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Abstract

Acquired drug resistance syndrom (ADR) is one of the most important features associ-

ated with tumor treatment and it is therefore a topic of intensive studies. We present two

simple mathematical models re�ecting di�erent mechanisms of ADR with some Darwinian

e�ects included. These e�ects allow resistant cells to become sensitive again. Basing on

this mathematical approach we conclude that for constant continuous treatment, if no Dar-

winian e�ects are present then once resistant cells appear, sensitive cells are eliminated

after a long time, independently of the mechanism of acquiring the resistance. However,

with Darwinian e�ects the situation is a little better as the sensitive cells are not com-

pletely eliminated but they are still outcompeted by the resistant ones. Moreover, if the

therapy is stopped resistant cells become dominated by sensitive cells and the situation

changes completely in comparison to the case without Darwinian e�ects. We discuss these

mechanisms on the example of gliomas.

1 Introduction

Tumors are still among the most frequent diseases in developed countries. In general, three
main types of treatment are usually applied � surgery, chemotherapy and radiotherapy. Two
factors are main limitations for chemotherapy. The �rst one is related to the therapy toxicity,
which usually forces to stop therapy after some number of cycles and then a long brake is
necessary. The second factor is drug resistance acquired by tumor cells, which causes that
subsequent cycles of therapy become less and less e�cient and could fail [6, 8, 16]. This is the
reason that acquired drug resistance syndrom (ADR) is one of the most important features
associated with tumor treatment and is therefore a topic of intensive studies form di�erent
perspectives. In this paper we focus on ADR associated with temozolomide (TMZ) treatment
of gliomas.

Gliomas are brain tumors that account for about 80% of all brain tumors. The term �glioma�
refers to tumors which originate from glial cell precursors. According to the World Health
Organisation (WHO) gliomas are divided into four grades, according to their morphologic
features. Grade I gliomas are very rare, non-in�ltrating and usually curable. Grade II gliomas
are usually referred to as low-grade gliomas (LGGs) while grade III and IV � as high-grade
gliomas (HGGs); cf. [12]. In general, treating gliomas is di�cult due to their location. Clinicians
have lately focused their attention on chemotherapy which was shown by phase II trials to be
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e�ective against both previously irradiated and unirradiated LGGs [9,15]. Response of glioma
cells to chemotherapy is a subject of many clinical and biological studies.

In [4] we considered two mathematical models describing di�erent mechanisms of acquiring
the drug resistance � one proposed by Ollier et al. [13] and the other based on the ideas of
Pérez-García et al. [14]. The paper of Ollier et al. [13] is focused on analyzing which type
of resistance, primary or acquired, plays more important role in the case of temozolomide
(TMZ) treatment of LGGs. We are interested in analyzing acquired resistance, and therefore
we omitted the in�uence of primary resistance onto the model dynamics. The second considered
model is based on the ideas presented in [14]. However, we again took into account the role
of acquired drug resistance. Hence, both models have similar structure but the mechanism of
acquiring the drug resistance is di�erent. Moreover, we did not assumed any speci�c tumor
growth function (like logistic or Gompertz). Instead, we included a general function having
logistic-type properties. We showed that the dynamics of both models, in the case of constant
continuous chemotherapy, is similar: all solutions converge to a steady state in which the sub-
population of sensitive cells becomes extinct. However, in the second model there is a whole
spectrum of steady states lying in the invariant surface to which the solution can be attracted
depending on the initial data. It could be suspected that this result is related to the lack
of apoptotic death term not associated to the resistance which is present in the �rst model.
Clearly, including such term (cf. [5]) in the model of Pérez-García et al. we obtain existence of
unique steady state re�ecting complete resistance like in the model of Ollier et al.

In this paper both models are complemented with genetic instability, sometimes considered
as a main driver of ADR (cf. [6]), that is we include the mechanism of regaining drug sensitivity,
assuming that due to some mutations a part of resistant cells can become sensitive again. This
mechanism has not been included in the original model of Ollier et al. [13] and also in the
models considered by us in [4].

1.1 Presentation of the models

Let us divide the whole population of LGG cells into three sub-populations: proliferating cells
that are sensitive to chemotherapy (with concentration denoted by P ), damaged cells (D) and
cells with ADR (R). Moreover, let C denote the drug concentration. Due to their biological
meaning, all the concentrations are non-negative, that is P , D, R, C ∈ R+ = [0,+∞).

In the models we assume general law of the tumor growth described by some function
f : R+ → R having logistic-type properties � we state precise assumptions on f later � with
carrying capacity (K) common for the whole population of LGG cells, that is V (t) = P (t) +
D(t) + R(t). However, proliferating cells and cells with ADR have di�erent growth rates (ρP
and ρR, respectively). Application of the drug leads to the decrease of the sub-population of
sensitive cells (proportionally to the drug amount and the sub-population size, with a rate αP ),
and moreover it results in the appearance of damaged and resistant cells.

Ollier et al. [13] assumed that damaged cells can either die (with a rate µD) or become
resistant (with a rate βD). In [4] we considered more general form of the model in which the
logistic function is replaced by the function f . Below we also include the process of sensitivity
regaining (with a rate γ1). Hence, the �rst model of ADR syndrom we consider reads

Ṗ = ρPPf

(
P +D +R

K

)
− αPC(t)P + γ1R, (1a)

Ḋ = αPC(t)P −
(
βD + µD

)
D, (1b)

Ṙ = ρRRf

(
P +D +R

K

)
+ βDD − γ1R. (1c)
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Basing on the ideas presented in [14] we also consider another model that reads

Ṗ = ρPPf

(
P +D +R

K

)
− αPC(t)P + γ1R, (2a)

Ḋ = (1− ε)αPC(t)P − ρP
k
Df

(
P +D +R

K

)
, (2b)

Ṙ = ρRRf

(
P +D +R

K

)
+ εαPC(t)P − γ1R. (2c)

In the model above, as in [14], it is assumed that the drug trigger a damage of DNA and during
the division a cell either enters an apoptotic pathway or make an attempt to repair the damage
and tries to divide. However, the damage cannot be repaired and the cell eventually dies. The
parameter k is a mean number of division attempts before the cell death. Because of this
assumption, the death rate of damaged cells is the same as the proliferation rate of undamaged
cells divided by the parameter k. It is also assumed that damaged cells have some probability
(ε) to mutate and become resistant.

