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Abstract

In this work, we de�ne Rad���supplemented and strongly Rad��
�supplemented lattices and give some properties of these lattices. We
generalize some properties of Rad���supplemented modules to lattices.
Let L be a lattice and 1 = a1 � a2 � ::: � an with a1; a2; :::; an 2 L. If
ai=0 is Rad� � �supplemented for every i = 1; 2; :::; n, then L is also
Rad���supplemented. Let L be a distributive Rad���supplemented
lattice. Then 1=u is Rad� � �supplemented for every u 2 L. We also
de�ne completely Rad� � �supplemented lattices and prove that every
Rad���supplemented lattice with SSP property is completely Rad��
�supplemented.
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1 INTRODUCTION

In this paper, every lattice is complete modular lattice with the smallest element
0 and the greatest element 1. Let L be a lattice, x; y 2 L and x � y. A sublat-
tice fa 2 Ljx � a � yg is called a quotient sublattice and denoted by y=x. An
element y of a lattice L is called a complement of x in L if x^y = 0 and x_y = 1,
this case we denote 1 = x�y (in this case we call x and y are direct summands of L).
L is said to be complemented if each element has at least one complement in
L. An element x of L is said to be small or super�uous and denoted by x� L
if y = 1 for every y 2 L such that x _ y = 1. The meet of all the maximal
(6= 1) elements of a lattice L is called the radical of L and denoted by r(L). An
element a of L is called a supplement of b in L if it is minimal for a _ b = 1. a
is a supplement of b in a lattice L if and only if a _ b = 1 and a ^ b � a=0. A
lattice L is called a supplemented lattice if every element of L has a supplement
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in L. If every element of L has a supplement that is a direct summand in L,
then L is called a ��supplemented lattice. We say that an element y of L lies
above an element x of L if x � y and y � 1=x. L is said to be hollow if every
element distinct from 1 is super�uous in L, and L is said to be local if L has
the greatest element (6= 1). An element x 2 L has ample supplements in L if
for every y 2 L with x_ y = 1, x has a supplement z in L with z � y. L is said
to be amply supplemented, if every element of L has ample supplements in L. It
is clear that every amply supplemented lattice is supplemented. A lattice L is
said to be distributive if x^ (y _ z) = (x ^ y)_ (x ^ z) for every x; y; z 2 L. An
element y of a lattice L is called a generalized (radical) supplement (or brie�y,
Rad-supplement) of x in L if 1 = x _ y and x ^ y � r (y=0). A lattice L is said
to be generalized (radical) supplemented (or brie�y, Rad-supplemented) if every
element of L has a generalized (radical) supplement in L.
Let L be a lattice. Consider the following conditions.
(D1) For every element x of L, there exist x1; x2 2 L such that 1 = x1� x2,

x1 � x and x2 ^ x� x2=0.
(D3) If x1 and x2 are direct summands of L and 1 = x1 _ x2, then x1 ^ x2

is also a direct summand of L.
More informations about (amply) supplemented lattices are in [1], [2] and [7].

The de�nition of ��supplemented lattices and some informations about these
lattices are in [4]. More results about (amply) supplemented modules are in [11].
The de�nition of generalized supplemented lattices and some important prop-
erties of them are in [3]. Some important properties of Rad���supplemented
modules are in [6], [8]and [10]. The de�nition of �� relation on lattices and some
properties of this relation are in [9]. The de�nition of �� relation on modules
and some properties of this relation are in [5].

Lemma 1.1 Let L be a lattice, a; b 2 L and a be a Rad-supplement of b in L.
Then r (a=0) = a ^ r (L).

Proof. See [3, Lemma 2(b)].

Lemma 1.2 Let L be a lattice and y be a Rad-supplement of x in L. Then for
a � x, a _ y is a Rad-supplement of x in 1=a.

Proof. See [3, Lemma 5].

Lemma 1.3 Let L be a lattice and a; b 2 L. If x is a Rad-supplement of a_b in
L and y is a Rad-supplement of a^(b _ x) in a=0, then x_y is a Rad-supplement
of b in L.

Proof. See [3, the proof of Lemma 7].

2 RAD���SUPPLEMENTED LATTICES

De�nition 2.1 Let L be a lattice. If every element of L has a Rad-supplement
that is a direct summand in L, then L is called a Rad� � �supplemented
(or generalized ��supplemented) lattice.
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It is clear that every Rad� � �supplemented lattice is Rad-supplemented,
but the converse is not true in general (see Example 2.19 and Example 2.20).
It is also clear that every ��supplemented lattice is Rad� � �supplemented,
but the converse is not true in general (See Example 2.21). Hence Rad� �
�supplemented lattices are more general than ��supplemented lattices. Hollow
and local lattices are Rad���supplemented.

