
Received 6 February 2020; Revised XX XX 2020; Accepted XX XX 2020

DOI: xxx/xxxx

ARTICLE TYPE

Asymptotic Behavior of Discrete Kuramoto Model on Graphs

Chun-Bo Lian | Bin Ge* | Kai-Xin Xing

School of Mathematical Sciences,
Harbin Engineering University,
Harbin, P.R. China

Correspondence
*Ge Bin, School of Mathematical
Sciences, Harbin Engineering
University, Harbin, 150001, P.R.
China. Email:
gebin04523080261@163.com

In this paper, we study the asymptotic behavior of the discrete Kuramoto
model on graphs. The main research method is: by using the theory of
graph limits, we rigorously justify that the solutions of the initial value
problems (IVPs) for the discrete Kuramoto model with external drive con-
vergence to the solution of the initial value problem for its continuum limit
on deterministic graphs, W-random graphs and SW graphs.

KEYWORDS:
Kuramoto model, Asymptotic behavior, Graph limit, Deterministic graphs, Random

graphs, Continuum limit

1 INTRODUCTION

1.1 General background
Recently, the complex networks had been widely considered which could be applied in diverse disciplines such as
molecular biology1, ecology, neuroscience2,3, nonlinear dynamics, physics4,5,6, and sociology7 etc.. Network dynamic
behavior research is a hot field of complex network research. Each node in a complex network has its own dynamic
behavior, if each node in the network represents a dynamic system and there is a connection between nodes, it means
that the dynamic system described by two nodes has mutual coupling effect, and such a network is called a dynamic
network. Network structure has an important influence on network dynamic behavior, at present, the most studied
network structures include ER random network model, NW small world network model and scale-free network model.
The node oscillator used in this paper is Kuramoto model. In the model, each oscillator represents a phase oscillator

making sinusoidal motion, there is a weak coupling between the oscillators, and the phase of each oscillator is affected
by the phase of adjacent oscillators. The Kuramoto model8 was first proposed by Yoshiki Kuramoto in 1975. Since its
introduction in 1975, the Kuramoto model has imposed itself as a standard mathematical model to describe the large
variety of synchronization phenomena encountered in natural and human-made systems. For the discrete Kuramoto
model, many scholars have studied the synchronization of its, but there is little research on the asymptotic behavior
of the discrete Kuramoto model. Discrete behavior can be seen almost everywhere in real life, and the research on
discrete model has more important practical significance. Therefore, it is a challenge to study the asymptotic behavior
of the discrete Kuramoto model in the discrete case under several different network structures.

1.2 The discrete Kuremoto model with external drive
In this part, we introduce the discrete Kuremoto model with external drive in this paper.
Let Gn = 〈V (Gn), E(Gn)〉 be an undirected graph on n nodes, V (Gn) = [n] and |E(Gn)| = O(|V (Gn)|2) stand for

the sets of nodes and edges of Gn respectively, where | · | denotes the cardinality of a set.
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The discrete Kuramoto model with external drive on Gn is given by the following equations:
d

dt
uni(t) = ω +

1

n

∑
j:(i,j)∈E(Gn)

anij sin(unj − uni) + h sin(uni),

uni(0) = g(xi), i ∈ [n],

(1)

where uni is the phase of ith oscillator, un (t) = (un1 (t) , un2 (t) , · · ·unn (t)) is a step function on I. Here and below,
I denotes [0, 1], ω is the intrinsic frequency, n is the number of oscillators, anij stands for the n×n adjacency matrix
of the graph Gn. If Gn is a weighted graphs,

anij =

{
$nij , (i, j) ∈ E (Gn) ,

0, otherwise.

On the contrary,

anij =

{
1, (i, j) ∈ E (Gn) ,

0, otherwise,

h sin(uni) are external driving function, h is the strength of the external force driving h sin(uni), h > 0, g is a bounded
measurable function on I. The sum on the right-hand side of (1) models the nonlinear diffusion across edges of Gn.