On the basis of biological interpretation and mathematical requirements we propose the
following assumptions regarding the function f describing the tumor growth:

(H1) f : (0,+∞)→ R is of class C1,

(H2) f is strictly decreasing with f(1) = 0,

(H3) (a) either f(0) = 1 and it has a continuous derivative at 0,

(b) or lim
s→0+

f(s) = +∞ and the function sf(s) is continuous on [0,∞) with lim
s→0+

sf(s) =

0.

Notice that for (H3a) we obtain the logistic-type growth while (H3b) re�ects the Gompertz-type
growth.

It should be marked that in [14] no apoptotic death for damaged cells was considered.
However, including additional term −σD, σ > 0, into Equation (2b) does not change the
structure of this equation. Clearly, if we consider the following change of the parameters
appearing in Equation (2b):

ρP → ρ̃P = σk + ρP , K → K̃ =
K

σ + ρP
k

,

then we obtain exactly the same equation with parameters ρ̃P , K̃ instead of ρP , K. On the
other hand, in this case the parameters K and K̃ are di�erent in Equations (2b) and (2a), (2c).
In [5] we showed that some of the model properties are di�erent for σ > 0 comparing to the
original model with σ = 0. We proposed a Lyapunov function proving global stability of the
steady state re�ecting complete resistance. Here, we would like to focus on the original models
and check the in�uence of mutations toward sensitivity on the models dynamics.

Following the ideas presented in [4] we consider the following change of variables

x = P/K, y = D/K, z = R/K, t̃ = ρpt, (3)

and denote

α = αPC/ρP , β = βD/ρP , µ = µD/ρP , ρ = ρR/ρP , γ = γ1/ρP , κ = 1/k, (4)
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obtaining dimensionless systems

ẋ = xf
(
x+ y + z

)
− αx+ γz, (5a)

ẏ = αx−
(
β + µ

)
y, (5b)

ż = ρzf
(
x+ y + z

)
+ βy − γz, (5c)

and

ẋ = xf
(
x+ y + z

)
− αx+ γz, (6a)

ẏ = (1− ε)αx− κyf
(
x+ y + z

)
, (6b)

ż = ρzf
(
x+ y + z

)
+ εαx− γz, (6c)

where all parameters except γ ≥ 0 are positive and x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0.
Notice that as we consider ADR being the result of the treatment, it is necessary to assume
α > 0, and in the case α = 0 the models properties could be di�erent. We discuss the models
dynamics in this case in the last subsection of this article. The most important parameter from
the point of view of the analysis presented in this paper is γ, that is the coe�cient of back
conversion of resistant cells into sensitive ones. Due to biological meaning it seems reasonable
to assume that γ is small, such that γ < ρ. Moreover, as k is the number of divisions, the
parameter κ = 1

k
≤ 1. However, when we include additional apoptotic death, as mentioned

before models rescaling, then κ = 1
k

+ σ
ρP
, which means that in general it makes sense to consider

arbitrary positive values of this parameter.

1.2 Properties of the models without mutations

In [4] we studied Systems (5) and (6) without mutations, that is for γ = 0. Notice that in
Alvarez-Arenas et al. [1] almost the same model as described by (5) with γ = 0 was considered.
However, the authors of [1] assumed that the coe�cient βD of transition of damaged cells
into resistant once is not constant but also depends on the amount C(t) of delivered drugs.
In mathematical analysis they also assumed that all coe�cients are constant, so there is no
di�erence between these two models from that point of view. They noticed, that construction
of this simpli�ed model is based on the assumption the ADR e�ect can be triggered only in the
presence of therapy. This could be associated with Lamarckian hypotheses and no Darwinian
e�ects are taken into account.

Below we summarize the results proved in [4] (cf. also [1]). Note, that due to Assump-
tion (H3b), if f(s)→ +∞ as s→ 0+, then the right-hand sides of Equations (5a) and (6a) are
well de�ned at the origin and continuous in the positive neighborhood of it.

• Both systems have unique solutions for any non-negative initial data. Moreover, it occurs
that the systems have the same invariant set, that is

P = {(x, y, z) ∈ R3
+ : x+ y + z ≤ 1}.

• System (5) with γ = 0 has two non-negative steady states:

trivial state A = (0, 0, 0) which is locally unstable,

semi-trivial state B = (0, 0, 1) which is locally stable.

• System (6) with γ = 0 have the following steady states:

trivial state A = (0, 0, 0) which is unstable,
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in the invariant surface x+ y + z = 1 the system reduces to

ẋ = −αx,
ẏ = (1− ε)αx,

(7)

with z = 1− x− y. Therefore, all points of the form (0, ỹ, 1− ỹ) are steady states.

• The theorem below describes global dynamics of both systems (for a proper Lyapunov
function see [5]).

Theorem 1. In the invariant set P the following statements hold.

(i) All solutions of System (5) with γ = 0 converges to (0, 0, 1).

(ii) All solutions of System (6) with γ = 0 converges to (0, 1− z̄, z̄), where z̄ depends on

x0, y0, z0.

2 Analysis of the models with γ > 0

Note that for γ > 0 the basic properties (like existence, uniqueness and non-negativity of
solutions) of both models remain the same as for γ = 0. Moreover, invariant sets are also the
same because any invariant set depends on the sum of all variables x+y+z, and this sum does
not change for γ > 0. Therefore, we are able to prove the same result as in [4].

Lemma 2. If 0 ≤ x0 + y0 + z0 ≤ 1 then solutions of both Systems (5) and (6) ful�ll

0 ≤ x(t) + y(t) + z(t) ≤ 1, for t > 0.

Proof. Non-negativity of the solutions is obvious due to the form of the right-hand side of both
Systems. Adding up Equations (5a)�(5c) one gets(

x+ y + z
)′

= (x+ ρz)f(x+ y + z)− µy.

Hence, if there exists t̄ > 0 such that x(t̄)+y(t̄)+z(t̄) = 1 then
(
x(t̄)+y(t̄)+z(t̄)

)′
= −µy ≤ 0.

Gronwall's Lemma and the uniqueness of solutions of System (5) imply x(t) + y(t) + z(t) ≤ 1.
Adding up Equations (6a)�(6c) we obtain(

x+ y + z
)′

= (x− κy + ρz) f(x+ y + z).

Therefore, the surface x + y + z = 1 is invariant, and uniqueness of solutions implies that for
x0 + y0 + z0 < 1 there is x(t) + y(t) + z(t) < 1, for all t > 0, and Lemma is proved.