Lemma 2.2 Let L be a lattice, a1; a2 2 L and 1 = a1 � a2. If a1=0 and a2=0
are Rad���supplemented, then L is also Rad���supplemented.

Proof. Let x be any element of L. Then 0 is a Rad-supplement of a1 _ a2 _ x
in L. Since a1=0 is Rad���supplemented, a1^ (a2 _ x) has a Rad-supplement
y that is a direct summand in a1=0. Then by Lemma 1.3, y = y _ 0 is a Rad-
supplement of a2 _ x in L. Since a2=0 is Rad� � �supplemented, a2 ^ (x _ y)
has a Rad-supplement z that is a direct summand in a2=0. Then by Lemma
1.3, y _ z is a Rad���supplement of x in L. Since y is a direct summand of
a1=0 and z is a direct summand of a2=0 and 1 = a1 � a2, y _ z = y � z is a
direct summand of L. Hence L is Rad���supplemented.

Corollary 2.3 Let a1; a2; :::; an 2 L and 1 = a1�a2�:::�an. If ai=0 is Rad��
�supplemented for every i = 1; 2; :::; n, then L is also Rad���supplemented.

Proof. Clear form Lemma 2.2.

Lemma 2.4 Let L be a Rad���supplemented lattice, u 2 L and u = (u ^ a)_
(u ^ b) for every a; b 2 L with 1 = a� b. Then;
(i) 1=u is Rad���supplemented.
(ii) If u is a direct summand of L, then u=0 is also Rad���supplemented.

Proof. (i) Let x 2 1=u. Since L is Rad� � �supplemented, x has a Rad-
supplement y that is a direct summand in L. By Lemma 1.2, y _ u is a Rad-
supplement of x in 1=u. Since y is a direct summand of L, there exists z 2
L such that 1 = y � z. Here 1 = (y _ u) _ (z _ u). Since u = (u ^ y) _
(u ^ z), (y _ u) ^ (z _ u) = (y _ (u ^ y) _ (u ^ z)) ^ (z _ (u ^ y) _ (u ^ z)) =
(y _ (u ^ z)) ^ (z _ (u ^ y)) = (y ^ (z _ (u ^ y))) _ (u ^ z) = (y ^ z) _ (u ^ y) _
(u ^ z) = 0 _ (u ^ y) _ (u ^ z) = (u ^ y) _ (u ^ z) = u. Hence 1=u is Rad� �
�supplemented.
(ii) Let u is a direct summand of L and x 2 u=0. Since L is Rad� �

�supplemented, there exist y; z 2 L such that 1 = x_ y, x^ y � r (y=0) � r (L)
and 1 = y � z. By hypothesis u = (u ^ y) � (u ^ z). Since u is a direct
summand of L, u ^ y is also a direct summand of L. Since 1 = x _ y and
x � u, by modularity, u = x _ (u ^ y). Since u ^ y is a direct summand of L,
by Lemma 1.1, r ((u ^ y) =0) = u ^ y ^ r (L). Since x ^ u ^ y = x ^ y � r (L)
and x ^ u ^ y � u ^ y, x ^ u ^ y � u ^ y ^ r (L) = r ((u ^ y) =0). Hence u=0 is
Rad���supplemented.

Corollary 2.5 Let L be a distributive and Rad���supplemented lattice. Then
1=u Rad���supplemented for every u 2 L.
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Proof. Clear from Lemma 2.4.

Lemma 2.6 Let L be a Rad���supplemented lattice with (D3) property. Then
for every direct summand u of L, u=0 is Rad���supplemented.

Proof. Let u is a direct summand of L and x 2 u=0. Since L is Rad� �
�supplemented, there exists a direct summand y of L such that 1 = x _ y
and x ^ y � r (y=0). Since u _ y = 1 and L has (D3) property, u ^ y is a
direct summand of L. Hence u^ y is a direct summand of u=0. By modularity,
u = x_ (u ^ y). Since x^ u^ y = x^ y � r (y=0) � r (L) and x^ u^ y � u^ y,
x ^ u ^ y � u ^ y ^ r (L). Since u ^ y is a direct summand of L, by Lemma 1.1,
u ^ y ^ r (L) = r ((u ^ y) =0). Therefore, u=0 is Rad���supplemented.

