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Abstract. In this paper we investigate the global existence of small data solutions for the following
structurally damped σ-evolution model with nonlinear memory term

utt + (−∆)σu+ µ(−∆)
σ
2 ut =

∫ t

0
(1 + τ)−γ |ut(τ, ·)|p dτ,

with σ > 0. In particular, for γ ∈ ((n−σ)/n, 1) we �nd the sharp critical exponent, under the assumption
of small data in L1. Dropping the L1 smallness assumption of initial data, we show how the critical
exponent is consequently modi�ed for the problem. In particular, we obtain a new interplay between the
fractional order of integration 1− γ in the nonlinear memory term, and the assumption that initial data
are small in Lm, for some m > 1.

1. Introduction

We consider the nonlinear Cauchy problem{
utt + (−∆)σu+ µ(−∆)

σ
2 ut = F (t, ut), x ∈ Rn, t > 0,

u(0, x) = 0, ut(0, x) = u1(x),
(1)

where σ > 0, µ is a positive constant and the right-hand side is de�ned as

F (t, ut) =

∫ t

0

(1 + τ)−γ |ut(τ, ·)|p dτ, (2)

for some γ ∈ (0, 1) and p > 1. More in general, we may assume that

F (t, ut) =

∫ t

0

(t− s)−γg(ut(s, ·)) ds,

where g : R→ R is a locally Lipshitz function satisfying

g(0) = 0, |g(u)− g(v)| . |u− v|(|u|p−1 + |v|p−1), for some p > 1. (3)

The linear part of the equation in (1), i.e.

utt + (−∆)σu+ µ(−∆)
σ
2 ut = 0 (4)

is a special case of a more general class of σ-evolution equations with structural damping

utt + (−∆)σu+ µ(−∆)δut = 0, σ, δ > 0. (5)

For any δ > 0 the equation in (5) is a dissipative σ-evolution equation; in particular, its energy

E(t) =
1

2
‖ut(t, ·)‖2L2

+
1

2
‖|D|σu(t, ·)‖2L2 ,

is non-increasing, due to

E′(t) = −µ ‖|D|δut(t, ·)‖2L2 .
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Moreover, in the case 2δ ∈ (0, σ) (e�ective damping, according to the de�nition in [5]) the solution to
a Cauchy problem associated to (5) can be written as the sum of two terms, each one asymptotically
behaving as the solution to a di�erent di�usion problems (see [6] for more details). Instead, in the case
2δ > σ in the asymptotic pro�le of the solution the wave structure appears and oscillations come into play
(the case δ = σ = 1 has been studied in details by R. Ikehata [12]). In [6] the authors studies equation
(5); at �rst they obtain estimates for the solution to the linear Cauchy problem associated to (5) and then
they apply those to study the critical exponent for the two corresponding nonlinear problems{

utt + (−∆)σu+ µ(−∆)δut = |u|p,
u(0, x) = 0, ut(0, x) = u1(x),

(6)

and {
utt + (−∆)σu+ µ(−∆)δut = |ut|p

u(0, x) = 0, ut(0, x) = u1(x).
(7)

The critical exponents are

p0(n, σ, δ) := 1 +
2σ

(n− 2δ)+
, (8)

for Cauchy problem (6) and, respectively,

p1(n, σ, δ) := 1 +
2δ

n
, (9)

for Cauchy problem (7). In both the cases some restriction on the dimension appear: in fact, it is required
n < n0 = n0(σ, δ) for (6) (and, respectively, n < n1 = n1(σ, δ) for (7)). Here, for j = 0, 1 the integer nj is
proportional to 1/(σ − 2δ). In particular, in the limit case 2δ = σ it holds n0 = n1 = ∞, i.e. (8) and (9)
are critical exponents for any dimension n ≥ 1 (see also [16]).

If the L1 smallness assumption on the initial data is replaced by Lm smallness assumption, for some m ∈
(1, 2], then the two critical exponents in (8) and (9) become p0(n/m, σ, δ) and p1(n/m, σ, δ) (see [6, Section
2.5]).

In general, by critical exponent p̄, in this paper we mean that

- if p > p̄, then there exist global in time small data solutions for a suitable choice of data and
solution spaces;

- if 1 < p < p̄, there exist arbitrarily small initial data, such that there exists no global in time weak
solution.

The di�culty in treating the higher space dimensions n > nj is related to the loss of regularity which
appears when one deals with Lq − Lq estimates, with q ∈ (1, 2). Indeed, these estimates come into play
when one considers power nonlinearities |u|p or |ut|p, when p ∈ (1, 2), and the critical exponent eventually
becomes smaller than 2 in high space dimension n (for instance, Fujita exponent 1 + 2/n is smaller than
2 in space dimension n ≥ 3).
The loss of regularity for Lq−Lq estimates, with q ∈ (1, 2), is related to the wave structure of the equation
at high frequencies, (this is studied in detail in [14] where the model (5) is studied in the case σ = 1
and δ = 0). However, the presence of the structural damping in (5), when δ > 0, generates a smoothing
e�ect on the solution, which does not appear for the classical damping ut (see later Proposition 2.1). This
smoothing e�ect allows us to recover the additional regularity by using estimates which are singular at
t = 0. The singularity order is proportional to n(σ−2δ)/2δ, and it vanishes at σ = 2δ. This e�ect explains,
roughly speaking, the possibility to employ these estimates in higher space dimensions when σ/(2δ) tends
to 1. This motivates our choice to �x δ = σ/2 to better investigates the in�uence of the nonlinear memory
term on the equation.

Recently, many authors investigated fractional PDEs from di�erent points of view, since they are par-
ticularly interesting for the real world applications and the description of memory and hereditary process.
In particular, it is of interest to understand how to treat nonlinear evolution problems in which the non-
linearity is represented by some memory term; for instance, one could consider a nonlinearity like F (t, ut)
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de�ned in (2), or even

G(t, u) =

∫ t

0

(1 + τ)−γ |u(τ, ·)|p dτ.

We remark that

F (t, ut) = Γ(1− γ)J1−γ
0|t |ut(t, ·)|

p, G(t, u) = Γ(1− γ)J1−γ
0|t |u(t, ·)|p

where Γ is the Euler function and J1−γ
0|t (v) denotes the fractional Riemann-Liouville integral of a function

v. Hence, we have
lim
γ→1

Γ(1− γ)F (t, ut) = |ut(t, ·)|p

and, respectively
lim
γ→1

Γ(1− γ)G(t, u) = |u(t, ·)|p;

thus, one can expect some relations with the case of a power nonlinearity |ut|p and, respectively |u|p, as
γ → 1.