1.3 The continuum limit of the discrete Kuromoto model
We are interested in the dynamical behavior of the discrete Kuramoto model oscillators with a large of oscillators. In
order to study the solution of the discrete Kuramoto model as n→∞, we will use its continuous limit.
LetW ∈ W0, a class of symmetric measurable functions,W represents the continuous counterparts of the adjacency

matrix anij of graphs {Gn} in the large n limit (cf.9). This function is called graph. After interpreting the right-hand
side of (1) as a Riemann sum and sending n→∞, the continuum limit of the discrete Kuromoto model is given by
the following equations:

∂

∂t
u (x, t) = ω +

∫
I

W (x, y) sin (u (y, t)− u (x, t)) dy + h sin (u (x, t)) ,

u (x, 0) = g (x) , x ∈ I,
(2)

where u (x, t) describes the evolution of the continuum of oscillators distributed over I, g ∈ L∞ (I), g(x) is a step
function. Throughout this paper, we use bold font to denote vector-valued functions, for example, u (t) = u (·, t) ∈
L∞ (I).

1.4 Motivations and problems
The expression of the classical Kuramoto model proposed by Yoshiki Kuramoto in 1975 is shown below

•
θi = ωi +

K

N

N∑
i=1

sin (θj − θi) , i = 1, · · · , N,

θi (0) = θi0,

where θi = θi (t) ∈ R is the phase of the ith oscillator, ωi is the natural frequency of oscillator i, K stands for
coupling strength, N is the number of oscillators. Because the Kuramoto model can properly analyze the behavior of
oscillators in complex systems, and at the same time it is convenient for researchers to carry out numerical calculation
and theoretical analysis, the Kuramoto model is widely used by researchers.
In 1985, Ermentrout first proposed the Kuramoto model with random frequencies that had a continuous limit as

the oscillator went to infinity10. In these literature11,12, the authors pointed out that the continuous limit is a very
useful tool for analyzing non-locally coupled dynamical systems.
In recent years, with the rise of complex network research, the Kuramoto model has been studied on complex

networks. It has been found that the network topology results have a significant impact on the dynamic behavior of
the Kuramoto model, see13,14. Medvedev derived the continuum limit in the form of the nonlinear heat equation and
rigorous justified that the solutions of the initial value problems for the nonlinear heat equation on discrete domains
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converge to the solution of the IVP for its continuum limit on deterministic and W -random graphs respectively. In15,
the author showed that the model has a family of q-twisted state solutions when the number of oscillators in the
network goes to infinity the Kuramoto model on SW graphs. In16, Medvedev showed that the solution of the IVP of
the continuous model is the limit of solutions of the IVPs for the discrete Kuramoto model on sparse random graphs.
Based on the above research background, we find that the research on the asymptotic behavior of the generalized

Kuramoto model on the complex networks is very rare. Considering that the real system in reality contains some
other influencing factors, in order to be closer to reality, we will consider the Kuramoto model with external drive
and study the asymptotic behavior of the discrete Kuramoto model with external drive on deterministic graphs,
W -random graphs and SW graphs.

1.5 Organization of paper
The organization of the paper is as follows. In the next section, we introduce some mathematical concepts, some
important theorems and conclusions involved in this paper. In Section 3, we study the asymptotic behavior of the
discrete Kuramoto model on deterministic graphs. The deterministic graphs are divided into two classes of convergent
graph sequences: simple graphs and weighted graphs. We prove the solutions of the initial value problems for the
discrete Kuramoto model converge to the solution of the IVP for its continuum limit on simple graphs and weighted
graphs respectively. For sequences of simple graphs converging to {0,1}-valued graphs, we find the rate of convergence
depends on the regularity of the boundary of support of the graph limits. In Section 4, we study the asymptotic
behavior of the discrete Kuramoto model on W -random graphs by random sequences. We prove convergence of
solutions of the discrete Kuramoto model onW -random graphs by random sequences and find the rate of convergence
depends on the the Central Limit Theorem (CLT) and holds for all graphs W . In Section 5, we study the asymptotic
behavior of the discrete Kuramoto model on SW graphs. We prove prove convergence of solutions of the discrete
Kuramoto model on SW graphs and find the rate of convergence depends on the the Central Limit Theorem (CLT)
and the auxiliary IVPs. In Section 6, we conclude with brief discussion.

2 PRELIMINARIES

In this section, we introduce some mathematical concepts, some important theorems and conclusions involved in this
paper.

Definition 2.1. Let uni(t) be the solutions of the IVP (1), u(x, t) be the solution of the IVP (2). If

uni(t)→ u(x, t), as n→ +∞,

uniformly for t ∈ [0, T ], T > 0. u(x, t) is called the asymptotic solution.