Hence, in the following we study the dynamics of Systems (5) and (6) in the invariant set
P . Moreover, hereafter we assume

(Hγ) 0 < γ < ρ.

Reference values of the parameters

In general, we are mainly interested in the models dynamics for biologically relevant values
of the parameters. As these reference values we choose parameters estimated in [13] and we
rescale them according to (4) obtaining α = 0.414, β = 1.413, µ = 5.688 and ρ = 12. We also
take an arbitrary value of ε = 0.1 and κ = 0.714 which re�ects that a mean number of division
tries is equal to 1.4. Therefore, we obtain the following set of reference parameters:

α = 0.414 , β = 1.413 , µ = 5.688 , ρ = 12 , ε = 0.1 , κ = 0.714 . (8)

On the other hand, many researchers assume that the growth rate of resistant cells ρR is not
greater than the growth rate of sensitive ones ρP implying ρ ≤ 1; c.f. e.g. [2, 10] in the context
of optimal control for heterogeneous tumors. Therefore, we shall also consider small values of
ρ as well.
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2.1 Analysis of System (5)

Let us �rst consider System (5) and denote η = β + µ.
Looking for steady states we easily see that ȳ = α

η
x̄ for any steady state (x̄, ȳ, z̄). This

means that if x̄ = 0, then ȳ = 0 as well. However, if x̄ = 0, then from Equation (5a) we
immediately obtain z̄ = 0. Hence, there is always the trivial steady state S0 = (0, 0, 0).

Assume now that x̄ 6= 0. This yields ȳ 6= 0 and from Equation (5c) we obtain z̄ 6= 0. Hence,
we can multiply Equation (5a) by ρz and Equation (5c) by x and subtract them obtaining

γρ(z̄)2 − (αρ− γ)x̄z̄ − βx̄ȳ = 0, (9)

from which we get the quadratic equation for z̄
x̄
:

γρ
( z̄
x̄

)2

+ (γ − αρ)
z̄

x̄
− αβ

η
= 0.

This yields

z̄

x̄
=
αρ− γ +

√
(αρ− γ)2 + 4αβγρ

η

2γρ
=: A, (10)

and therefore z̄ = Ax̄. From this relation we can calculate the value of x̄ using Equation (5a):

f

(
x̄+

α

η
x̄+ Ax̄

)
= α− γA =⇒ x̄ =

f−1 (α− γA)

1 + α
η

+ A
. (11)

Note that the positive steady state S+ =
(
x̄, α

η
x̄, Ax̄

)
bifurcates from the semi-trivial steady

state (0, 0, 1) existing for γ = 0 analyzed in [4]. Moreover, existence of the positive steady state
requires α − γA > 0, because the steady state must be located in the invariant set P . On
the other hand, for the logistic type of f ful�lling (H3a) the other inequality should be also
satis�ed, namely

α− γA < 1,

while for the Gompertz type of f ful�lling (H3b) this is not a restriction.

Proposition 3. The positive steady state S+ =
(
x̄, α

η
x̄, Ax̄

)
of System (5) exists independently

of the model parameters.

Proof. We need to check the inequalities 0 < α− γA < 1.
The �rst inequality, that is 0 < α− γA, is equivalent to η > β, which is always satis�ed for

positive parameters.
The second inequality, that is α− γA < 1, is equivalent to

αρ+ γ − 2ρ <

√
(αρ− γ)2 + 4

αβγρ

η
. (12)

It is easy to see that if α ≤ 2 − γ
ρ
then the left-hand side of Inequality (12) is non-positive,

and therefore this inequality is satis�ed. On the other hand, if α > 2 − γ
ρ
then both sides of

Inequality (12) are positive, and squaring them we obtain the following equivalent inequality

(ρ− γ)(1− α) <
αβγ

η
.

Note that we have α > 2 − γ
ρ
> 1, and therefore the left-hand side of the inequality above is

negative due to (Hγ) while the right-hand side is positive, which means that this inequality is
always satis�ed. Hence, Inequality (12) is always satis�ed under Assumption (Hγ).
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Local stability of the steady states

Let us now consider local stability of the steady states of System (5). To shorten the notation,
in the following we mean local stability whenever we refer to as stability. Let S = (x̄, ȳ, z̄)
denote a steady state, s̄ = x̄ + ȳ + z̄ and d = −f ′(s̄). Looking for the Jacobian matrix of
System (5) we obtain

J(S) =

f(s̄)− x̄d− α −x̄d −x̄d+ γ
α −η 0
−ρz̄d −ρz̄d+ β ρf(s̄)− ρz̄d− γ

 . (13)

Proposition 4. The trivial steady state S0 of System (5) is unstable.

Proof. Let us �rst consider the Gompertz type of f that ful�lls (H3b). In this case Equation (5a)
can be estimated from below in the following way

ẋ ≥ x
(
f
(
x+ y + z

)
− α

)
.

If (x, y, z)→ (0, 0, 0) then f(x+ y + z) > α + c, for some constant c > 0, for su�ciently small
x, y, z. Thus ẋ > cx for all x, y, z su�ciently small, and therefore x is repelled from 0 which
contradicts the assumption.

Next, we focus on the logistic type of f that ful�lls (H3a). Then Matrix (13) reads

J(S0) =

1− α 0 γ
α −η 0
0 β ρ− γ

 ,

which gives the characteristic polynomial

W1(λ) = λ3 + a2λ
2 + a1λ+ a0

with

a2 = η + α− 1− ρ+ γ, a1 = η(α− 1)− (ρ− γ)(η + α− 1), a0 = η(ρ− γ)(1− α)− γαβ.

According to the Routh-Hurwitz Criterion if at least one of the parameters ai, i = 0, 1, 2, is
negative then the steady state S0 is unstable.

We consider two mutually exclusive cases.

• Let α ≥ 1. Then a0 < 0, obviously.

• Let α < 1 and de�ne

γ0 =
ρη(1− α)

αβ + η(1− α)
.

If γ > γ0 then a0 < 0.

If γ ≤ γ0 then a0 ≥ 0. Suppose that ai ≥ 0 for i = 0, 1, 2. We show that this leads
to a contradiction.