In [1] the authors consider the Cauchy problem for the heat equation{
vt −∆u = G(t, u) t ≥ 0, x ∈ Rn,
v(0, x) = v0(x),

(10)

and they prove that the critical exponent for (10) is given by

p̄0,γ(n) = max{γ−1, p0,γ(n)}, where p0,γ(n) = 1 +
2(2− γ)

n− 2(1− γ)
. (11)

Other di�usive models with nonlinear memory are treated in [10] and [17]; in particular, in this latter
paper also fractional derivatives in time are considered in the linear part of the equation.

In [4, 9] the authors study the nonlinear Cauchy problem{
utt −∆u+ µut = G(t, u)

u(0, x) = 0, ut(0, x) = u1(x),
(12)

and they prove that the critical exponent is again (11), as for the Cauchy problem (10) for any n ≤ 5; this
is reasonable since the solution to the linear Cauchy problem associated to (12), behaves asymptotically
like the solution the linear problem associated to (10) with a suitable initial datum v0 (see, for instance
[13, 14, 15]).

Furthermore, in [3] the �rst author considers the Cauchy problem{
utt −∆u+ µ(−∆)

1
2ut =

∫ t
0
(t− s)−γ |u(τ, ·)|p dτ,

u(0, x) = 0, ut(0, x) = u1(x),
(13)

and he proves that global small data solutions exist for p > p̄1,γ(n) where

p̄1,γ(n) = max{γ−1, p1,γ(n)}, where p1,γ(n) = 1 +
3− γ

n+ γ − 2
(14)

for any n ≥ 2; moreover, this exponent is optimal.
We remark that the threshold (n − 2)/n which denotes the transition to the critical exponent γ−1 is

the same for both the Cauchy problems (12) and (13). Moreover, it holds p̄1,γ(n) > p̄0,γ(n) only when
γ belongs to the interval ((n − 2)/n, 1); instead, if γ ∈ (0, (n − 2)/n) it holds p̄1,γ(n) = p̄0,γ(n) = γ−1.
This suggests that if the nonlinear memory term is su�ciently strong in space dimension n ≥ 3, then the
in�uence from classical and structural damping is the same. Otherwise, the critical exponent is larger in
the structural damping case, as it happens for the power nonlinearity |u|p.

Finally, we recall that the beam equation has been investigated in the case of a nonlinear memory term
in [7].

In this paper we want to investigate the critical exponent for the Cauchy problem (1). As discussed
before, the special structure of equation (4) gives some bene�t in the estimates for the solution to the
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linear problem; in particular, it is possible to get non-singular estimates also for ut which can be easily
applied to study the nonlinear problem. We will prove that, under L1 smallness assumption for the initial
datum u1, global solutions to (1) exist for any p > p̄γ,1(σ, n), where

p > p̄γ,1(σ, n) :=

{
pγ(σ, n) if γ > [(n− σ)/n, 1)

γ−1 if γ ∈ (0, (n− σ)/n)
, pγ(σ, n) := 1 +

(2− γ)σ

n− σ(1− γ)
. (15)

We are ready to state our �rst result.

Theorem 1.1. Let σ > 0 and γ ∈ (0, 1); let us assume p > p̄γ,1(σ, n).
Then, there exists ε > 0, su�ciently small, such that for any

u1 ∈ L1 ∩ L∞ with ‖u1‖L1∩L∞ 6 ε, (16)

there is a uniquely determined energy solution

u ∈ C1
(
[0,∞), L1 ∩ L∞

)
∩ C([0,∞), Hσ) (17)

to (1). Furthermore, for j = 0, 1, the solution satis�es the following estimates:

‖∂jt u(t, ·)‖Lq .


C(1 + t)2−j−γ−nσ (1− 1

q )‖u1‖L1∩L∞ if nσ

(
1− 1

q

)
< 2− j,

C(1 + t)−γ log(2 + t)‖u1‖L1∩L∞ if nσ

(
1− 1

q

)
= 2− j,

C(1 + t)−γ‖u1‖L1∩L∞ if nσ

(
1− 1

q

)
> 2− j.

(18)

Moreover, ‖(−∆)
σ
2 u(t, ·)‖L2 veri�es the same estimate veri�ed by ‖ut(t, ·)‖L2 in (18). Namely,

E(t) ≤


(1 + t)2(1−γ)−nσ ‖u1‖2L1∩L∞ if n < 2σ,

(1 + t)−2γ (log(2 + t))2 ‖u1‖2L1∩L∞ if n = 2σ,

(1 + t)−2γ ‖u1‖2L1∩L∞ if n > 2σ.

Remark 1.1. In estimates (18) it does not appear a decay rate better than (1 + t)−γ . This restriction
comes from the in�uence of the nonlinear memory term (see Lemma 4.2). In the best case scenario, a loss
of decay (1 + t)1−γ appears with respect to the corresponding linear estimates (see Proposition 2.1). This
phenomenon has been described in [4].

If we drop the L1 smallness assumption for the initial data u1, replacing it by L
m smallness, for somem >

1, we expect that this loss of information on the datum does not in�uence the critical exponent for (1), for
�su�ciently small� γ, with respect to m. This expectation is motivated by the fact that the presence of the
nonlinear memory term induces a loss of decay rate which is (1 + t)1−γ , or even larger, with respect to the
corresponding linear estimate with L1 data. On the other hand, assuming initial data in Lm, with m > 1,

leads to a loss of decay rate which is (1+t)
n
σ (1− 1

m ), with respect to assume initial data in L1. Consequently,
the critical exponent is modi�ed only when this latter loss is greater than the loss related to the nonlinear
memory term.

In particular, if initial data are assumed to be small in Lm, for some

1 < m <
n2

(n2 − σ2)+
,

then we show that global solutions exist for any p > p̄γ,m(σ, n), where

p̄γ,m(σ, n) := max{γ−1, pγ(σ, n), p̃m(σ, n)}, p̃m(σ, n) := 1 +
(2− γ)σm

n
.

