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Abstract

In this work, we define Rad— @ —supplemented and strongly Rad— &
—supplemented lattices and give some properties of these lattices. We
generalize some properties of Rad— @ —supplemented modules to lattices.
Let L be a lattice and 1 = a1 ® az ® ... ® an, with a1,as,...,an, € L. If
a;/0 is Rad— @& —supplemented for every ¢ = 1,2,...,n, then L is also
Rad— @ —supplemented. Let L be a distributive Rad— & —supplemented
lattice. Then 1/u is Rad— @ —supplemented for every u € L. We also
define completely Rad— @ —supplemented lattices and prove that every
Rad— @ —supplemented lattice with SSP property is completely Rad— &
—supplemented.
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1 INTRODUCTION

In this paper, every lattice is complete modular lattice with the smallest element
0 and the greatest element 1. Let L be a lattice, z,y € L and = < y. A sublat-
tice {a € L|z < a <y} is called a quotient sublattice and denoted by y/z. An
element y of a lattice L is called a complement of x in L if Ay = 0 and zVy = 1,
this case we denote 1 = @y (in this case we call z and y are direct summands of L).
L is said to be complemented if each element has at least one complement in
L. An element x of L is said to be small or superfluous and denoted by z < L
if y = 1 for every y € L such that x Vy = 1. The meet of all the maximal
(#£ 1) elements of a lattice L is called the radical of L and denoted by r(L). An
element a of L is called a supplement of b in L if it is minimal for a Vb= 1. a
is a supplement of b in a lattice L if and only if aVb =1 and a Ab < a/0. A
lattice L is called a supplemented lattice if every element of L has a supplement



in L. If every element of L has a supplement that is a direct summand in L,
then L is called a &—supplemented lattice. We say that an element y of L lies
above an element x of L if x < y and y <« 1/x. L is said to be hollow if every
element distinct from 1 is superfluous in L, and L is said to be local if L has
the greatest element (# 1). An element x € L has ample supplements in L if
for every y € L with x Vy = 1, = has a supplement z in L with z <y. L is said
to be amply supplemented, if every element of L has ample supplements in L. It
is clear that every amply supplemented lattice is supplemented. A lattice L is
said to be distributive if x A (y V z) = (x Ay) V (z A 2) for every z,y,z € L. An
element y of a lattice L is called a generalized (radical) supplement (or briefly,
Rad-supplement) of x in Lif 1 =xVyand x Ay <r(y/0). A lattice L is said
to be generalized (radical) supplemented (or briefly, Rad-supplemented) if every
element of L has a generalized (radical) supplement in L.

Let L be a lattice. Consider the following conditions.

(D1) For every element x of L, there exist x1,x2 € L such that 1 = 1 @ o,
z1 <z and z9 Az K 22/0.

(D3) If 1 and z9 are direct summands of L and 1 = z1 V 2, then z1 A 2
is also a direct summand of L.

More informations about (amply) supplemented lattices are in [1], [2] and [7].
The definition of @—supplemented lattices and some informations about these
lattices are in [4]. More results about (amply) supplemented modules are in [11].
The definition of generalized supplemented lattices and some important prop-
erties of them are in [3]. Some important properties of Rad— @ —supplemented
modules are in [6], [8]and [10]. The definition of 3, relation on lattices and some
properties of this relation are in [9]. The definition of 3* relation on modules
and some properties of this relation are in [5].

Lemma 1.1 Let L be a lattice, a,b € L and a be a Rad-supplement of b in L.
Then r (a/0) = a Ar(L).

Proof. See [3, Lemma 2(b)]. m

Lemma 1.2 Let L be a lattice and y be a Rad-supplement of x in L. Then for
a <z, aVy is a Rad-supplement of x in 1/a.

Proof. See [3, Lemma 5]. m

Lemma 1.3 Let L be a lattice and a,b € L. If x is a Rad-supplement of aVb in

L and y is a Rad-supplement of an(bV z) in a/0, then xVy is a Rad-supplement
of b in L.

Proof. See [3, the proof of Lemma 7]. =

2 RAD- & -SUPPLEMENTED LATTICES

Definition 2.1 Let L be a lattice. If every element of L has a Rad-supplement
that is a direct summand in L, then L is called a Rad— ® —supplemented
(or generalized ® —supplemented) lattice.