2.1 Graph limits
In this paper, the limit theory of graphs is used to provide strict mathematical proof for the continuous limit of the
discrete Kuramoto model. So next we review several notions and results concerning the theory of graph limits that
we will need in the remainder paper, we mainly follow17,9,18.
Let Gn = (V (Gn) , E (Gn)), n ∈ N be a sequence of dense graphs, that is, |E (Gn)| = O

(
|V (Gn)|2

)
. The

convergence of the graph sequence {Gn} is defined according to the homomorphism densities

t (F,Gn) =
hom (F,Gn)

|V (Gn)||V (F )| , (3)

where, F = (V (F ) , E (F )) is a simple graph (without loops and multiple edges is called simple) and hom(F,Gn)

denotes the number of homomorphisms (i.e., adjacency preserving maps V (F )→ V (Gn)). In other words, (3) is the
probability that a random map h: V (F )→ V (Gn) to be a homomorphism.

Definition 2.2. The sequence of graphs {Gn} is called convergent, if t (F,Gn) has a limit for every simple graph F .
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The fact proved that convergent graph sequences have a limit object, which can be expressed as measurable
functions W : I2 → I. Such functions are called graphs. The set of all graphs is denoted by W0.

Theorem 2.3. Let W ∈ W0, for every simple graph F , there is a sequence of graphs Gn satisfying

t (F,Gn)→ t (F,W ) =

∫
I|V (F )|

∏
(i,j)∈E(F )

W (xi, xj) dx.

The cut-norm is the key to describe the metric properties of graphs. For any graph W ∈W0

‖W‖1 = sup
S,T∈[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y) dxdy

∣∣∣∣∣∣
is called the cut-norm of W . We define the cut-distance between two graphs W and U by

δ1 (U,W ) = inf
φ

∥∥U −Wφ
∥∥

1
,

whereWφ (x, y) = W (φ (x) , φ (y)) and all invertible maps φ: [0, 1]→ [0, 1], such that φ and its inverse are measurable-
preserving. The infinum on the whole φ is used to keep the cut-distance between graphs unchanging in regard to
isomorphisms of the graph, at the same time, some other transformations that do not change the asymptotic nature
of the graph sequences. A sequence of graphs {Gn} is convergent if and only if it is Cauchy in the δ1 distance.

2.2 Knowledge and conclusions about random variables
Let X1, X2, · · ·Xn, · · · be a set of independent random variables, E (X) is the expectation of X, V ar [X] is the
variance of X.

Definition 2.4. (Convergence in distribution19) A sequence X1, X2, · · ·Xn, · · · of real-valued random variables is
said to converge in distribution, or converge weakly, or converge in law to a random variable X if

lim
n→∞

Fn (x) = F (x) ,

for every number x ∈ R at which F is continuous. Here Fn and F are the cumulative distribution functions of
random variables Xn and X respectively. Convergence in distribution may be denoted as Xn ⇒ X or Xn→dX. If X
is standard normal we can write Xn→dN (0, 1).

Definition 2.5. (Convergence in probability19) A sequence {Xn} of random variables convergence in probability
towards the random variable X if for all ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0.

Convergence in probability is denoted as Xn→PX. If random elements {Xn} on a separable metric space (S, d),
convergence in probability is defined similarly by

∀ε > 0, P (d (Xn, X) ≥ ε)→ 0.

Theorem 2.6. (Lyapunov Central Limit Theorem19) Suppose {X1, X2, · · ·} is a sequence of independent random

variables, each with finite expected value ui and variance σ2
i . Define S2

n =
n∑
i=1

σ2
i . If for some δ > 0, Lapunov’s

condition

lim
n→∞

1

S2+δ
n

n∑
i=1

E
[
|Xi − ui|2+δ

]
= 0,

is satisfied, then a sum of Xi−ui

Sn
converges in distribution to a standard normal random variable, as n→∞:

1

Sn

n∑
i=1

(Xi − ui)→dN (0, 1).

In practice it is usually easiest to check Lyapunov’s condition for δ = 1.
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2.3 The well-posedness of the IVP
To facilitate the study the relation between solutions of the discrete Kuramoto model and its continuous limit, we
need to show the well-posedness of the IVP for (2).

Theorem 2.7. Assume that W ∈ L∞
(
I2
)
and g ∈ L∞ (I). For any T > 0, then there has a unique solution of the

IVP for (2) u ∈ C1 (R;L∞ (I)) satisfies the initial condition u(0) = g (x).

