ON THE ZERO-HOPF BIFURCATION OF THE
GENERALIZED A CHEN-WANG SYSTEM

ZOUHAIR DIAB

ABSTRACT. In this work, we show that a zero—Hopf bifurcation
takes place in the differential system as parameters vary. Using
averaging theory, we prove the existence of two periodic orbits
bifurcating from the zero—Hopf equilibrium for the generalized a
Chen—Wang system

T = Y,

Y=z,

i=a+by+cz—a®—xz+3y°
where a,b and c are real arbitrary parameters. The prime denotes
derivative with respect to the independent variable t.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The study of the periodic solutions of a differential equation is one of
the main objectives of the qualitative theory of differential equations.
In general, the periodic solutions are studied numerically because, usu-
ally, their analytical study is very difficult. In this work we perform an
analytic analysis on the existence of periodic solutions of the differential
system

T =y,

j=2, (1)

Z=a+by+cz—a?— a2+ 3y°
by applying averaging theory of first order. More precisely, we will
prove that a zero—Hopf bifurcation occurs in system (|1)) bifurcating two
periodic solutions from the zero—Hopf equilibria as parameters vary.

There are several works studying zero—Hopf bifurcation see for in-
stance Guckenheimer [6], Guckenheimer and Holmes [5], Han [7], Kuznetsov
[8], Llibre [9], Marsden, Scheurle [11]. It has been shown that, un-
der specific conditions, some elaborated invariant sets of the unfolding
could be bifurcated from a zero-Hopf equilibrium.
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In the next result, we characterize when the equilibrium points of
system are zero-Hopf equilibria.

Proposition 1.The differential system has a unique zero-Hopf
equiltbrium localized at the origin of coordinates when a = 0,b =
—w?,c=0.

Theorem 2. Assume that in the generalized a Chen—Wang system

we have

a = & (az+w'/4), a>0, b=—-w’+¢eb, w>0. (2)
c = +/a+e.
Then for € # 0 sufficiently small the differential system has two

periodic solutions (x;(t,e),y;(t,e), zi(t,€)) bifurcating from the zero—
Hopf equilibrium of Proposition 1, namely

2V — 2wR* cos (wt) — w?/4ay + w?

(¢ 2w?
,ewR* cos (wt) + O (%))

+ O (€%) ,eR*sin (wt) + O (43)

where
\/— (8w? —2) (w4\/4a2 +wt —4w?ay +4ay — wﬁ)w
R =
(dw? —1) (w? —2) ’
w? (w2 +(=1)'Vaay + w4)
Ve o= ,fori=1,2.

w? —2

2. AVERAGING THEORY OF FIRST ORDER

The averaging theory is a classical and matured tool for studying
the behavior of the dynamics of nonlinear smooth dynamical systems,
and in particular of their periodic orbits. The method of averaging
has a long history that starts with the classical works of Lagrange and
Laplace who provided an intuitive justification of the process. The first
formalization of this procedure is due to Fatou [4] in 1928. Important
practical and theoretical contributions in this theory were made by
Krylov and Bogoliubov [3] in the 1930s and Bogoliubov [2] in 1945.
The averaging theory of first order for studying periodic orbits can be
found in [12], see also [5]. It can be summarized as follows.

We also present a result from the averaging theory that we shall
need for proving Theorem 2, for a general introduction to the averaging
theory see the book of Sanders, Verhulst and Murdock [10].



We consider the initial value problems

i =eF(t,r) +2Fy(t,x,e), x(0) = x, (4)
and the averaged differential equation
g=cef(y), y(0)=m. (5)

with z,y, and xy in some open subset §2 of R", ¢t € [0,00), ¢ € (0,&0],
We assume that F; and F5 are periodic of period T in the variable t,
and we set

) =7 | A 0

We will also use the notation D, f for all the first derivatives of f, and
D, f for all the second derivatives of f.
For a proof of the next result, see [12].
Theorem 8. Assume that Fy, D, Fy, D,.F\ and D,F5 are continuous
and bounded by a constant independent of € in [0,00) x Q% (0, ], and
that y(t) € Q for t € [0,1/¢]. Then, the following statements hold :

1. For t € [0,1/¢], we have z(t) — y(t) = O(g) as € — 0.

2. If p is a singular point of system @ such that

det Dy f(p) # 0, (7)

then there exists a periodic solution xz(t,€) of period T for system
(4) which is close to p and such that x(0,e) —p = O(e) as € — 0.