Explicitly, we may compute

p̄γ,m(σ, n) =


p̃m(σ, n) if γ ∈ [γ̄, 1),

pγ(σ, n) if γ ∈ [(n− σ)/n, γ̄),

γ−1 if γ ∈ (0, (n− σ)/n),
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where

γ̄ = γ̄(m) = 1− n

σ

(
1− 1

m

)
.

We notice that γ̄ > (n− σ)/n due to the assumption m < n2/(n2 − σ2).

Indeed, it is easy to show that for a �xed m ∈ (1, n2

(n2−σ2)+
), the statement of Theorem 1.1 remains

valid if γ ∈ (0, γ̄] and p > p̄γ,1(σ, n), as in (15), replacing the initial data assumption (16) by the weaker
condition

u1 ∈ Lm ∩ L∞ with ‖u1‖Lm∩L∞ 6 ε, (19)

and the solution space (17) by

u ∈ C1 ([0,∞), Lm ∩ L∞) ∩ C([0,∞), Hσ) (20)

if m ∈ (1, 2], and by

u ∈ C1 ([0,∞), Lm ∩ L∞) (21)

if m > 2. The proof also requires only minor modi�cations with respect to the proof of Theorem 1.1. In
particular, we stress that p > m, due to

p > pγ(σ, n) ≥ p̃m(σ, n) = 1 +
(2− γ)σm

n
≥ 1 +

(2− γ̄)σm

n
= m

(
1 +

σ

n

)
> m,

which follows from the assumption γ ≤ γ̄.
Having this in mind, we may focus to the case γ ∈ (γ̄, 1), in which the critical exponent p̃m(σ, n) comes

into play.

Theorem 1.2. Let σ > 0, m ∈ (1, n2/(n2−σ2)+) and γ ∈ (γ̄, 1); let us assume p ≥ p̃m(σ, n). Then, there
exists ε > 0, su�ciently small, such that for any

u1 ∈ Lm ∩ L∞ with ‖u1‖Lm∩L∞ 6 ε,

there is a uniquely determined energy solution

u ∈ C1 ([0,∞), Lm ∩ L∞) ∩ C([0,∞), Hσ)

to (1), if m ≤ 2, or a uniquely determined Sobolev solution

u ∈ C1 ([0,∞), Lm ∩ L∞)

to (1), if m > 2. Furthermore, the solution satis�es the following estimates for j = 0, 1 and q ∈ [m,∞]:

‖∂jt u(t, ·)‖Lq .


C(1 + t)1−j−nσ ( 1

m−
1
q )‖u1‖Lm∩L∞ if nσ

(
1− 1

q

)
< 2− j,

C(1 + t)−1+n
σ (1− 1

m ) log(2 + t)‖u1‖Lm∩L∞ if nσ

(
1− 1

q

)
= 2− j,

C(1 + t)−1+n
σ (1− 1

m )‖u1‖Lm∩L∞ if nσ

(
1− 1

q

)
> 2− j.

(22)

Moreover, ‖(−∆)
σ
2 u(t, ·)‖L2 veri�es the same estimate veri�ed by ‖ut(t, ·)‖L2 in (22), if m ≤ 2. Namely,

E(t) ≤


(1 + t)−

n
σ ( 2

m−1) ‖u1‖2Lm∩L∞ if n < 2σ,

(1 + t)−2+ 2n
σ (1− 1

m ) (log(2 + t))2 ‖u1‖2Lm∩L∞ if n = 2σ,

(1 + t)−2+ 2n
σ (1− 1

m ) ‖u1‖2Lm∩L∞ if n > 2σ.

Remark 1.2. We remark that the assumption m < n2/(n2 − σ2)+ also implies that m < n/(n − σ)+, so
that p > m as a consequence of

p ≥ p̃m(σ, n) = 1 +
(2− γ)σm

n
> 1 +

σm

n
> m.

Indeed, the latter is trivial if σ ≥ n, whereas it is equivalent to m < n/(n− σ) otherwise.
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Remark 1.3. The main di�erence in the decay rate pro�le in Theorem 1.2 with respect to Theorem 1.1 is
that no loss of decay rate is caused by the presence of the nonlinear memory term in (22), when

n

σ

(
1− 1

q

)
< 2− j,

with respect to the linear problem (see Proposition 2.1).

Finally, we will employ the test function method to prove that no weak solution exists if 1 < p <
max{pγ(σ, n), p̃m(σ, n)}, under suitable sign assumption on initial data in Lm.

This allows us to conclude that p̄γ,m(σ, n) is really the critical exponent for any γ ∈ ((n − σ)/n, 1).
It remains an open problem to prove a satisfying nonexistence result when γ belongs to the interval
(0, (n− σ)/n).

Theorem 1.3. Let us assume u1 ∈ L1
loc, u1 non-negative. Then, there exists no global weak solution to

(1) in the following cases:

- if n ≤ (1− γ)σ for any γ ∈ (0, 1) and p > 1;
- if n > (1− γ)σ, for any γ ∈ (0, 1) and 1 < p < pγ(σ, n).

Moreover, if σ/2 ∈ N, no global weak solution exists also in the case

- n > (1− γ)σ, for any γ ∈ ((n− σ)/n, 1) and p = pγ(σ, n).

Theorem 1.4. Let us assume u1 ∈ Lm such that

u1(x) ≥ c |x|− n
m (log(|x|))−1, ∀|x| � 1. (23)

Then, there exists no global weak solution to (1) in the following cases:

- if n ≤ (1− γ)σ for any γ ∈ (0, 1) and p > 1;
- if n > (1− γ)σ, for any γ ∈ (0, 1) and 1 < p < max{pγ(σ, n), p̃m(σ, n)}.

In view of the previous result we can conclude that p̄γ,m(σ, n) is the critical exponent for any γ ∈
((n−σ)/n, 1). In particular we remark that, as we expected, for γ → 1 the critical exponent pγ(σ, n) tends
to p1(σ, σ/2, n), as de�ned in (9), and the critical exponent p̃m(σ, n) tends to p1(σ, σ/2, n/m), as γ → 1.

However, it is interesting to remark that the critical exponent for the Lm theory, when m > 1, is not
obtained by dividing the space dimension n by m, as it happens for the structurally damped evolution
equation with power nonlinearity |ut|p in [6], but it is smaller than this latter, due to

p̃m(σ, n) = 1 +
(2− γ)σm

n
< 1 +

(2− γ)σm

n−mσ(1− γ)
= pγ(σ, n/m).