Proposition 2.7 Let 1 = a�b with a; b 2 L. Then b=0 is Rad���supplemented
if and only if for every x 2 1=a, there exists a direct summand y of L such that
y 2 b=0, 1 = x _ y and x ^ y � r (L).

Proof. (=)) Let x 2 1=a. Then x ^ b 2 b=0 and since b=0 is Rad� �
�supplemented, x ^ b has a Rad-supplement y that is a direct summand in
b=0. Here b = (x ^ b) _ y and x ^ y = x ^ b ^ y � r (y=0) � r (L). Since y
is a direct summand of b=0, there exists z 2 b=0 such that b = y � z. Then
1 = a � b = a � y � z and y is a direct summand of L. Since a � x and
b = (x ^ b) _ y, 1 = a _ b = x _ b = x _ (x ^ b) _ y = x _ y.
((=) Let x 2 b=0. Then a_x 2 1=a and by hypothesis, there exists a direct

summand y of L such that y 2 b=0, 1 = a _ x _ y and (a _ x) ^ y � r (L).
Then we have b = b ^ 1 = b ^ (a _ x _ y) = (a ^ b) _ x _ y = x _ y and
x^y � (a _ x)^y � r (L). Since y is a direct summand of L, there exists z 2 L
with 1 = y � z. Here b = b ^ 1 = b ^ (y � z) = y � (b ^ z) and y is a direct
summand of b=0. By Lemma 1.1, r (y=0) = y ^ r (L). Since x ^ y � r (L) and
x ^ y � y, x ^ y � y ^ r (L) = r (y=0). Hence y is a Rad-supplement of x in b=0
and b=0 is Rad���supplemented.

Proposition 2.8 Let L be a Rad���supplemented lattice, a be a direct sum-
mand of L and for every direct summand t of L with 1 = t_ a, t^ a be a direct
summand of a=0. Then a=0 is Rad���supplemented.

Proof. Since a is a direct summand of L, there exists b 2 L with 1 = a � b.
Let x 2 a=0. Since L is Rad���supplemented, there exist y; z 2 L such that
1 = x _ y, x ^ y � r (y=0) and 1 = y � z. By x � a, 1 = x _ y = a _ y. By
hypothesis, a^y is a direct summand of a=0 and since a is a direct summand of
L, a^ y is a direct summand of L. By Lemma 1.1, r ((a ^ y) =0) = a^ y ^ r (L).
Here x ^ y � y ^ r (L) and x ^ a ^ y � a ^ y ^ r (L) = r ((a ^ y) =0). Since
1 = x _ y and x � a, a = a ^ 1 = a ^ (x _ y) = x _ (a ^ y). Hence a=0 is
Rad���supplemented.
Let x; y 2 L. It is de�ned a relation �� on the elements of L by x��y if and

only if for every t 2 L with x _ t = 1 then y _ t = 1 and for every k 2 L with
y _ k = 1 then x _ k = 1. (See [9, De�nition 1])
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Lemma 2.9 Let L be a Rad-supplemented lattice. If every Rad-supplement
element in L is �� equivalent to a direct summand of L, then L is Rad� �
�supplemented.

Proof. Let x be any element of L and y be a Rad-supplement of x in L. By
hypothesis, there exists a direct summand a of L such that y��a. Since x_y = 1,
x _ a = 1. Assume x ^ a � r (L). Then there exists a maximal (6= 1) element t
of L with x ^ a � t. Here (x ^ a) _ t = 1. By [9, Lemma 2], a _ (x ^ t) = 1 and
since y��a, y _ (x ^ t) = 1. Since x _ t = 1, by [9, Lemma 2], (x ^ y) _ t = 1.
Since x ^ y � r (y=0) � r (L) � t, t = (x ^ y) _ t = 1. This contradicts with
t 6= 1. Hence x ^ a � r(L). Since a is a direct summand of L, by Lemma 1.1,
x ^ a � a ^ r (L) = r (a=0). Hence a is a Rad-supplement of x in L and L is
Rad���supplemented.

Corollary 2.10 Let L be a Rad-supplemented lattice. If every Rad-supplement
element in L lies above a direct summand of L, then L is Rad���supplemented.

Proof. Clear from Lemma 2.9.

De�nition 2.11 Let L be a lattice. If a=0 is Rad���supplemented for every
direct summand a of L, then L is called a completely Rad� � �supplemented
lattice.

Clearly we can see that every completely Rad���supplemented lattice is
Rad���supplemented.