The inequality a2 ≥ 0 is equivalent to γ ≥ ρ − (α − 1 + η). To have both a2 and a0

non-negative, one requires

ρ− (α− 1 + η) ≤ ρη(1− α)

αβ + η(1− α)
,

7



which under our assumption is equivalent to

ρ ≤
(α− 1 + η)

(
αβ + η(1− α)

)
αβ

.

As ρ > 0, this implies that α + η > 1. Next, for α + η > 1, the inequality a1 ≥ 0 is
equivalent to

γ ≥ ρ+
η(1− α)

η + α− 1
. (14)

Note that ρ + η(1−α)
η+α−1

> ρ, and therefore Inequality (14) contradicts Assumption (Hγ).
This means that at least one ai is negative which implies instability of the steady state,
and the proof is completed.

Now, we turn to the positive steady state S+. For this state we have

f(s̄)− α + γ
z̄

x̄
= 0 and ρf(s̄)− γ + β

ȳ

z̄
= 0,

which yields f(s̄)− α = −γA and ρf(s̄)− γ = −αβ
ηA
, and therefore

J(S+) =

−γA− x̄d −x̄d −x̄d+ γ
α −η 0

−ρAx̄d −ρAx̄d+ β −ρAx̄d− αβ
ηA

 .

From this Jacobian matrix we obtain the characteristic polynomial

W2(λ) = λ3 + b2λ
2 + b1λ+ b0

with

b2 = x̄d(ρA+ 1) + η + γA+
αβ

ηA
> 0,

b1 = x̄d

(
γρA2 + (η + γ)ρA+ α + η +

αβ

ηA

)
+ ηγA+

αβγ

η
+
αβ

A
> 0,

b0 = x̄d

(
ηγρA2 + (α + η)γρA+ αβ +

αβ

A
+
α2β

ηA

)
> 0.

Using the Routh-Hurwitz Criterion one needs to check the sign of b2b1 − b0. We have

b2b1 − b0 = c2(x̄d)2 + c1x̄d+ c0,

where

c2 = (ρA+ 1)

(
γρA2 + (η + γ)ρA+ α + η +

αβ

ηA

)
> 0,

c1 = γ2ρA3 + γρ(η + γ)A2 +
(2αβγρ

η
+ η2ρ+ ηγ + αγ − αγρ+ αρη

)
A

+ 2αβρ+ η(α + η) +
αβγ(2 + ρ)

η
+

2αβ

A
+
α2β2

η2A2
,

c0 = γ2ηA2 +
αβγ + η3

η
γA+ 3αβγ +

(αβγ + η3)αβ

η2A
+
α2β2

ηA2
> 0.

Let us de�ne

ρcrit = 1 +
2β

µ− β
+

(µ+ β)2

α(µ− β)
.
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Proposition 5. If µ ≤ β or µ > β and ρ ≤ ρcrit then the positive steady state S+ of System (5)
is stable independently of the magnitude of γ.

If µ > β and ρ > ρcrit then S+ state is stable for γ < ρ(µ+β)2(α+µ+β)
αρ(µ−β)−(µ+β)(α+µ+β)

.

Proof. Note that if the coe�cient of A in c1 is positive then c1 > 0 as well, and the steady state
is stable. Positivity of the coe�cient of A is equivalent to the following inequality

η2ρ(η + α) > −γ
(
α
(
(1− ρ)η + 2βρ

)
+ η2

)
= −γ

(
α
(
ρ(β − µ) + β + µ

)
+ (β + µ)2

)
.

It is easy to see that the assumptions imply that the inequality above holds.

Corollary 6. If γ is small enough then the positive steady state S+ of System (5) is stable.

Corollary 7. If ρ ≤ 1 then the positive steady state S+ of System (5) is stable independently

of the magnitude of γ.

For reference parameters (8) we have µ = 5.688 > β = 1.413 and ρ = 12 < ρcrit ≈ 30.15,
so Proposition 5 yields stability of S+. On the other hand, as we noted before, the assumption
ρ ≤ 1 is rather typical and made by many researchers in various context; c.f. e.g. [2, 10] in the
context of optimal control for heterogeneous tumors. Therefore, we can conclude that also in
such cases the positive steady state S+ is stable.
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Figure 1: Regions of stability and instability for the positive steady state S+ of System (5)
for α = 1 and ρ = 122 with the logistic function f(s) = 1 − s (left) and Gompertz function
f(s) = − ln s (right). Blue curve represents the border between the regions.

At the end of this subsection we would like to illustrate the possible instability of the positive
steady state S+ of System (5). We would like to mark that this is only mathematical illustration
as the values of the model parameters, especially ρ, are rather unrealistic. In Figure 1 regions
of stability/instability for the logistic function (left panel) and the Gompertz function (right
panel) in the space (γ, β) are depicted. We see that the instability regions are very small, as
the unimodal function re�ecting the border of this region has its maximal value of the order
6 · 10−4 for the logistic function and 8 · 10−5 for the Gompertz one.

Next presented �gures illustrate the model behavior for some parameter values from the
unstable region. In Figure 2 we see two exemplary solutions for the logistic and Gompertz
function. Graphs presented in Fig. 3 con�rm that the solutions are attracted by limit cycles,
although the amplitude of oscillations in the case of the Gompetrz function is very small.

2.2 Analysis of System (6)

Let us look for steady states S = (x̄, ȳ, z̄) of System (6) and assume that x̄ = 0. From
Equation (6a) we obtain z̄ = 0 while Equation (6b) yields ȳf(s̄) = 0, where s̄ = x̄ + ȳ + z̄ as
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Figure 2: Exemplary solutions of System (5) in unstable case for both the logistic and Gompertz
function. Parameter values: α = 1, β = 0.00001, γ = 100 and ρ = 122.

before. Hence, either ȳ = 0 or s̄ = 1 which means that the trivial steady state S0 = (0, 0, 0)
and the semi-trivial state S1 = (0, 1, 0) exist independently of the magnitude of γ.