Proof. The contraction mapping principle (see20) is used to prove Theorem 2.7. We notice that the IVP for (2) can
be rewritten as the following integral equation:

u = Ku, (4)

where

[Ku] (x, t) = g +

t∫
0

∫
I

W (x, y) sin (u (y, s)− u (x, s)) dy + h sin (u (x, s))

 ds.

Denote
τ =

1

2 (2 ‖W‖+ h)
> 0. (5)

Let Mg be a metric subspace of C (0, τ ;L∞ (I)) formed by the functions u. Then (4) is the fixed point equation for
the mapping K : Mg →Mg.
For any u,v ∈Mg, we have

‖Ku−Kv‖Mg
= max
t∈[0,τ ]

‖Ku−Kv‖L∞(I)

≤ max
t∈[0,τ ]

∥∥∥∥
t∫

0

(∫
I

|W (x, y)|| sin(u(y, s)− u(x, s))− sin(v(y, s)− v(x, s))|dy

+ h|u(x, s)− v(x, s)|dy
)
ds

∥∥∥∥
L∞(I)

≤ max
t∈[0,τ ]

∥∥∥∥
t∫

0

(∫
I

|W (x, y)||u(y, s)− u(x, s)− v(y, s) + v(x, s)|dy

+h|u(x, s)− v(x, s)|dy
)
ds

∥∥∥∥
L∞(I)

≤τ max
t∈[0,τ ]


∥∥∥∥∫
I

|W (x, y)||u(y, t)− v(y, t)|dy
∥∥∥∥
L∞(I)

+

∥∥∥∥∫
I

|W (x, y)||u(x, t)− v(x, t)|dy
∥∥∥∥
L∞(I)

+

∥∥∥∥h|u(x, t)− v(x, t)|
∥∥∥∥
L∞(I)

}

=τ max
t∈[0,τ ]


∥∥∥∥∫
I

|W (x, y)||u(y, t)− v(y, t)|dy
∥∥∥∥
L∞(I)

+ (‖W‖L∞(I2) + h)‖u(t)− v(t)‖L∞(I)

}
=τ max

t∈[0,τ ]
{‖W‖L∞(I2)‖u(t)− v(t)‖L∞(I)

+(‖W‖L∞(I2) + h)‖u(t)− v(t)‖L∞(I)}
=(2‖W‖L∞(I2) + h)τ max

t∈[0,τ ]
‖u(t)− v(t)‖L∞(I).

Thus, using (5), we have
‖Ku−Kv‖Mg ≤

1

2
‖u− v‖Mg.
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From the Banach contraction mapping principle, it is straightforward to show that the IVP for (2) has a unique
solution u ∈Mg ⊂ C (0, τ ;L∞ (I)). With u (τ) as the initial condition, the local solution is generalized to [0, 2τ ], and
by repeating this argument to [0, T ] for any T > 0, we can prove the existence and uniqueness of the solution of the
IVP for (2).

3 ASYMPTOTIC BEHAVIOR OF THE DISCRETE KURAMOTO MODEL ON
DETERMINISTIC GRAPHS

3.1 Simple graphs
Definition 3.1. Gn = 〈V (Gn) , E (Gn)〉 is called a simple graph with V (Gn) = [n] and

E (Gn) =
{

(i, j) ∈ [n]
2

: (Ini × Inj) ∩W+ 6= ∅
}
.

Assume that W : I2 → {0, 1} is a symmetric measurable function. We define the support of W as

W+ =
{

(x, y) ∈ I2 : W (x, y) 6= 0
}
,

and its boundary is given by ∂W+. Fix n ∈ N, divide I into n subintervals

In1 =

[
0,

1

n

)
, In2 =

[
1

n
,

2

n

)
, · · · , Inn =

[
n− 1

n
, 1

)
, (6)

For convenience, (2) can be rewritten as
∂

∂t
u (x, t) = ω +

∫
I

W (x, y) sin (u (y, t)− u (x, t)) dy + h sin (u (x, t)) ,

u (x, 0) = g (x) , x ∈ I.
(7)

On {Gn}, the corresponding discrete Kuramoto model of (7) is shown below:
d

dt
uni(t) = ω +

1

n

∑
j:(i,j)∈E(Gn)

sin(unj − uni) + h sin(uni),

uni(0) = g(xi), i ∈ [n].

(8)

In order to study the relationship between the solutions of discrete models (8) and the solution of the IVP for
continuous models (7). In this subsection, we assign g(xi) the average value of g(x) on Ini:

g(xi) = n

∫
Ini

g(x)dx. (9)

And we define a step-function un such that

un (x, t) = uni(t), x ∈ Ini.