This phenomenon is due to the interesting interplay between the loss of decay rate due to the nonlinear
memory, and the loss of decay rate due to the di�erent space assumption for the initial data. This interplay
has a lesser negative in�uence on the decay rate pro�le of the solution, than one may expect.

2. Proof of Theorem 1.1

In order to prove our existence results, we need to employ decay estimates for the linear Cauchy problem
associated to (1), that is {

utt + (−∆)σu+ (−∆)
σ
2 ut = 0

u(0, x) = 0, ut(0, x) = u1(x), .
(24)

In [6, 8, 16] the authors prove the following decay estimates for (24).

Proposition 2.1. Let j = 0, 1. Then, for any 1 ≤ m ≤ q ≤ ∞ the solution u = u(t, x) to (24) satis�es
the following estimates:

‖∂jt u(t, ·)‖Lq . t−
n
σ ( 1

m−
1
q )+1−j‖u1‖Lm , (25)

and, as a consequence,

‖∂jt u(t, ·)‖Lq . (1 + t)−
n
σ ( 1

m−
1
q )+1−j‖u1‖Lm∩Lq . (26)
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Moreover, we have

‖(−∆)
σ
2 u(t, ·)‖Lq . (1 + t)−

n
σ ( 1

m−
1
q )‖u1‖Lm∩Lq . (27)

Remark 2.1. We remark that in estimate (26) the assumption of additional regularity Lq for the datum
allows to avoid the singularity which appears in (25) when m < q.

Let us now introduce some notation for the proof of the global (in time) existence of small data solutions.
Throughout this section, we denote by K1(t, x) the fundamental solution to the linear Cauchy problem (1)
with initial data u0 = 0 and u1 = δ0, where δ0 is the Dirac distribution in x = 0 with respect to the spatial
variable. As a consequence, we may represent the solution to the Cauchy problem (24) in the form

ulin(t, x) = K1(t, x) ∗(x) u1(x).

We may introduce the operator

P : u ∈ X(T )→ Pu(t, x) := ulin(t, x) +Nu(t, x),

where X(T ) is an evolution space which we will de�ne in a suitable way. Then, we de�ne Nu an integral
operator with the following representation

Nu(t, x)
.
=

∫ t

0

K1(t− s, x) ∗(x) F (s, ut(·, x)) ds. (28)

According to the Duhamel's principle, we can consider a global (in time) solution to (1) as a �xed point
of the operator P . Hence, in order to get the global (in time) existence and uniqueness of the solution in
X(T ), we need to prove the following two crucial estimates:

‖Pu‖X(T ) . ‖u1‖Lm∩L∞ + ‖u‖pX(T ), (29)

‖Pu− Pv‖X(T ) . ‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
, (30)

uniformly with respect to T . Thus, we show the desired property for the operator P providing that
‖u1‖Lm∩L∞ = ε is su�ciently small. As a consequence of the Banach �xed point theorem, the conditions
(29) and (30) guarantee the existence of a uniquely determined solution u to (1) that is u = ulin + Nu.
We simultaneously gain a local and a global existence result. In the proof of our global existence result, it
will be useful the following straightforward estimates (see, for instance, [2]).

Proposition 2.2. Let α ∈ R, β > 1 and γ ∈ (0, 1). Then,∫ t

0

(1 + t− s)−α
∫ s

0

(s− τ)−γ(1 + τ)−β dτ ds .


(1 + t)−γ if α > 1,

(1 + t)−γ log(2 + t) if α = 1,

(1 + t)1−α−γ if α < 1.

Proposition 2.3. Let α ∈ R and β, γ ∈ (0, 1). Then,∫ t

0

(1 + t− s)−α
∫ s

0

(s− τ)−γ(1 + τ)−β dτ ds .


(1 + t)1−β−γ if α > 1,

(1 + t)1−β−γ log(2 + t) if α = 1,

(1 + t)2−α−β−γ if α < 1.

We are now ready to prove Theorem 1.1.
Proof. [Theorem 1.1] If n > σ, we de�ne

q1 =
n

n− σ
,

that is, the solution to
n

σ

(
1− 1

q

)
= 1.

If n > 2σ, we also de�ne

q0 =
n

n− 2σ
,
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that is, the solution to
n

σ

(
1− 1

q

)
= 2.

We now consider the solution space

X(T ) = C1([0, T ], L1 ∩ L∞) ∩ C([0, T ], Hσ),

equipped with the norm

‖u‖X(T ) := ‖u‖X0(T ) + sup
s∈[0,T ]

{
(1 + s)γ−1

(
‖ut(s, ·)‖L1 + (1 + s)

n
σ ‖ut(s, ·)‖L∞

)}
if n < σ, or

‖u‖X(T ) := ‖u‖X0(T ) + sup
s∈[0,T ]

{
(1 + s)γ−1‖ut(s, ·)‖L1 + (1 + s)γ(`(s)−1‖ut(s, ·)‖Lq1 + ‖ut(s, ·)‖L∞)

}
if n ≥ σ, where `(t) := log(2 + t) and X0(t) denotes the evolution space C([0, T ], L1 ∩L∞ ∩Hσ) equipped
with the norm

‖u‖X0(t) := sup
s∈[0,T ]

{
(1 + s)γ−2

(
‖u(s, ·)‖L1 + (1 + s)

n
σ ‖u(s, ·)‖L∞ + (1 + s)

n
2σ+1‖u(s, ·)‖Ḣσ

)}
,

if n < 2σ, or

‖u‖X0(t) := sup
s∈[0,T ]

{
(1 + s)γ−2‖u(s, ·)‖L1 + (1 + s)γ `(s)−1

(
‖u(s, ·)‖L∞ + ‖u(s, ·)‖Ḣσ

)}
,

if n = 2σ, or

‖u‖X0(t) := sup
s∈[0,T ]

{
(1 + s)γ−2‖u(s, ·)‖L1 + (1 + s)γ `(s)−1‖u(s, ·)‖Lq0

+(1 + s)γ
(
‖u(s, ·)‖L∞ + ‖u(s, ·)‖Ḣσ

)}
,

if n > 2σ.
Applying Proposition 2.1, it follows immediately

‖ulin‖X(T ) . ‖u1‖L1∩L∞ , (31)

and so we conclude ulin ∈ X(T ).
In the remaining part of the proof we will estimate Nu in the X(T ) norm. To do this, we �rst remark

that for any t ∈ [0, T ] it is possible to estimate by interpolation

‖ut(t, ·)‖Lq . (1 + t)(1−nσ (1− 1
q ))