Assuming x̄ 6= 0, from Equations (6a) and (6c) we see that z̄ 6= 0. Clearly, if z̄ = 0 and
x̄ 6= 0 then from Equation (6a) there is f(s) = α, but then from (6c) ραz̄+ εαx̄−γz̄ = 0 and if
z̄ = 0 then x̄ = 0, which contradicts the assumption. Hence, we can multiply Equation (6c) by
x̄ and subtract it from Equation (6a) multiplied by ρz̄. This implies that if there is a positive
steady state then it satis�es

γρz̄2 + (γ − αρ) x̄z̄ − εαx̄2 = 0 =⇒ z̄

x̄
=
αρ− γ +

√
(αρ− γ)2 + 4εαργ

2γρ
:= B. (15)

This means that the coordinates of the positive steady state satisfy z̄ = x̄B.
Next, adding all three equations of System (6) we obtain either f(s̄) = 0 or x̄− κȳ + ρz̄ =

0. The �rst possibility contradicts the assumption x̄ 6= 0, which is easily seen after adding
Equations (6a) and (6c). The second possibility implies

ȳ =
1 + ρB

κ
x̄ and z̄ = Bx̄. (16)

Using Relations (16) in Equation (6a) one gets

f

(
x̄+

1 + ρB

κ
x̄+ x̄B

)
= α− γB, (17)

and if α − γB > 0, and α − γB < 1 for the logistic type of f ful�lling (H3a), then we can
calculate

x̄ =
f−1(α− γB)

1 +B + 1+ρB
κ

. (18)

Hence, we obtain the positive steady state S+ =
(
x̄, 1+ρB

κ
x̄, Bx̄

)
with x̄ de�ned by (18). Note

that this state bifurcates from the semi-trivial steady state
(

0, ρ
κ+ρ

, κ
κ+ρ

)
existing for γ = 0.

Clearly, if γ → 0 then Equation (15) implies x̄ → 0, and from Equations (6b) and (6c) we
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Figure 3: Asymptotic dynamics of the solutions presented in Fig. 2.

obtain either ȳ = 0 and z̄ = 0 or f(s̄) → 0, that is ȳ + z̄ → 1. In the �rst case we have the
trivial steady state while in the second one Equation (16) gives −κȳ + ρz̄ → 0 which together
with the relation ȳ + z̄ → 1 yields ȳ → ρ

κ+ρ
and z̄ → κ

κ+ρ
.

Proposition 8. Assume ε < 1. The positive steady state S+ of System (6) exists independently
of the model parameters.

Proof. One need to check the inequality α− γB > 0, as well as the inequality α− γB < 1 for
the logistic type of f . However, the �rst inequality is equivalent to

αρ+ γ >
√

(αρ− γ)2 + 4εαργ,

and squaring both sides one gets the equivalent inequality ε < 1, which we assume.
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On the other hand, for α ≤ 1 the second inequality is always satis�ed. Now, assume that
α > 1. Then the inequality α− γB < 1 is equivalent to

αρ− 2ρ+ γ <
√

(αρ− γ)2 + 4εαργ,

which is obviously satis�ed for α ≤ 2 − γ
ρ
. For α > 2 − γ

ρ
we obtain the following equivalent

inequality
(ρ− γ)(1− α) < αγε,

but now α > 1 and this inequality is satis�ed due to Assumption (Hγ). This completes the
proof.

Local stability of the steady states

Now, we turn to the analysis of stability of the steady states of System (6). Calculating the
Jacobian matrix for a state S = (x̄, ȳ, z̄) we obtain

J(S) =

 f(s̄)− x̄d− α −x̄d −x̄d+ γ
(1− ε)α + κȳd −κ (f(s̄)− ȳd) κȳd
εα− ρz̄d −ρz̄d ρf(s̄)− ρz̄d− γ

 , (19)

where d = −f ′(s̄) as for System (5).

Proposition 9. The trivial steady state S0 of System (6) is unstable.

Proof. For the Gompertz type of f ful�lling (H3a) the proof is analogous to the proof of the
same result for System (5).

For the logistic type of f ful�lling (H3b) we have

J(S0) =

 1− α 0 γ
(1− ε)α −κ 0
εα 0 ρ− γ

 ,

and it is obvious that λ1 = −κ is an eigenvalue, and therefore the stability depends on the
reduced matrix

J2(S0) =

(
1− α γ
εα ρ− γ

)
.

We need to check the signs of trace and determinant of the matrix J2(S0). We easily see that

tr J2(S0) = ρ− γ + 1− α, det J2(S0) = ρ(1− α)− γ
(
1− α(1− ε)

)
.

The determinant det J2(S0) is positive in two cases:

(i) 1− α(1− ε) > 0 and γ <
ρ(1− α)

1− α(1− ε)
,

(ii) 1− α(1− ε) < 0 and γ >
ρ(α− 1)

α(1− ε)− 1
.

Consider case (i). Notice, that α must be smaller than 1 as γ is positive, and therefore
the right-hand side of the second inequality is smaller than ρ. This gives γ < ρ, that is (Hγ).
However, in such a case tr J2(S0) > 0, as α < 1, so the steady state is unstable.

Consider case (ii). Then α > 1
1−ε > 1 and the second inequality means that γ > ρ

(
1 + αε

α−1−αε

)
>

ρ, which contradicts (Hγ), and thus the assertion of the proposition holds.
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Let us study stability of S1. For this state we have f(s̄) = 0 and we obtain the Jacobian
matrix of the form

J(S1) =

 −α 0 γ
(1− ε)α + κd κd κd

εα 0 −γ

 .

For this matrix λ = κd > 0 is an eigenvalue, yielding instability of S1 independently of the
model parameters. Note however, that in the invariant surface x+y+z = 1 System (6) reduces
to

ẋ = γ − (α + γ)x− γy,
ẏ = (1− ε)αx,

and it is easy to see that this system has exactly one steady state (0, 1) and y is strictly
increasing, so it must tend to 1, yielding x→ 0. Hence, in the invariant surface the projection
of the state S1 is globally stable.

Corollary 10. The semi-trivial steady state S1 of System (6) is unstable independently of the

model parameters, while the projection of this point onto the invariant surface x+ y + z = 1 is

globally stable within this surface.

For the positive steady state S+ there are the following relations:

f(s̄) = α− γB, ρf(s̄)− γ = −αεx̄
z̄

= −αε
B
,

yielding the following form of the Jacobian matrix

J(S+) =

 −γB − x̄d −x̄d −x̄d+ γ
(1− ε)α + x̄d(1 + ρB) −κ(α− γB) + x̄d(1 + ρB) x̄d(1 + ρB)

εα− x̄dρB −x̄dρB −αε
B
− x̄dρB

 .