It is clear that every Rad— & —supplemented lattice is Rad-supplemented,
but the converse is not true in general (see Example 2.19 and Example 2.20).
It is also clear that every @®—supplemented lattice is Rad— @& —supplemented,
but the converse is not true in general (See Example 2.21). Hence Rad— @
—supplemented lattices are more general than ®—supplemented lattices. Hollow
and local lattices are Rad— @ —supplemented.

Lemma 2.2 Let L be a lattice, a1,a2 € L and 1 = a1 ® as. If a1/0 and az/0
are Rad— @& —supplemented, then L is also Rad— & —supplemented.

Proof. Let = be any element of L. Then 0 is a Rad-supplement of a1 V as V x
in L. Since a1/0 is Rad— @ —supplemented, a1 A (az V x) has a Rad-supplement
y that is a direct summand in a1/0. Then by Lemma 1.3, y = y V 0 is a Rad-
supplement of as V = in L. Since a3/0 is Rad— @ —supplemented, as A (z V y)
has a Rad-supplement z that is a direct summand in a3/0. Then by Lemma
1.3, y V z is a Rad— @ —supplement of z in L. Since y is a direct summand of
a1/0 and z is a direct summand of a3/0 and 1 = a1 @ ag, yVz =y d 2z is a
direct summand of L. Hence L is Rad— @& —supplemented. m

Corollary 2.3 Letay,as,...,an € L and1 = a1®as®...Bay,. If a;/0 is Rad—®
—supplemented for every i =1,2,...,n, then L is also Rad— & —supplemented.

Proof. Clear form Lemma 2.2. =

Lemma 2.4 Let L be a Rad—® —supplemented lattice, w € L andu = (u A a)V
(w A D) for every a,b € L with 1 =a®b. Then;

(1) 1/u is Rad— & —supplemented.

(4) If u is a direct summand of L, then u/0 is also Rad— @® —supplemented.

Proof. (i) Let x € 1/u. Since L is Rad— & —supplemented, = has a Rad-
supplement y that is a direct summand in L. By Lemma 1.2, y V u is a Rad-
supplement of x in 1/u. Since y is a direct summand of L, there exists z €
L such that 1 = y@® 2. Here 1 = (yVu)V (2Vu). Since u = (uAy)V
(unz), WVu)A(zVu) = (yV(@uAy)VuAz)AEZVAy)V(uAz)) =
(V@A) AV (uAy) =AYV AY))V(uiz)=yAz)V(uAy)V
(unz) =0V (uAy) V(uAz) = (uAy)V (uAz) =u Hence 1/uis Rad— &
—supplemented.

(#4) Let w is a direct summand of L and x € u/0. Since L is Rad— &
—supplemented, there exist y,z € L such that 1 =z Vy, z Ay <r(y/0) <r (L)
and 1 = y ® 2. By hypothesis u = (uAy) ® (uAz). Since u is a direct
summand of L, u Ay is also a direct summand of L. Since 1 = z V y and
x < u, by modularity, u = =V (u Ay). Since u Ay is a direct summand of L,
by Lemma 1.1, 7 ((uAy) /0) = u Ay Ar(L). Sincez AuAy =z Ay <r(L)
and  AuAy <uAy, zAuAy<uAyAr(L)=r((uAy)/0). Hence u/0 is
Rad— @ —supplemented. m

Corollary 2.5 Let L be a distributive and Rad—® —supplemented lattice. Then
1/u Rad— & —supplemented for every u € L.



Proof. Clear from Lemma 2.4. =

Lemma 2.6 Let L be a Rad—®— supplemented lattice with (D3) property. Then
for every direct summand u of L, u/0 is Rad— @ —supplemented.

Proof. Let u is a direct summand of L and = € w/0. Since L is Rad— &
—supplemented, there exists a direct summand y of L such that 1 = VvV y
and x Ay < r(y/0). Since uVy = 1 and L has (D3) property, u Ay is a
direct summand of L. Hence u A y is a direct summand of u/0. By modularity,
u=xV(uAy). SincezAuAy=xAy<r(y/0) <r(L)and zAury <uAly,
xAuAy <uAyAr(L). Since u Ay is a direct summand of L, by Lemma 1.1,
uANyAr(L)=r((uAy)/0). Therefore, u/0 is Rad— & —supplemented. m

Proposition 2.7 Let1 = a®b witha,b € L. Thenb/0 is Rad—®—supplemented
if and only if for every x € 1/a, there exists a direct summand y of L such that
yeb/0,l=aVvyandz Ay <r(L).