+−γ`(t)‖u‖X(T ), (32)

for any q ∈ [1,∞]. In particular, the decay becomes (1 + t)−γ for any q > q1, when n > σ.
By using the derived L1∩Lq−Lq estimates stated in (26), applying the Minkowski's integral inequality,

we get

‖∂tNu(t, ·)‖Lq .
∫ t

0

(1 + t− s)−
n
σ (1− 1

q )
∫ s

0

(s− τ)−γ‖|ut(τ, ·)|p‖L1∩Lq dτ ds,

for q = 1,∞, and for q = q1 if n > σ. By (32) we know that

‖|ut(τ, ·)|p‖L1 = ‖ut(τ, ·)‖pLp . (1 + t)(p−
n
σ (p−1))

+−pγ`(t)p‖u‖pX(T ); (33)

moreover, for any q ≥ q1 since qp > q1 we get

‖|ut(τ, ·)|p‖Lq = ‖ut(τ, ·)‖pLqp . (1 + t)−pγ`(t)p‖u‖pX(T ). (34)

If, and only if, p > p̄γ,1(σ, n), then from estimate (33) we may deduce that there exists an exponent
βγ(n, σ, p) > 1 such that

‖ut(τ, ·)‖pLp . (1 + t)−βγ(n,σ,p)‖u‖pX(T ). (35)



A STRUCTURALLY DAMPED σ-EVOLUTION EQUATION WITH NONLINEAR MEMORY 9

In particular, for any q > q1 from estimate (34) we see that ‖ut(τ, ·)‖pLqp also satis�es estimate (35). Thus,
for any q = 1, q1, ∞ we get

‖∂tNu(t, ·)‖Lq . ‖u‖pX(T )

∫ t

0

(1 + t− s)−
n
σ (1− 1

q )
∫ s

0

(s− τ)−γ(1 + τ)−βγ(n,σ,p) dτ ds.

Therefore, for any p > p̄γ,1(n) we can apply Proposition 2.2 to get the following desired estimates

‖∂tNu(t, ·)‖L1 . (1 + t)1−γ‖u‖pX(T );

moreover, for n 6= σ we get

‖∂tNu(t, ·)‖L∞ . (1 + t)(1−nσ )+−γ‖u‖pX(T );

�nally, for n ≥ σ we �nd

‖∂tNu(t, ·)‖Lq1 . (1 + t)−γ`(t)‖u‖pX(T ).

In a similar way, we estimate ‖Nu(t, ·)‖Lq for q = 1,∞, and q0 if n > 2σ. We apply (26) to get

‖Nu(t, ·)‖Lq .
∫ t

0

(1 + t− s)1−nσ (1− 1
q )
∫ s

0

(s− τ)−γ‖|ut(τ, ·)|p‖L1∩Lq dτ ds.

Thus, using estimate (35) we �nd

‖Nu(t, ·)‖Lq . ‖u‖pX(T )

∫ t

0

(1 + t− s)1−nσ (1− 1
q )
∫ s

0

(s− τ)−γ(1 + τ)−βγ(n,σ,p) dτ ds.

Again, for p > p̄γ,1(n), we can apply Proposition 2.2 to get the following desired estimates of ‖Nu‖Lq :

‖Nu(t, ·)‖L1 . (1 + t)2−γ‖u‖pX(T ),

moreover, for n 6= 2σ we get

‖Nu(t, ·)‖L∞ . (1 + t)(2−nσ )+−γ‖u‖pX(T );

furthermore, for any n ≥ 2σ we have

‖Nu(t, ·)‖Lq0 . (1 + t)−γ`(t)‖u‖pX(T ).

Finally, we have

‖(−∆)
σ
2Nu(t, ·)‖L2 . ‖u‖pX(T )

∫ t

0

(1 + t− s)− n
2σ

∫ s

0

(s− τ)−γ(1 + τ)−βγ(n,σ,p) dτ ds,

which implies

‖(−∆)
σ
2Nu(t, ·)‖L2 . (1 + t)(1− n

2σ )+−γ`(t)b‖u‖pX(T ),

where b = 0 for any n 6= 2σ and b = 1 if n = 2σ.
Collecting the above derived estimates and (31) we have proved

‖ulin‖X(T ) + ‖unon‖X(T ) . ‖u1‖L1∩L∞ + ‖u‖pX(T ),

which allows us to get the desired estimate (29).
In order to prove (30) we may rewrite it as

‖Nu−Nv‖X(T ) . ‖u− v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
.

Then, we use (3) together with Hölder inequality to get

‖g(u)− g(v)‖L1∩Lq . ‖g(u)− g(v)‖L1∩Lq
(
‖u‖p−1

L1∩Lq + ‖v‖p−1
L1∩Lq

)
,

and we proceed as in the proof of (29) to get the desired result.
The proof of the decay estimates in (18) follows by straightforward calculations, thanks to the choice of

the norm of X(T ).
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3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we shall modify the norm of X(T ) to take into account of the di�erent
pro�le of the decay rate of the solution, due to the in�uence of the Lm regularity of the initial datum.

Proof. [Theorem 1.2] Now, for a given T > 0, we �x

X(T ) = C1([0, T ], Lm ∩ L∞) ∩ C([0, T ], Hσ),

if m ≤ 2, and
X(T ) = C1([0, T ], Lm ∩ L∞),

if m > 2.
Assume �rst that n < σ. Then we set

‖u‖X0(t) := sup
s∈[0,T ]

{
(1 + s)−1‖u(s, ·)‖Lm + (1 + s)−1+ n

mσ ‖u(s, ·)‖L∞ + (1 + s)
n
σ ( 1

m−
1
2 )‖(−∆)

σ
2 u(s, ·)‖L2

}
,

if m ≤ 2 and
‖u‖X0(t) := sup

s∈[0,T ]

{
(1 + s)−1‖u(s, ·)‖Lm + (1 + s)−1+ n

mσ ‖u(s, ·)‖L∞
}
,

if m > 2. Then we de�ne

‖u‖X(T ) := ‖u‖X0(t) + sup
s∈[0,T ]

{
‖ut(s, ·)‖Lm + (1 + s)

n
mσ ‖ut(s, ·)‖L∞

}
.