Now, calculating the characteristic polynomial for S+ one gets

W (λ) = λ3 + a2λ
2 + a1λ+ a0,

with

a2 = γB + κ(α− γB) +
αε

B
,

a1 = x̄d
(

(α− γB)
(
κ(1 + ρB) + ρ2B + 1

))
+ κ(α− γB)

(
γB +

αε

B

)
,

a0 = x̄d

(
κ(α− γB)(B + 1)

(
γρB +

αε

B

)
+ α(1− ε)

(
γρB +

αε

B

))
.

Recall that α > γB and ε < 1, hence all ai > 0, i = 0, 1, 2. Denoting U = α − γB > 0,
according to the Routh-Hurwitz Criterion, one needs to check the sign of

CRH := a2a1 − a0 = κU
(
γB + κU +

αε

B

)(
γB +

αε

B

)
+ x̄d

(
(1− ρ)γ(1 + κ)BU

+
(
κ(ρ+ κ)ρU2 + αγε

(
κ(1− ρ)− ρ2

) )
B

+ κ(1 + κ)U2 + αε(αρ2 − γ)− (1− ρ)α2κε+
α2ε2

B

)
.
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As in general it is di�cult to attribute a sign to the CRH expression, let us consider a special
case ε→ 0. Then we have

B → αρ− γ
γρ

, α− γB → γ

ρ
.

Note that in this case there should be αρ− γ > 0 as we want to have the positive steady state,
and we obtain

a2 →
αρ− γ + γκ

ρ
,

a1 → x̄d
ρ(αρ− γ + ακ) + γ

ρ
+
γκ(αρ− γ)

ρ2
,

a0 → x̄d(αρ− γ)
κ(αρ− γ + γρ) + αρ2

ρ2
.

Some algebraic calculations show that

CHR → C lim
HR :=

γκ(αρ− γ)(αρ− γ + γκ)

ρ3
− αγx̄d

ρ2

(
ρ2 −

(γ
α

+ κ(κ+ 1) + 1
)
ρ+

γ

α

)
. (20)

It should be marked that in a general case the value x̄d does not depend on the other model
parameters. Clearly, we are always able to change the slope of the function f at x̄ to make
the value d as large or as small as we want. Thus, if the sign of the second term of the limit
C lim
RH de�ned by (20) is negative then the steady state is stable for any function f , and if this

term is positive the steady state is unstable for at least some function f . The sign of this term
depends on the sign of

Pρ(ρ) = ρ2 −
(γ
α

+ κ(κ+ 1) + 1
)
ρ+

γ

α
,

which is a quadratic polynomial in ρ. The determinant of it reads

∆ρ =
(γ
α
− 1
)2

+ 2κ(κ+ 1)
(γ
α

+ 1
)

+ κ2(κ+ 1)2 > 0.

Thus, Pρ has two positive roots

ρ1 =
γ
α

+ κ(κ+ 1) + 1−
√

∆ρ

2
, ρ2 =

γ
α

+ κ(κ+ 1) + 1 +
√

∆ρ

2
,

and Pρ is non-positive for ρ ∈ [ρ1, ρ2] and positive otherwise. Let us recall that we need to have
ρ > γ

α
and it is easy to check that γ

α
∈ (ρ1, ρ2). Hence, we are in a position to formulate the

following corollary.

Corollary 11. If ρ ∈
(
γ
α
, ρ2

]
then the positive steady state S3 of System (6) is stable for

su�ciently small ε and any arbitrary function f . If ρ > ρ2 then there exist such small ε and a

function f that this steady state is unstable.

Note that Pρ(1) = −κ(κ+ 1) < 1, hence another less speci�c corollary could be formulated.

Corollary 12. If γ < α and ρ ∈
(
γ
α
, 1
]
then the positive steady state S3 of System (6) is stable

for su�ciently small ε and any arbitrary function f .

Now, let us illustrate the possible stability switches of the positive steady state S+ of
System (6). In Figures 4 and 5 we see the regions of stability and instability of the positive
steady state S+ of System (6) in the plane (γ, ε) for the logistic and Gompertz function f ,
respectively. Although both �gures show that instability is possible for both functions, but
we should mark that it appears only for small values of ε. Note, that the regions of stability
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Figure 4: Regions of stability and instability for the positive steady state S+ of System (6)
with the logistic function f(s) = 1− s. Blue curve represents the border between these regions
described by the relation CRH = 0. For the left-hand side panel the reference parameter
values (8), except ε, were used; for the right-hand side panel: α = 0.3, κ = 0.46, ρ = 8.
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Figure 5: Regions of stability and instability for the positive steady state S+ of System (6) with
the Gompertz function f(s) = − ln s. Blue curve represents the border between these regions
described by the relation CRH = 0. For the left-hand side panel the reference parameter
values (8), except ε, were used; for the right-hand side panel: α = 0.3, κ = 0.46, ρ = 8.

and instability for the logistic and Gompertz functions are very similar. The curve CRH = 0
de�ning the border between these regions is a unimodal function with maximal value near 0.04
for reference parameters and 0.06 for α = 0.3, κ = 0.46 and ρ = 8.

At the end of our analysis we would like to illustrate the behavior of System (6) in unstable
case. This illustration for the logistic function f(s) = 1− s is presented in Fig. 6, where we see
oscillatory dynamics of the solutions with eventual periodic behavior. We would like to note
that similar dynamics could be obtained for the Gompertz function f(s) = − ln s, and therefore
we do not include an additional �gure here.

2.3 Positive steady state depending on γ

In this subsection we consider the positive steady state S+ as a function of γ, which is the
parameter of our interest in the present study. We mainly focus on the logistic function f(s) =
1− s, however some part of the analysis presented below is valid for a general function f .
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Figure 6: Exemplary solutions of System (6) with the logistic function f(s) = 1− s illustrating
unstable case. We took reference parameter values (8) except γ = 1 and ε = 0.03. The top
panel shows the solutions and phase space for the time interval [0, 100], while the bottom panel
shows eventual periodic behavior of these solutions, the time interval [980, 1, 000].