Suppose that un(x, t) satisfies the following system of differential equations:
∂

∂t
un (x, t) = ω +

∫
I

Ŵn (x, y) sin (un (y, t)− un (x, t)) dy + h sin (un (x, t)) ,

un (x, 0) = gn (x) ,

(10)

where
gn (x) = g (xi) if x ∈ Ini, i ∈ [n] ,

and Ŵn(x, y) is the step function such that for (x, y) ∈ Ini × Inj , (i, j) ∈ [n]
2,

Ŵn (x, y) =

{
1, (Ini × Inj) ∩W+ 6= ∅,
0, otherwise.
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Theorem 3.2. Let u and un stand for the solutions of IVP (7) and (10) respectively. Use 2b = dimB∂W
+ (cf.21) to

represent the upper box-counting dimension of ∂W+ and assume that b ∈ [0.5, 1). For any ε > 0 and all sufficiently
large n, then we have the following relation:

‖u− un‖C(0,T ;L2(I)) ≤ C1n
−(1−b−ε), (11)

where constant C1 is independent of n.

Proof. Denote ξn (x, t) = un (x, t)− u (x, t). By subtracting (7) from (10), we have
∂ξn
∂t

=

∫
I

Ŵn(x, y) sin(un(y, t)− un(x, t))dy + h sin(un(x, t))

−
∫
I

W (x, y) sin(u(y, t)− u(x, t))dy − h sin(u(x, t))

=

∫
I

Ŵn(x, y)[sin(un(y, t)− un(x, t))− sin(u(y, t)− u(x, t))]dy

+

∫
I

(
Ŵn(x, y)−W (x, y)

)
sin(u(y, t)− u(x, t))dy

+ h[sin(un(x, t))− sin(u(x, t))].

(12)

Next, we multiply ξn(x, t) on both sides of (12) and integrate over I to obtain
1

2

∫
I

∂

∂t
ξn(x, t)2dx

=

∫
I2

Ŵn(x, y)[sin(un(y, t)− un(x, t))− sin(u(y, t)− u(x, t))]ξn(x, t)dxdy

+

∫
I2

(Ŵn(x, y)−W (x, y)) sin(u(y, t)− u(x, t))ξn(x, t)dxdy

+

∫
I

h[sin(un(x, t))− sin(u(x, t))]ξn(x, t)dx.

(13)

For the first term on the right-hand side of (13), we use ‖Ŵ‖L∞(I2) = 1, the triangle inequality, the Cauchy-Schwarz
inequality and continuity of sin(·) to obtain

|
∫
I2

Ŵn(x, y){sin(un(y, t)− un(x, t))− sin(u(y, t)− u(x, t))}ξn(x, t)dxdy|

≤
∫
I2

|(ξn(y, t)− ξn(x, t))ξn(x, t)|dxdy

=

∫
I2

|ξn(y, t)ξn(x, t)− [ξn(x, t)]
2|dxdy

≤
∫
I2

|ξn(y, t)ξn(x, t)|+ |ξn(x, t)|2dxdy

≤[

∫
I

|ξn(y, t)|2dy]
1
2 [

∫
I

|ξn(x, t)|2dx]
1
2 +

∫
I

|ξn(x, t)|2dx

=

∫
I

|ξ(·, t)|2dx+

∫
I

|ξ(·, t)|2dx

=2

∫
I

|ξ(·, t)|2dx = 2[(

∫
I

|ξ(·, t)|2dx)

1
2

]2 = 2‖ξn‖2L2[I].

(14)
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Using the Cauchy-Schwarz inequality and the bound on sin(·), |sin(·)| ≤ 1, we estimate the second term on the
right-hand side of (13)∣∣∣∣∫

I2

(
Ŵn(x, y)−W (x, y)

)
sin(u(y, t)− u(x, t))ξn(x, t)dxdy

∣∣∣∣
≤ ess sup

(x,y,t)∈I2×[0,T ]

|sin(u(y, t)− u(x, t))| ×
∣∣∣∣∫
I2

(Ŵn(x, y)−W (x, y))ξn(x, t)dxdy

∣∣∣∣
≤
[∫
I2

(Ŵn(x, y)−W (x, y))
2
dxdy

] 1
2

×
[∫
I

(ξn(x, t))
2
dx

] 1
2

≤‖W − Ŵn‖L2(I2)‖ξn‖L2(I).