If n ≥ σ, we modify the norm into

‖u‖X(T ) := ‖u‖X0(t) + sup
s∈[0,T ]

{
‖ut(s, ·)‖Lm + (1 + s)

n
σ ( 1

m−
1

p̃m(σ,n) )‖ut(s, ·)‖Lp̃m(σ,n)

+(1 + s)1−nσ (1− 1
m )(`(s)−1‖ut(s, ·)‖Lq1 + ‖ut(s, ·)‖L∞

)}
,

where q1 = n/(n− σ) is the solution to
n

σ

(
1− 1

q

)
= 1,

as in the proof of Theorem 1.1. Moreover, if n ≥ 2σ, we replace (1 + s)−1+ n
mσ ‖u(s, ·)‖L∞ in ‖u‖X0(T ) by

(1 + s)1−nσ (1− 1
m )(`(s)−1‖u(s, ·)‖Lq0 + ‖u(s, ·)‖L∞

)
,

where q0 = n/(n− 2σ) is the solution to

n

σ

(
1− 1

q0

)
= 2,

as in the proof of Theorem 1.1. We proceed similarly to modify (1+s)
n
σ ( 1

m−
1
2 )‖(−∆)

σ
2 u(s, ·)‖L2 in ‖u‖X0(T ).

Applying Proposition 2.1, it follows immediately that

‖ulin‖X(T ) . ‖u1‖Lm∩L∞ , (36)

and so we conclude ulin ∈ X(T ). It remains to estimate Nu to prove (29)-(30).
If u ∈ X(T ), then for any p ≥ p̃m(σ, n), we may estimate

‖u(t, ·)‖Lp ≤ ‖u‖X(T ) (1 + t)−
n
σ ( 1

m−
1

p̃m(σ,n) ) . (37)

By using the derived L1 ∩ Lq − Lq estimates stated in (26), applying the Minkowski's integral inequality,
we get for q ∈ [1,∞]:

‖∂tNu(t, ·)‖Lq . ‖u‖pX(T )

∫ t

0

(1 + t− s)−
n
σ (1− 1

q )
∫ s

0

(s− τ)−γ‖|ut(τ, ·)|p‖L1∩Lp dτ ds.

Thus, employing estimates (37), due to p ≥ p̃m(σ, n), we get

‖∂tNu(t, ·)‖Lq . ‖u‖pX(T )

∫ t

0

(1 + t− s)−
n
σ (1− 1

q )
∫ s

0

(s− τ)−γ(1 + τ)
n
σ (1− 1

m )+γ−2 dτ ds.
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Indeed, for p ≥ p̃m(σ, n), we get

(1 + τ)−
n
σ ( 1

m−
1

p̃m(σ,n) ) p ≤ (1 + τ)−
n
σ (

p̃m(σ,n)
m −1) = (1 + τ)

n
σ (1− 1

m )+γ−2.

In particular,

2− γ − n

σ

(
1− 1

m

)
< 1,

due to γ > γ̄ = 1− n(1− 1/m)/σ.
We shall now distinguish two cases. If n < σ or q < q1, that is,

n

σ

(
1− 1

q

)
< 1,

by applying Proposition 2.3, due to

2− n

σ

(
1− 1

q

)
− γ −

(
2− γ − n

σ

(
1− 1

m

))
=
n

σ

(
1

m
− 1

q

)
,

we obtain:

‖∂tNu(t, ·)‖Lq . ‖u‖pX(T ) . (1 + t)−
n
σ ( 1

m−
1
q ) ‖u‖pX(T ).

If n ≥ σ and q = q1, or, respectively, q > q1, then, by applying Proposition 2.3, due to

1− γ −
(

2− γ − n

σ

(
1− 1

m

))
= −1 +

n

σ

(
1− 1

m

)
,

we obtain:

‖∂tNu(t, ·)‖Lq . ‖u‖pX(T ) . (1 + t)−1+n
σ (1− 1

m ) `(t) ‖u‖pX(T ),

or, respectively,

‖∂tNu(t, ·)‖Lq . ‖u‖pX(T ) . (1 + t)−1+n
σ (1− 1

m ) ‖u‖pX(T ).

We proceed similarly to estimate ‖Nu(t, ·)‖Lq and ‖(−∆)
σ
2Nu(t, ·)‖L2 if m ≤ 2.

This concludes the proof of estimate (29). Finally, with the same approach used in the proof of Theorem
1.1 we get estimate (30).

4. Proof of Theorem 1.3

In order to prove our non-existence result, we employ the test functions method. In particular, to treat
the non-local di�erential operators (−∆)σ and (−∆)σ/2 we apply the following fundamental lemma:

Lemma 4.1 ([11]). Let 〈x〉 := (1 + |x|2)1/2 and q > n. Fixed θ /∈ N, we de�ne mθ = [θ], the greatest

integer which is smaller than θ, and sθ = θ −mθ. Then, there exists a positive constant An,q,θ depending

only on n, q and θ such that for any x ∈ Rn,

|((−∆)θ〈·〉−q)(x)| ≤ 〈x〉−n−2sθ . (38)

Proof. If θ = sθ ∈ (0, 1), then the proof follows by straightforward calculations as in Lemma 1.5 in [11].
In the case θ = mθ + sθ with mθ ≥ 1 we use the representation

((−∆)θ〈·〉−q)(x) = ((−∆)sθ ((−∆)mθ 〈·〉−q))(x),

and we remark that ((−∆)mθ 〈·〉−q)(x) can be written as a linear combination of functions ϕi(x) := 〈x〉−qi ,
with qi > n. Then, we apply the already known result to ((−∆)sθ 〈·〉−qi)(x) to conclude the proof.

Remark 4.1. If θ ∈ N it is immediate the following estimate:

|(−∆)θ〈x〉−q| . 〈x〉−q−2θ,

for any q > n.
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4.1. The general case σ > 0 and p < pγ(σ, n), m ≥ 1. For any α ∈ (0, 1) and for a �xed T > 0 we
denote by Jα0|t, J

α
t|T the fractional integral operators de�ned by

Jα0|tf(t) :=
1

Γ(α)

∫ t

0

(t− s)−(1−α)f(s) ds,

Jαt|T f(t) :=
1

Γ(α)

∫ T

t

(s− t)−(1−α)f(s) ds,

and the following fractional di�erential operators

Dα
0|t := ∂tJ

1−α
0|t , Dα

t|T := ∂tJ
1−α
t|T .