2.3.1 System (5)

We know that the positive steady state S+ bifurcates from the semi-trivial state (0, 0, 1) inde-
pendently of the model parameters. Looking for the dependence on γ we calculate:

∂A

∂γ
=− α

√
∆ + αρ− γ + 2β

η
γ

2γ2
√

∆
< 0,

∂(γA)

∂γ
=−

√
∆ + αρ− γ − 2αρβ

η

2ρ
√

∆
,
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where ∆ = (αρ − γ)2 + 4αγρβ
η
. Note that ∂(γA)

∂γ
< 0 as

√
∆ > 2αρβ

η
− (αρ − γ) due to the

relation between the parameters η > β.
Moreover, if we treat x̄ as a function of γ, then we can di�erentiate Formula (17) obtaining

f ′(s̄)

(
∂x̄

∂γ

(
1 +

α

η
+ A

)
+ x̄

∂A

∂γ

)
= −A− γ ∂A

∂γ
,

and if f ′(s̄) = −d 6= 0 we get

∂x̄

∂γ
=
A− ∂A

∂γ
(x̄d− γ)

d
(

1 + α
η

+ A
) ,

which means that for su�ciently small γ the coordinate x̄ is an increasing function of γ. More-
over, as ȳ = α

η
x̄ then ȳ is increasing as well. Note that for the logistic function f(s) = 1− s we

have d = 1 and x̄ = 1−α+γA
1+α

η
+A

, and therefore the su�cient condition for x̄ to be increasing as a

function of γ reads

γ <
1− α
1 + α

η

,

which requires α < 1. In this case we also have

z̄ = Ax̄ = (1− α + γA)
1

1 + α+η
ηA

,

which is the product of two decreasing positive functions implying that z̄ is decreasing as a
function of γ for the logistic function f independently of the model parameters.

2.3.2 System (6)

For this system the positive steady state S+ bifurcates from the semi-trivial state
(

0, ρ
κ+ρ

, κ
κ+ρ

)
existing for γ = 0. For reference parameters (8) and the logistic function f this point is
approximately (0, 0.9438, 0.05616).

As before, we consider the dependence on γ and make some calculations. Note, that the
calculations regarding A and B are almost the same. The only di�erence is that ε appears in
the place of β

η
present in System (5). Therefore, we have

∂B

∂γ
=− α

√
∆ + αρ− γ + 2εγ

2γ2
√

∆
< 0,

∂(γB)

∂γ
=−

√
∆ + αρ− γ − 2αρε

2ρ
√

∆
,

where ∆ = (αρ − γ)2 + 4εαγρ. Note that, like in the previous case, ∂(γB)
∂γ

< 0 as
√

∆ >

2αρε− (αρ− γ) for any ε < 1.
As before, we can di�erentiate Formula (17) obtaining

f ′(s̄)

(
∂x̄

∂γ

(
1 +B +

1 + ρB

κ

)
+ x̄

∂B

∂γ

(
1 +

ρ

κ

))
= −B − γ ∂B

∂γ
,

and if f ′(s̄) = −d 6= 0 we get

∂x̄

∂γ
=
B − ∂B

∂γ

(
x̄d
(
1 + ρ

κ

)
− γ
)

d
(
1 +B + 1+ρB

κ

)
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which means that for su�ciently small γ the coordinate x̄ is an increasing function of γ. For
the logistic function f(s) = 1− s and ε→ 0 it is enough that

γκ(ρ− γ)

κ(αρ+ γ(ρ− 1)) + αρ2

(
1 +

ρ

κ

)
> γ ⇐⇒ γ <

κ+ ρ

κ+ 1
(1− α),

which requires α < 1, as before. On the other hand, it is easy to see that for α < κ+ρ
κ(1+ρ)+2ρ

the
inequality above is not restrictive, as we have

γ < αρ <
κ+ ρ

κ+ 1
(1− α).

Continuing our analysis of this speci�c case of the logistic function f , we see that

z̄ = Bx̄ = (1− α + γB)
1

1 + ρ
κ

+ 1+κ
κB

,

and z̄ as a function of γ is a product of two positive decreasing functions, implying that z̄ is
decreasing as a function of γ. Similarly,

ȳ =
1 + ρB

κ
x̄ =

1− α + γB

1 + κ 1+B
1+ρB

,

and therefore

∂ȳ

∂γ
=

∂(γB)
∂γ

(
1 + κ 1+B

1+ρB

)
− (1− α + γB)∂B

∂γ
κ(1−ρ)

(1+ρB)2(
1 + κ 1+B

1+ρB

)2 ,

implying that ȳ is decreasing for all ρ > 1 due to two negative terms in the numerator, while
for ρ < 1 we have a sum of negative and positive terms, so ȳ may not be necessarily decreasing.
Considering ε→ 0 we obtain

ȳ → αρ(ρ− γ)

γκ(ρ− 1) + αρ(κ+ ρ)
.

Now, it is an easy to calculate the derivative of ȳ with respect to γ obtaining

∂ȳ

∂γ
→ −

αρ2
(
ρ(α + κ)− κ(1− α)

)(
γκ(ρ− 1) + αρ(κ+ ρ)

)2 .

Therefore, if

ρ <
κ(1− α)

α + κ
(21)

then ȳ is an increasing function of γ for su�ciently small ε. Of course, it again requires α < 1.
For reference parameter values (except ρ, of course) this threshold is equal to 0.371. In Fig. 7
we present dependence of coordinates of the positive steady state S+ on γ for several sets of the
parameter values. We see that for ρ = 0.3 the y-coordinate is increasing for both sets of chosen
parameter values, which agrees with the estimation obtained above. Note that in presented
graphs we have ε = 0.1 while the estimation has been obtained for ε→ 0.
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Figure 7: Dependence of the positive steady state S+ of System (6) on the magnitude of γ for
the logistic function f : x̄, ȳ and z̄ are depicted in solid red, dashed blue and dotted green,
respectively. Parameter values: in the top row reference values (8) with (from left) ρ = 12,
ρ = 0.5 and ρ = 0.3; in the bottom row α = 0.3, κ = 0.46 and (from left) ρ = 8, ρ = 0.5, and
ρ = 0.3. The values of γ are restricted to those bounded above by αρ, like for ε→ 0, although
ε = 0.1 here.

2.4 Dynamics of the systems for α = 0.

Let us recall that the coe�cient α re�ects chemotherapy. Thus, it is interesting to study what
will happen if we stop the treatment, that is α = 0 starting from some time t0 > 0. As the
system is autonomous, we again can assume t0 = 0 without lack of generality. Clearly, in
this case the y-coordinate of the solution of both Systems (5) and (6) is decreasing, while the
x-coordinate is increasing.

For System (5) the equation for y could be solved and we see that this coordinate decreases
to 0 exponentially with the exponent η = β + µ. Therefore, the only coordinate that is able to
change its monotonicity is z.