Proof. (=) Let « € 1/a. Then x Ab € b/0 and since b/0 is Rad— @
—supplemented, x A b has a Rad-supplement y that is a direct summand in
b/0. Here b = (zAb)Vyand z Ay =2 AbAy < r(y/0) < r(L). Since y
is a direct summand of b/0, there exists z € b/0 such that b = y ® z. Then
1l=a®b=ady®z and y is a direct summand of L. Since a < x and
b=(xAb)Vy,l=aVb=azVb=xzV(xAb)Vy=zVy.

(<) Let € b/0. Then aV z € 1/a and by hypothesis, there exists a direct
summand y of L such that y € /0, 1 = aVazVyand (aVz)Ay < r(L).
Then we have b = bA1l = bA(aVaVy) = (aAb)VaeVy = zVy and
zAy < (aVa)Ay <r(L). Since y is a direct summand of L, there exists z € L
with 1l =y @z Hereb=bA1=bA(y®z) =y®d (bAz) and y is a direct
summand of /0. By Lemma 1.1, 7 (y/0) = y Ar (L). Since z Ay < r (L) and
z ANy <y, z ANy <yAr(L)=r(y/0). Hence y is a Rad-supplement of = in b/0
and b/0 is Rad— @ —supplemented. m

Proposition 2.8 Let L be a Rad— ® —supplemented lattice, a be a direct sum-
mand of L and for every direct summand t of L with 1 =tV a, t Aa be a direct
summand of a/0. Then a/0 is Rad— @® —supplemented.

Proof. Since a is a direct summand of L, there exists b € L with 1 = a & b.
Let « € a/0. Since L is Rad— @& —supplemented, there exist y, z € L such that
l=zVyzAy<r(y/0)andl =ydz Byz<a l=zVy=aVy. By
hypothesis, a Ay is a direct summand of a/0 and since a is a direct summand of
L, a Ay is a direct summand of L. By Lemma 1.1, r ((a A y) /0) = a Ay Ar(L).
Here t Ay < yAr(L)and zAaAy <aAyAr(L) =r((aAy)/0). Since
l=z2zVyandz <a,a=aAl=aA(zVy) =zV (aAy). Hence a/0 is
Rad— @ —supplemented. m

Let x,y € L. It is defined a relation 3, on the elements of L by zf3,y if and
only if for every t € L with x V¢t =1 then y V¢ = 1 and for every k € L with
yVk=1then x VEk=1. (See [9, Definition 1])



Lemma 2.9 Let L be a Rad-supplemented lattice. If every Rad-supplement
element in L is B, equivalent to a direct summand of L, then L is Rad— &
—supplemented.

Proof. Let x be any element of L and y be a Rad-supplement of z in L. By
hypothesis, there exists a direct summand a of L such that y3,a. Since xVy =1,
zVa=1. Assume 2 Aa £ r(L). Then there exists a maximal (# 1) element ¢
of L with z Aa £ ¢. Here (z Aa)Vt=1. By [9, Lemma 2], aV (z At) =1 and
since yfB,a, yV (x At) = 1. Since z Vt = 1, by [9, Lemma 2], (x Ay) Vit = 1.
Since x Ay < r(y/0) < r(L) <t , t = (xAy)Vt=1 This contradicts with
t # 1. Hence z Aa < r(L). Since a is a direct summand of L, by Lemma 1.1,
xANa <aAr(L)=r(a/0). Hence a is a Rad-supplement of x in L and L is
Rad— @ —supplemented. m

Corollary 2.10 Let L be a Rad-supplemented lattice. If every Rad-supplement
element in L lies above a direct summand of L, then L is Rad—®— supplemented.

Proof. Clear from Lemma 2.9. m

Definition 2.11 Let L be a lattice. If a/0 is Rad— @ —supplemented for every
direct summand a of L, then L is called a completely Rad— @ —supplemented
lattice.

Clearly we can see that every completely Rad— @ —supplemented lattice is
Rad— & —supplemented.

Proposition 2.12 Let L be a Rad—®— supplemented lattice with (D3) property.
Then L is completely Rad— & —supplemented.