(15)

Using continuity of sin(·), we estimate the third term on the right-hand side of (13)∣∣∣∣∫
I

h[sin(un(x, t))− sin(u(x, t))]ξn(x, t)dx

∣∣∣∣
≤h
∣∣∣∣∫
I

[un(x, t)− u(x, t)]ξn(x, t)dx

∣∣∣∣
=h

∣∣∣∣∫
I

[ξn(x, t)]2dx

∣∣∣∣ = h‖ξn‖2L2(I).

(16)

Using (14), (15) and (16), from (13) we have
d

dt
‖ξn‖2L2(I) ≤4‖ξn‖2L2(I) + 2‖W − Ŵn‖L2(I2)‖ξn‖L2(I) + h‖ξn‖2L2(I)

=(4 + h)‖ξn‖2L2(I) + 2‖W − Ŵn‖L2(I2)‖ξn‖L2(I).
(17)

For notational simplicity, let ε > 0 be arbitrary but fixed, denote

φε (t) =
√
‖ξn‖2L2(I) + ε,

(17) can be rewritten as
d

dt
φε(t)

2 ≤(4 + h)φε(t)
2 + 2‖W − Ŵn‖L2(I2)φε(t). (18)

Because φε(t) > 0 on [0, T ], from (18), we obtain
d

dt
φε (t) ≤ (4 + h)

2
φε (t) +

∥∥∥W − Ŵn

∥∥∥
L2(I2)

, t ∈ [0, T ] .

By Gronwall’s inequality, we have

sup
t∈[0,T ]

φε(t) ≤
(
φε(0) +

‖W − Ŵn‖L2(I2)

2 + h
2

)
exp{(2 +

h

2
)T}. (19)

Due to ε > 0 is arbitrary, from (19), we have

sup
t∈[0,T ]

‖ξn(t)‖L2(I) ≤
(
‖g − gn‖L2(I) +

‖W − Ŵn‖L2(I2)

2 + h
2

)
exp{(2 +

h

2
)T}. (20)

It remains to estimate ‖W − Ŵn‖L2(I2). We need to the following definitions: the set of discrete cells Ini× Inj which
covers the boundary of the support of W

J (n) =
{

(i, j) ∈ [n]
2

: (Ini × Inj) ∩ ∂W+ 6= ∅
}

and C (n) = |J (n)| .

According to one of a few isovalent definitions of the upper box-counting dimension of a subset of Rn, we have

2b = dimB∂W
+ = lim

δ→0

logNδ (∂W+)

− log δ
,
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where Nδ (∂W+) is the number of cells of a (δ × δ)-mesh that intersect ∂W+ (see21). Hence, for any ε > 0 and all
sufficiently large n, we obtain

C (n) ≤ n2(b+ε).

Because W and Ŵn coincide on all cells Ini × Inj for which (i, j) /∈ J (n), for any ε > 0 and all sufficiently large n,
we have

‖W − Ŵn‖2L2(I2) =

∫
I2

(W − Ŵn)
2
dxdy ≤ C(n)n−2 ≤ n−2(1−b−ε). (21)

Finally, we use the relation (9) to obtain

‖g − gn‖2L2(I) =O(n−1). (22)

Combing (20), (21) and (22), we obtain (11).

3.2 Weighted graphs
In this section, we study the Kuramoto model on convergent sequences of weighted graphs.
Assume that W : I2 → [−1, 1] is a symmetric measurable function. Let Pn = {Ini, i ∈ [n]} (see (6) and

Xn =

{
1

n
,

2

n
, · · · n

n

}
.

Let’s start with the description of the weighted graph sequences generated by a given graph on W that we will be
used in this subsection.
Define W/Pn is the complete graph on n nodes

W/Pn =
〈
[n] , [n]× [n] , W̄n

〉
,

such that each edge of W/Pn is supplied with the weight(
W̄n

)
ij

= n2

∫
Ii×Ij

W (x, y) dxdy.

In the rest of this subsection, we prove convergence of the discrete Kuramoto model on W/Pn to the continuum
Kuramoto model on the graph on W (cf. 7). In addition, we prove that the above problems correspond to the
discretizations of (7) using Galerkin method.
First of all, let

Hn = span {φ1, φ2, · · · , φn} ,
be a finite-dimensional subspace of L2 (I), here φn=χIni is the characteristic function of Ini =

[
(i− 1)n−1, in−1

)
.

