang, L.; Wu, Z.; Zheng, N.; Li, J.; Zheng,
J.; Yi, X.; Fang, W.; The effect of starch addition on combustion
synthesis of NiMo-Al2O3 catalysts for
hydrodesulfurization. J. Catal. 2013, 303, 80-91.
[52] Mérida-Robles, J.; Rodŕıguez-Castellón, E.; Jiménez-López, A.
Characterization of Ni, Mo and Ni-Mo catalysts supported on
alumina-pillared α-zirconium phosphate and reactivity for the thiophene
HDS reaction. J. Mol. Catal. A: Chem. 1999, 145, 169-181.
[53] Ishutenko, D.; Mozhaev, A.; Salnikov, V.; Nikulshin, P.
Selective hydrodesulfurization of model fluid catalytic cracking
gasoline over sulfided Al2O3-supported
Anderson heteropolyoxomolybdate-based catalysts. React. Kinet. Mech.
Cat. 2016, 119, 615-627.
[54] Vogelaar, B. M.; Kagami, N.; van der Zijden, T. F.; van
Langeveld, A. D.; Eijsbouts, S.; Moulijn, J. A. Relation between sulfur
coordination of active sites and HDS activity for Mo and NiMo catalysts.
J. Mol. Catal. A: Chem. 2009, 309, 79-88.
[55] Travert, A.; Dujardin, C.; Maugé, F.; Veilly, E.; Cristol, S.;
Paul, J. F.; Payen, E. CO adsorption on CoMo and NiMo sulfide catalysts:
a combined IR and DFT study. J. Phys. Chem. B 2006, 110, 1261-1270.
[56] Labruyere, V. Structure des sites sulfures des catalyseurs
d’hydrotraitement: approche combinee par spcetroscopie IR et
modelisation moleculaire, in, universite de Caen, 2014.
[57] Zepeda, T. A.; Fierro, J. L. G.; Pawelec, B.; Nava, R.;
Klimova, T.; Fuentes, G. A.; Halachev, T. Synthesis and characterization
of Ti-HMS and CoMo/Ti-HMS oxide materials with varying Ti content. Chem.
Mater. 2005, 17, 4062-4073.
[58] Huang, T.; Xu, J.; Fan, Y. Effects of concentration and
microstructure of active phases on the selective hydrodesulfurization
performance of sulfided CoMo/Al2O3catalysts. Appl. Catal., B 2018, 220, 42-56.
[59] Paul, J. F.; Payen, E. Vacancy formation on
MoS2 hydrodesulfurization catalyst: DFT study of the
mechanism. J. Phys. Chem. B 2003, 107, 4057-4064.