The following properties are satis�ed∫ T

0

(Dα
0|tf)(t)g(t)dt =

∫ T

0

f(t)(Dα
t|T g)(t)dt, (39)

Dα
0|tJ

α
0|tf(t) = f(t). (40)

Let us introduce the function ω := ω(t) ∈ Cc([0,∞)) de�ned by

ω(t) =

{
(1− t/T ) if t ∈ [0, T ],

0 if t>T.
(41)

Then, it holds suppω = [0, T ] and ω(t)β ∈ Ckc ([0,∞)) for any β > k ≥ 0. Moreover, the following useful
lemma is satis�ed.

Lemma 4.2. For any β > 0 it holds ∫ ∞
t

ω(τ)β dτ =
T

β + 1
ω(t)β+1. (42)

Furthermore, for any α ∈ (0, 1) and β > α it holds

Dα
t|Tω(t)β = C(α, β)T−αω(t)β−α, (43)

where

C(α, β) =
Γ(β + 1)

(β + 2− α)Γ(β − α)
.

Proof. The identity of (42) can be easily obtained by applying the de�nition of ω stated in (41). For
the proof of (43) see for instance Lemma 4.1 in [3].

We set α := 1− γ and we �x β such that

β > (α+ 1)p′ (44)

where p′ = p/(p− 1) is the Hölder conjugate of p. Let Ψ = Ψ(x) ∈ C∞(Rn) be de�ned by

Ψ(x) = 〈x〉−q, for some q > n, (45)

where 〈x〉 = (1 + |x|2)
1
2 . Then, for any R > 0 we de�ne ΨR(x) = Ψ(x/R) and

ΦR(t, x) = ω(t)βΨR(x).

Finally we introduce the functions

ϕ(t, x) := Dα
t|TΦR(t, x), ϕ̃(t, x) :=

∫ ∞
t

ϕ(τ, x)dτ,

de�ned for any t ≥ 0 and x ∈ Rn. It is clear that we have ∂tϕ̃ = −ϕ; moreover, by Lemma 4.2 we can
conclude that suppϕ, supp ϕ̃ ⊂ [0, T ]× Rn; explicitely:

ϕ(t, x) = C(α, β)T−αω(t)β−αΨR(x); (46)

ϕ̃(t, x) =
C(α, β)

β + 1− α
T 1−αω(t)β−α+1ΨR(x). (47)
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Let us suppose by contraddiction that there exists u a global weak solution to (1). Then, for any R > 0
we can de�ne the integral term

IR := Γ(α)

∫ T

0

∫
Rn
Jα0|t(|ut|

p)ϕdx dt.

By properties (39) and (40) we �nd on one hand the identity

IR = Γ(α)

∫ T

0

∫
Rn
|ut|pΦR dx dt. (48)

On the other hand, since u satis�es the Cauchy problem (1), applying integration by parts we get

IR +

∫
Rn
u1(x)ϕ(0, x) dx = −

∫ T

0

∫
Rn
utϕt dx dt+

∫ T

0

∫
Rn
ut(µ(−∆)

σ
2 ϕ− (−∆)σϕ̃) dt dx.

By using Young inequality we can estimate∫ T

0

∫
Rn
|ut||ϕt| dx dt ≤ ε

∫ T

0

∫
Rn
|ut|pΦR dx dt+ Cε

∫ T

0

∫
Rn
|ϕt|p

′
Φ
− 1
p−1

R dx dt

By (46), since ω′(t) = −1/T , we �nd

ϕt(t, x) = −C(α, β)(β − α)T−1−αω(t)β−α−1ΨR(x).

Thus, there exists C > 0 such that∫ T

0

∫
Rn
|ϕt|p

′
Φ
− 1
p−1

R dx dt = CT−(α+1)p′
∫ T

0

∫
Rn
ω(t)β−(α+1)p′Ψ(x/R) dx dt

. T−(α+1)p′+1Rn;

in the last estimate we used that the exponent β − (α + 1)p′ is positive and the function Ψ = Ψ(x) is
integrable on Rn. In order to treat the remaining integral terms we use Lemma 4.1; in particular, since
q > n, there exists δ > 0 such that

|(−∆)σΨR(x)| . 〈x〉−n−δ, |(−∆)σ/2ΨR(x)| . 〈x〉−n−δ;
moreover, we recall that the following identity holds for any θ > 0:

(−∆)θΨR(x) = R−2θ((−∆)θΨ)(x/R). (49)

Thus, applying again Young inequality we �nd∫ T

0

∫
Rn
|ut||(−∆)

σ
2 ϕ| dt dx ≤ ε

∫ T

0

∫
Rn
|ut|pΦR dx dt+ Cε

∫ T

0

∫
Rn

∣∣(−∆)
σ
2 ϕ
∣∣p′ Φ− 1

p−1

R dx dt.

By (38), (46) and (49) with θ = σ/2 we �nd∫ T

0

∫
Rn

∣∣(−∆)
σ
2 ϕ
∣∣p′ Φ− 1

p−1

R dx dt . T−αp
′
R−σp

′
∫ T

0

∫
Rn
ω(t)β−αp

′
〈x/R〉−n−δ dx dt

. T−αp
′+1Rn−σp

′
;

in the last estimate we used that the exponent β−αp′ is positive due to assumption (44) and the function
〈x〉−n−σ is integrable. In a similar way we estimate the last integral term:∫ T

0

∫
Rn
|ut| |(−∆)σϕ̃| dt dx ≤ ε

∫ T

0

∫
Rn
|ut|pΦR dx dt+ Cε

∫ T

0

∫
Rn
|(−∆)σϕ̃|p

′
Φ
− 1
p−1

R dx dt.

By (38), (47) and (49) with θ = σ we get∫ T

0

∫
Rn
|(−∆)σϕ̃|p

′
Φ
− 1
p−1

R dx dt . T (1−α)p′R−2σp′
∫ T

0

∫
Rn
ω(t)β−(α−1)p′〈x/R〉−n−2δ dx dt

. T (1−α)p′+1Rn−2σp′ . (50)
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Collecting the previous estimates we obtain that there exists C > 0 such that

(1− 3ε)IR +

∫
Rn
u1(x)ϕ(0, x) dx ≤ CT 1−αp′Rn(T−p

′
+R−σp

′
+ T p

′
R−2σp′). (51)

Being ϕ ≥ 0, since u1 is non-negative, we �nd∫
Rn
u1(x)ϕ(0, x) dx ≥ 0.