Let us check the behavior of asymptotic equations for System (5), that is

ẋ = xf
(
x+ z

)
+ γz, (22a)

ż = ρzf
(
x+ z

)
− γz. (22b)

Studying the dynamics of System (22) we easily see that there exists the only steady state (1, 0),
and according to the Poincaré-Bendixson Theorem it is globally stable, due to monotonicity of
the coordinate x. In Figure 8 we see that the dynamics of the full System (5) (top left) and
asymptotic System (22) (bottom) are almost indistinguishable. We also see that the qualitative
dynamics of the asymptotic System (22) does not depend on the model parameters. However,
for smaller values of ρ the rate of convergence of solutions to the steady state is smaller than
for larger values of ρ.

In fact, we can prove global stability of the steady state (1, 0, 0).
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Figure 8: Top panel: Phase portraits of asymptotic System (22) with ρ = 12 (reference), γ = 3
(left) and ρ = 1, γ = 0.5 (middle), and ρ = 0.5, γ = 0.05 (right). Other parameter values
are taken as reference. Bottom panel: The projection onto (x, z) of the solutions of the full
System (5) with α = 0 and y0 = 0.1. Parameter values are taken as reference and γ = 3.

Proposition 13. The steady state (1, 0, 0) of System (5) with α = 0 is globally stable in P
except the trivial point.

Proof. Let us de�ne the following Lyapunov function L(x, y, z) = (1−x)+2y. It is obvious that
in P the function L is non-negative and L(x, y, z) = 0 only at the point (1, 0, 0). Calculating
the derivative of L along solutions of System (5) we obtain

L̇ = −xf(s)− ηy − γz ≤ 0.

Moreover, L̇ = 0 in P i� x = y = z = 0 or y = z = 0 and f(s) = 1. However, the only invariant
subset of the set {(x, y, z) ∈ P : L̇(x, y, z) = 0} that can attract other solutions is the steady
state (1, 0, 0), which completes the proof.

For System (6) the situation is more complex, as we could expect, because there is no unique
non-trivial steady state. At the steady state either ȳ = 0 or f(s̄) = 0. This yields the existence
of the trivial steady state (0, 0, 0) as well as the whole family of states (x̄, 1− x̄, 0) within the
invariant surface x+ y+ z = 1. The same Lyapunov function as in the proof of Proposition 13
shows that any steady state from that family could attract other solutions. Figure 9 illustrates
the dynamics of the system in such a case. We see that depending on parameter values as
well as initial data the solutions are attracted by di�erent steady states satisfying x̄ + ȳ = 1.
Moreover, for each of the presented solutions the asymptotic ratio of the sensitive cells exceeds
60%.

Thus, independently of the model (that is System (5) or System (6)) if the chemotherapy is
stopped after some time of treatment and that treatment is not continued any more then the
subpopulation of resistant tumor cells will eventually go to extinction, which is related to the
Darvinian e�ects allowing the cells to recover sensitivity. However, for System (5) we observe
complete recovery of sensitivity, while for System (6) it is only partial, as there will be a portion
of damaged cells remaining in the organism.
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Figure 9: Projection of the solutions of System (6) with α = 0 into the space (x, y). Initial
conditions are: x(0) = 0.01, z(0) = 0.1 (left panels) and z(0) = 0.01 (right panels), while y(0)
changes. Parameter values are taken as reference, except ρ and γ, which are, from left: ρ = 12
(reference) and γ = 3, ρ = 1 and γ = 0.5; ρ = 12 and γ = 3; ρ = 1 and γ = 0.5. As we see, the
solutions tend to the invariant subspace x+y+ z = 1. However, as z → 0, we have the relation
x+ y → 1, which is represented by �ends� of the curves localized within the line x+ y = 1.

3 Discussion and conclusions

In the paper we have considered two models of possible mechanisms of acquired drug resistance
based on the ideas presented in [13] and [14]. Within the whole population of tumor cells
we distinguish three sub-populations of sensitive, damaged and resistant cells. We assumed
continuous therapy re�ected by a coe�cient α. Unlike in the original papers, we also included
a spontaneous recovery of sensitivity by tumor cells related to Darwinian e�ects and described
by a coe�cient γ. It occurs that if even a small portion of resistant cells can regain sensitivity,
it changes the whole picture dramatically. Clearly, if γ = 0 (i.e. resistant cells cannot become
sensitive again) then the only possible stable behavior of both considered systems is attraction
by a state re�ecting complete resistance; cf. [4] and the results summarized in Subsection 1.2.
Even if therapy is stopped there is no chance for coming back to the complete sensitivity. On
the other hand, whenever γ > 0 then there is a positive steady state, stable in most parameter
regimes for both models. However, for some parameters the positive steady state loses stability
and oscillatory behavior appears. It should be marked that such a behavior for System (5)
could be observed only for biologically unrealistic parameter values, but for System (6) this
is not the case. This constitutes one of the main di�erences between the considered models.
Note that the coordinates of the positive steady state as functions of γ are monotonic (either
for all γ regarding z̄, or at least for small γ) such that with increasing γ more and more �good�
sensitive cells is present while z̄ decreases. The coordinate ȳ decreases for System (5). On the
other hand, for System (6) the coordinate ȳ usually decreases, but for small values of ε (that is
small rate of acquiring drug resistance) and su�ciently small ρ it increases with increasing γ.

We have also compared the dynamics of the systems with prolonged constant therapy with
the situation when the therapy is stopped. The latter case is qualitatively di�erent from the case
in which the therapy is prolonged for all t ≥ 0. For both systems, when the therapy is stopped,
the resistant subpopulation becomes extinct. This situation is also completely di�erent from
those obtained for γ = 0, were the subpopulation of sensitive cells becomes extinct as a result
of prolonged ADR.

Of course we realize that both systems considered in this paper are extremely simpli�ed, as
tumors are highly heterogeneous and we are able to distinguish much more than two subpopu-
lations of sensitive and resistant cells. The idea of multi-compartmental modeling in this area
could be related to gene ampli�cation (cf. e.g. [7]) and gave rise to simple but even in�nite-
dimensional models; cf. [17,18] and the simpli�ed version in [11]. However, even in the case we
consider, as the models are non-linear, we see that the dynamics is complex, including oscilla-
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tory behavior, while it could bring some insight as regards the dependence of this dynamics on
the Darwinian e�ects.
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