Proof. Clear from Lemma 2.6. m

Definition 2.13 Let L be a lattice. L is said to have SSP property if aV b is a
direct summand for every direct summands a and b of L.

Proposition 2.14 Let L be a Rad—® —supplemented lattice with SSP property.
Then L is completely Rad— @ —supplemented.

Proof. Let a be a direct summand of L. Then there exists b € L such that
1=a®b let z € 1/b. Since L is Rad— & —supplemented, there exists a
direct summand y of L such that zVy = 1 and 2z Ay < r(y/0). Here bV y
is a Rad-supplement of z in 1/b, by Lemma 1.2. Since b and y are direct
summands of L and L has SSP property, bV y is a direct summand of L and
there exists z € L such that 1 = (bVy) @z Here 1 = (bVy)V (bV z) and
OGVYADVz)=bV((bVy)Az)=bV0=>band bV y is a direct summand of
1/b. Hence 1/b is Rad— @ —supplemented and since & = -4, =~ 90 = 1 /0
also Rad— @ —supplemented. m



Definition 2.15 Let L be a Rad-supplemented lattice. If every Rad-supplement
element in L is a direct summand of L, then L is called a strongly Rad— &
—supplemented lattice.

It is clear that every strongly @&—supplemented lattice is strongly Rad— &
—supplemented. Since every lattice with (D1) property is strongly @&—supplemented,
these lattices are strongly Rad— & —supplemented too. Every strongly Rad— &
—supplemented lattice is Rad— & —supplemented, but the converse is not true
in general (See Example 2.21).

Lemma 2.16 Let 1 =a®b in L and x,y € b/0. Then y is a Rad-supplement
of x in b/0 if and only if y is a Rad-supplement of aV x in L.

Proof. (=) Since y is a Rad-supplement of z in /0, b=2Vyand 2 Ay <
r(y/0). Then 1 = a®b =aVazVyand (aVz)A Ay = (aVz)ANbAy =
((anb)Vez)ANy=x Ay <r(y/0). Hence y is a Rad-supplement of ¢ V x in L.

(«<=) Since y is a Rad-supplement of aVz in L, 1 = aVzVy and (a V 2)Ay <
r(y/0). Then b = 1Ab = (aVazVy Ab = (aAb)VaVy =zVy and
x Ay <(aVz)Ay<r(y/0). Hence y is a Rad-supplement of z in /0. m

Lemma 2.17 Let L be a strongly Rad— & —supplemented lattice. Then a/0 is
strongly Rad— & —supplemented for every direct summand a of L.

Proof. Let a be a direct summand of L and 1 = a @ b with b € L. Let y be a
Rad-supplement of z in a/0. By Lemma 2.16, y is a Rad-supplement of bV x
in L. Since L is strongly Rad— & —supplemented, y is a direct summand of
L. By this, there exists z € L with 1 = y @ 2. By modularity, a = a A1 =
aN(y @ z) =y®(a A z). Hence y is a direct summand of a/0 and a/0 is strongly
Rad— @ —supplemented. m

Corollary 2.18 FEvery strongly Rad— & —supplemented lattice is completely
Rad— & —supplemented.

Proof. Clear from Lemma 2.17. =

Example 2.19 Consider the lattice L = {1,a,b,¢,0} given by the following
diagram;

1
/! AN
b c
AN /!
a
7
0

Then L is Rad-supplemented but not Rad— & —supplemented.



Example 2.20 Consider the lattice L = {1, a,b,c,d,e,0} given by the following
diagram;

1
/! AN
a b
AN /! N
c d
AN /
e
T
0

Then L is Rad-supplemented but not Rad— @& —supplemented.

Example 2.21 Consider the interval [0, 1] with natural topology. Let P be the

set of all closed subsets of [0,1]. P is complete modular lattice by the inclu-

sion (See [1, Example 2.10]). Here '/\ICi = ﬁIC’i and 4\/102» = 'UICi for every
1S i€ 1€ 1€

C,eP (iel) (‘LeJIOi is the closure of _gl C; ) By [4, Example 3], P is am-

ply supplemented but not @-supplemented. Since P is amply supplemented,
then it is Rad-supplemented too. Since P is not @&—supplemented, it is not
strongly Rad— @ —supplemented too. It is clear that r (P) = [0,1] and hence P
is Rad— @ —supplemented.
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