Thus, �xing ε ∈ (0, 1/3), by (51), we get

IR . T 1−αp′Rn(T−p
′
+R−σp

′
+ T p

′
R−2σp′).

Therefore, if p < pγ(σ, n) it is su�cient to set R = T
1
σ to get

IR . T 1+n/σ−(α+1)p′ .

In fact, it holds 1 + n/σ − (α + 1)p′ < 0 if, and only if, p < pγ(σ, n), or n < ασ. In this case, by Beppo
Levi's theorem on monotone convergence, since ΦT 1/σ ↗ 1 as T →∞, we derive

lim
T→∞

I
T

1
σ

=

∫ ∞
0

∫
Rn
|ut|p dx dt ≡ 0;

hence, ut ≡ 0. In order to complete the proof of Theorem 1.3 it remains to treat the critical case p = pγ(σ, n)
in the case σ/2 ∈ N.

4.2. The critical exponent pγ(σ, n) in the case σ/2 ∈ N. In the critical case p̄ := pγ(σ, n), we set

R = T
1
σK−

1
σ for some �xed K > 1. Then, from estimate (51) we get the existence of C > 0 such that

(1− 3ε)

∫ T

0

∫
Rn
|ut|pΦ(T/K)1/σ dx dt ≤ CK−

n
σ (1 +K p̄′ +K2p̄′);

thus, taking T →∞ we �nd ∫ ∞
0

∫
Rn
|ut|p dx dt ≤ C(K), (52)

for some C(K) > 0, i.e. ut ∈ Lp.
In order to prove our result in the critical case p = pγ(σ, n) when σ/2 ∈ N, it is su�cient tu use a

classical test function; we will use the same notations as in Section 4.1. Let Ψ ∈ C∞c (Rn) be a radial test
function such that

• supp Ψ = B1;
• Ψ(x) = 1, for any x ∈ B1/2;
• Ψ is decreasing.

Then, for any integer θ ∈ N, it holds (−∆)θΨR(x) = 0 for any |x| ≤ R/2.
Applying the same ideas used in Section 4.1 we can estimate

Γ(α)

∫ T

0

∫
Rn
Jα0|T (|ut|p̄)ϕdx dt ≤ −

∫ T

0

∫
Rn
utϕt dx dt+

∫ T

0

∫
Rn
ut((−∆)

σ
2 ϕ− (−∆)σϕ̃) dt dx. (53)

Then, taking R = T 1/σK−1/σ, we �nd∫ T

0

∫
Rn
|ut||ϕt| dx dt ≤ ε

∫ T

0

∫
Rn
|ut|p̄ΦR dx dt+ CεK

−nσ .

and ∫ T

0

∫
Rn
|ut||(−∆)

σ
2 ϕ| dt dx ≤ ε

∫ T

0

∫
Rn
|ut|p̄ΦR dx dt+ CεK

−nσ+p̄′ .
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In the critical case we can improve the estimate for the last integral term: we have∫ T

0

∫
Rn
|ut||(−∆)σϕ̃| dx dt =

∫ T

0

∫
|x|>(T/K)1/σ

|ut||(−∆)σϕ̃| dx dt

≤

(∫ T

0

∫
|x|>(T/K)1/σ

|(−∆)σϕ̃|p̄
′
Φ
− 1
p̄−1

R dx dt

) 1
p̄′

×

(∫ T

0

∫
|x|>(T/K)1/σ

|ut|p̄ΦR dx dt

) 1
p̄

.

In analogous way as in (50) we get∫ T

0

∫
Rn
|(−∆)σϕ̃|p̄

′
Φ
− 1
p̄−1

R dx dt . K−
n
σ+2p̄′ ,

and so by (53), taking account of (48), we obtain

(1− 2ε)

∫ T

0

∫
Rn
|ut|p̄ΦR dx dt ≤ C̄K−

n
σ (1 +K p̄′)

+ C̃K
− n
σp̄′+2

(∫ T

0

∫
|x|>(T/K)1/σ

|ut|p̄ΦR dx dt

) 1
p̄

,

for some constants C̄, C̃ > 0. Since ut ∈ Lp by (52), for any �xed K > 0 it holds,

lim
T→∞

∫ T

0

∫
|x|>(T/K)1/σ

|ut|p̄ΦR dx dt = 0;

thus, we �nally get ∫ ∞
0

∫
Rn
|ut|p̄ dx dt ≤ C̄K−

n
σ (1 +K p̄′).

The right hand side is arbitrary small since it holds

p̄′ =
n+ σ

(α+ 1)σ
<
n

σ
,

for any γ > (n− σ)/n. Thus, we conclude ut ≡ 0, and so for any t ≥ 0 we have u(t, x) = u(0, x) = 0. This
concludes the proof of Theorem 1.3.

4.3. The case u1 ∈ Lm, m > 1. By our assumption on u1 in Theorem 1.4, we have

u1(x) & |x|− n
m (log(|x|))−1;

thus, we �nd∫
Rn
u1(x)〈x/R〉−q dx ≥

∫
|x|≤R

u1(x)〈x/R〉−q dx ≥ 2−
q
2

∫
|x|6R

u1(x) dx

&
∫
|x|6R

|x|− n
m (log(|x|))−1 dx &

∫ R

0

r
n(m−1)

m −1(log(r))−1 dr

& (log(R))−1R
n(m−1)

m , (54)

where we used

〈x/R〉−q =
(
1 + |x|2/R2

)− q2 > 2−
q
2 for any |x| 6 R.

Recalling that

ϕ(0, x) = C(α, β)T−α〈x/R〉−q,
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the nonnegativity of u1, togheter with estimates (51) and (54) implies:

C(α, β)T−α(log(R))−1R
n(m−1)

m . C(α, β)T−α
∫
Rn
u1(x)〈x/R〉−q dx

=

∫
Rn
u1(x)ϕ(0, x) dx . T 1−αp′Rn(T−p

′
+R−σp

′
+ T p

′
R−2σp′).

Setting again R = T
1
σ we get

(log(R))−1T−α+
n(m−1)
σm . T 1−(α+1)p′+n

σ ,

which leads to a contradiction for T →∞ if p < p̃m(σ, n). This completes the proof of Theorem 1.4.
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