3. The stability of the periodic solution x(t,e) is given by the
stability of the singular point.

3. ZERO-HOPF BIFURCATION

In this section, we prove Proposition 1 and Theorem 2.
Proof of Proposition 1 The differential system has two equilibrium
points ex = (£4/a,0,0) when a > 0, which collide at the origin when
a = 0. The proof is made computing directly the eigenvalues at each
equilibrium point.Note that the characteristic polynomial of the linear
part of system (1)) at the equilibrium point e is

P(\) =N+ (£Va—c)\* —bA+2vVa (8)

As p(\) is a polynomial of degree 3, it has either one, two (then one

has multiplicity 2), or three real zeros. Using the discriminant of P (\),

it follows that P (\) has a unique real root. for more details see [1].
In order to study the zero-Hopf bifurcation we imposing that

PN =0N\-¢) (N+u? 9)

This occurs if and only if the coefficients of this equation are +2/a+
ew? =0,b+w?=0,—c++a+ec=0.
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We obtain a = 52%, = —w? ¢ = ++/a + . This completes the
proof of the proposition.

Proof of Theorem 2 The differential system satisfying has
e/ (4as + w? ]
#) 0,0), First we study the
periodic solutions bifurcating from the zero—Hopf equilibrium near the
equilibrium p_.

For applying the averaging theory of first order to system satis-
fying we translate the equilibrium point p_ to the origin by doing
the change of variables

two equilibria, namely p. = (£

(x,y,z) - (ml - Mayla'zl) (10)

The differential system in the new variables (z1, ¥, 21) is

T = Y1,
3)1 = z1,
4= —wiy — o — 2z +3y7 + € (blyl + 21+ 4/ (4as + w4);1:1>
(11)
We need to write the linear part of system at the equilibrium point
(0,0,0) in its real Jordan normal form, i.e. into the form

o8 o
oo
oo o

in order to facilitate the application of the averaging theory, given by
Theorem 3, for computing the zero-Hopf bifurcation. Then, doing the
change of variables (z1,y1,21) — (X,Y, Z) given by

1

X 00 — )
_ w

Y I=101 0 %

Z w 0 1 21
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the differential system having its linear part in its real Jordan form

1S

Consider the cylindrical coordinates (7, 8, Z) defined by X = rcosf,Y =

¢ 2
X:—wY—l<—£+£) —<—£+£)X+3Y2

w w  w? w o w? w
1 X A
+e— Y +wX + (——+— | Vdaz +u?
‘ w woow
Y =wX (12)

: X Z\? X Z
—— =4+ =Z) (- =+ = JwX +3Y?
w o w? w 2

X Z
+e (blY +wX + <_E + E) Vi as +w4>

rsinf, Z = Z then the differential system becomes

\

cos () (—wbyrsin (0) + w4 as + w'r cos () — w'r cos () — w?v/4as + w'Z) e

P =

wo

b 2 sin (A) w*r? (cos (6)) + sin (A) wr? (cos (0))* + sin (9) w?r cos (A) Z
B wdr

N —2 sin (0) wr cos (0) Z + sin (0) Z? — 3 sin (0) r?w* + w'r

5p

w
N (= sin () wir cos () + sin (F) w4 az + whr cos (0) — sin (0) w?v4as + wZ) e

wor

N (wbir (cos (9))* — w'bir) €

wdr

g (J’COS O 5)2 _ <_M + 5) wrcos (0) + 372 (sin (6))?

w w? w w?
+e (blr sin (0) + wr cos (0) + (—%‘Q‘(g) + %) Vadas + w4>
(13)
Doing the rescaling (r, Z) = (¢R, V) we obtain
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( .
R= (—COS 29) (—w*by Rsin (0) + w4 ay + wiR cos (0) — w®Rcos (0) — w4 ay + wiV
w

—2w*R? (cos (0))> —wPRcos (A) V — V2 — w?R? (cos (0))” + 3 R2w* + 2wR cos (0) V))e
0= %(— sin () w® R cos (0) + sin () w34 as + wrR cos (0) — sin (0) w4 ay + wV
+w*by R (cos (0))* — w*by R + 2 sin (0) w* R? (cos (0))* + sin (0) w?R? (cos (0))*