Proposition 2.12 Let L be a Rad���supplemented lattice with (D3) property.
Then L is completely Rad���supplemented.

Proof. Clear from Lemma 2.6.

De�nition 2.13 Let L be a lattice. L is said to have SSP property if a_ b is a
direct summand for every direct summands a and b of L.

Proposition 2.14 Let L be a Rad���supplemented lattice with SSP property.
Then L is completely Rad���supplemented.

Proof. Let a be a direct summand of L. Then there exists b 2 L such that
1 = a � b. let x 2 1=b. Since L is Rad� � �supplemented, there exists a
direct summand y of L such that x _ y = 1 and x ^ y � r (y=0). Here b _ y
is a Rad-supplement of x in 1=b, by Lemma 1.2. Since b and y are direct
summands of L and L has SSP property, b _ y is a direct summand of L and
there exists z 2 L such that 1 = (b _ y) � z. Here 1 = (b _ y) _ (b _ z) and
(b _ y) ^ (b _ z) = b _ ((b _ y) ^ z) = b _ 0 = b and b _ y is a direct summand of
1=b. Hence 1=b is Rad� � �supplemented and since a

0 =
a
a^b

�= a_b
b = 1

b , a=0
also Rad���supplemented.
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De�nition 2.15 Let L be a Rad-supplemented lattice. If every Rad-supplement
element in L is a direct summand of L, then L is called a strongly Rad� �
�supplemented lattice.

It is clear that every strongly ��supplemented lattice is strongly Rad� �
�supplemented. Since every lattice with (D1) property is strongly��supplemented,
these lattices are strongly Rad���supplemented too. Every strongly Rad��
�supplemented lattice is Rad���supplemented, but the converse is not true
in general (See Example 2.21).

Lemma 2.16 Let 1 = a� b in L and x; y 2 b=0. Then y is a Rad-supplement
of x in b=0 if and only if y is a Rad-supplement of a _ x in L.

Proof. (=)) Since y is a Rad-supplement of x in b=0, b = x _ y and x ^ y �
r (y=0). Then 1 = a � b = a _ x _ y and (a _ x) ^ y = (a _ x) ^ b ^ y =
((a ^ b) _ x) ^ y = x ^ y � r (y=0). Hence y is a Rad-supplement of a _ x in L.
((=) Since y is a Rad-supplement of a_x in L, 1 = a_x_y and (a _ x)^y �

r (y=0). Then b = 1 ^ b = (a _ x _ y) ^ b = (a ^ b) _ x _ y = x _ y and
x ^ y � (a _ x) ^ y � r (y=0). Hence y is a Rad-supplement of x in b=0.

Lemma 2.17 Let L be a strongly Rad���supplemented lattice. Then a=0 is
strongly Rad���supplemented for every direct summand a of L.

Proof. Let a be a direct summand of L and 1 = a� b with b 2 L. Let y be a
Rad-supplement of x in a=0. By Lemma 2.16, y is a Rad-supplement of b _ x
in L. Since L is strongly Rad� � �supplemented, y is a direct summand of
L. By this, there exists z 2 L with 1 = y � z. By modularity, a = a ^ 1 =
a^(y � z) = y�(a ^ z). Hence y is a direct summand of a=0 and a=0 is strongly
Rad���supplemented.

Corollary 2.18 Every strongly Rad� � �supplemented lattice is completely
Rad���supplemented.

Proof. Clear from Lemma 2.17.

Example 2.19 Consider the lattice L = f1; a; b; c; 0g given by the following
diagram;

1
% -

b c
- %

a
"
0

Then L is Rad-supplemented but not Rad���supplemented.

6



Example 2.20 Consider the lattice L = f1; a; b; c; d; e; 0g given by the following
diagram;

1
% -

a b
- % -

c d
- %

e
"
0

Then L is Rad-supplemented but not Rad���supplemented.

Example 2.21 Consider the interval [0; 1] with natural topology. Let P be the
set of all closed subsets of [0; 1]. P is complete modular lattice by the inclu-
sion (See [1, Example 2.10]). Here ^

i2I
Ci = \

i2I
Ci and _

i2I
Ci = [

i2I
Ci for every

Ci 2 P (i 2 I)
�
[
i2I
Ci is the closure of [

i2I
Ci

�
. By [4, Example 3], P is am-

ply supplemented but not �-supplemented. Since P is amply supplemented,
then it is Rad-supplemented too. Since P is not ��supplemented, it is not
strongly Rad���supplemented too. It is clear that r (P ) = [0; 1] and hence P
is Rad���supplemented.
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