—2 sin (f) wRcos (0) V + sin (0) V2—3 sin (0) R?w? + sin (§) w3 R cos (0) V)e + w
= 20)( — w*h Rsin (0) + w34 ag + w*R cos (§) — w® R cos ()

w
—w?v/Eay + w'V — 2wiR? (cos (A))? — wPRcos (0) V — V2 — w?R? (cos (0))”
(| +3 R?2w*+2wRcos (0) V)e

(14)
In system we take 6 as the new independent variable, and we get
(
le—? - gg) (—w'b; Rsin (0) + w*v/4as + wiR cos (6) — w® R cos (0)
w
— wVAay + WV + 2w*R? (cos (0))* + wPRcos () V
+ V2 4+ w?R2 (cos (A))* — 3w*R2 — 2wR cos (0) V)e + O (£2)
=eF (0,R,V)+ O (e?)
% = ;—i(—w‘*blR sin (6) + w*v/4 as + wiR cos (6) — w’R cos ()
—wiV/Aay + wV 4+ 2w R2 (cos () + wiRcos (0) V + V2
+ w?R? (cos (0))> — 3w*R? — 2wR cos (0) Ve + O (2)
\ =ely(0,R, V) + O (£?)

(15)
Using the notation of the averaging theory described in section 2 we
have that if we take t = 0,7 = 27,2 = (R, V)" and

_ [ Fu(0,RV) _( [(RV)
Fi(0,R) V)= ( Fio (0, RV and f (R,V) = £ (R.V)
It is immediate to check that system satisfies all the assumptions

of Theorem 3.
Now we compute the integrals @ We obtain that

( 1 -
frRV) = o [i" Pu (0. R.V)do

R(w?V =2V —w' + Via; + wiw?)
. 2P
f2(RV) = o 2T Fio (0, R, V) df
—w?R? —2V?2 +4w'R? + 2wV ay + wiV

\ 25
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The system f; (R, V) = fo (R, V) = 0 has a unique solution (R*, V*)
with R* > 0, namely

\/— (8w? —2) (w4\/4a2 +wt —4w?ag +4ay — wﬁ)w

k= (4uw? — 1) (w2 —2) ’
w? <w2 + (1) m)
Vo= ,

w2 —2

1
ifw # +v/2,w # j:§ and (8w? — 2) (w'v4as + wt — 4w?ay +4ay — wb) <
0.
The Jacobian (7)) at (R*, V*) takes the value

4ay — Aw?ay — w8 + wiv/4ay + wh
_ £ 0
wb (w? — 2)
Then, by Theorem 3, it follows that for £ # 0 sufficiently small system
has a periodic solution (R (6,¢),V (0, ¢)) such that (R (0,¢),V (0,¢)) —
(R*,V*) when ¢ — 0. writes an approximation of this periodic solution
in the form

(R(0,¢),V (0,e) =(R*"+0 (), V*+ 0 (e))

This periodic solution becomes for the differential system in the
form

(R (t,e),0(t,e),V(te)=(R"+0(),wt+0(e),V"+0O(g))

In the same way, in the differential system it becomes
(r(t,e),0(t,e),Z(t,e) = (eR*+ O (*) ,wt+ O (g) ,eV* + O (%))
Passing to a periodic solution to the differential system we get
(X (t,e),Y (t,e),Z(t,e)) = (eR cos (wt) + O (%) ,eR*sin (wt) + O (¢?) ,eV* + O (¢%))
In the differential system the periodic solution writes
(@)t ).zt e) = (U6 (o).
eR*sin (wt) + O () ,ewR* cos (wt) + O (¢?))

Finally, for the differential system the periodic solution becomes
the solution for i = 1 of the statement of Theorem 2. Computing
the eigenvalues of the jacobian matrix

9 (f1, [2)

0 (R’ V) (R,V)=(R*,V*)
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we obtain
—2w24/ 4a2+w4w2i\/24 wt—12wt\/4 as+w*—12 asw*—3 w8+48 w2as+4 wb+/4 as+w*—32 az+8 wb

2(w2—2)w3

So, by statement 3 of Theorem 3 the sability of the periodic solution
associated to the zero (R*,V*) cannot be studied due to the difficulty
of studying the sign of the real part of the two eigenvalues. If instead
of translating the equilibrium point p_ at the origin doing the change
of variables , we translate at the origin the equilibrium point p
and repeat all the previous computations we shall obtain for the differ-
ential system the periodic solution for ¢ = 2 of the statement of
Theorem 2. This concludes the proof of Theorem 2.
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