Next, We construct the Galerkin approximate of the solution for (7) as shown below:

un (x, t) =

n∑
k=1

unk (t)φk (x) ∈ Hn. (23)

We replace u(x, t) in (7) with (23) and project the resultant equation on Hn to obtain the following IVP for the
unknown coefficients unk (t) , k ∈ [n] on W/Pn:

d

dt
uni (t) = ω +

1

n

n∑
j=1

(
W̄n

)
ij

sin (unj (t)− uni (t)) + h sin (uni) ,

uni (0) = gni, i ∈ [n] .

(24)

We notice that the Galerkin equation (24) can be rewritten as the following integral equation:
∂

∂t
un (x, t) = ω +

∫
I

Wn (x, y) sin (un (y, t)− un (x, t)) dy + h sin (un (x, t)) ,

un (x, 0) = gn (x) , x ∈ I,
(25)
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where Wn and gn are the step functions

Wn (x, y) =
(
W̄n

)
ij

for (x, y) ∈ Ini × Inj .

gn (x) = gni for x ∈ Ini.

Theorem 3.3. Let u and un be the solutions of (7) and (25) respectively. Assume W ∈ L∞
(
I2
)
and g ∈ L∞ (I).

Then we have the following relation:

‖u− un‖C(0,T ;L2(I)) → 0, as n→ +∞. (26)

Proof. Denote ξn (x, t) = un (x, t)− u (x, t). By subtracting (7) from (25), we have
∂ξn
∂t

=

∫
I

Wn(x, y) sin (un(y, t)− un(x, t))dy + h sin(un(x, t))

−
∫
I

W (x, y) sin(u(y, t)− u(x, t))dy − h sin(u(x, t))

=

∫
I

Wn(x, y) [sin(un(y, t)− un(x, t))− sin(u(y, t)− u(x, t))]dy

+

∫
I

(
Wn(x, y)−W (x, y)

)
sin(u(y, t)− u(x, t))dy

+ h[sin(un(x, t))− sin(u(x, t))].

(27)

Next, we multiply ξn(x, t) on both sides of (27) and integrate over I
1

2

∫
I

∂

∂t
ξn(x, t)2dx

=

∫
I2

Wn(x, y)[sin(un(y, t)− un(x, t))− sin(u(y, t)− u(x, t))]

× ξn(x, t)dxdy

+

∫
I2

(
Wn(x, y)−W (x, y)

)
sin(u(y, t)− u(x, t))ξn(x, t)dxdy

+

∫
I

h[sin(un(x, t))− sin(u(x, t))]ξn(x, t)dx.

(28)
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Using ‖W‖L∞(I2) = 1, the triangle inequality, the Cauchy-Schwarz inequality and continuity of sin(·), we estimate
the first term on the right-hand side of (28),∣∣∣∣

2∫
I

Wn(x, y)[sin(un(y, t)− un(x, t))− sin(u(y, t)− u(x, t))]× ξn(x, t)dxdy

∣∣∣∣
≤
∫
I2

|[un(y, t)− un(x, t)−u(y, t)+u(x, t)] ξn(x, t)|dxdy

≤
∫
I2

|[(un(y, t)− u(y, t)) + (un(x, t)− u(x, t))] ξn(x, t)|dxdy

≤
∫
I2

|(ξn(y, t)− ξn(x, t))ξn(x, t)|dxdy

=

∫
I2

|ξn(y, t)ξn(x, t)− [ξn(x, t)]
2|dxdy

≤
∫
I2

|ξn(y, t)ξn(x, t)|+ |ξn(x, t)|2dxdy

≤
[∫
I

|ξn(y, t)|2dy
] 1

2
[∫
I

|ξn(x, t)|2dx
] 1

2

+

∫
I

|ξn(x, t)|2dx

=

∫
I

|ξ(·, t)|2dx+

∫
I

|ξ(·, t)|2dx

=2

∫
I

|ξ(·, t)|2dx = 2[(

∫
I

|ξ(·, t)|2dx)

1
2

]2 = 2‖ξn‖2L2(I).

(29)

Using the Cauchy-Schwarz inequality and the bound on sin(·), |sin(·)| ≤ 1, we estimate the second term on the
right-hand side of (28),∣∣∣∣ ∫

I2

(Wn(x, y)−W (x, y)) sin(u(y, t)− u(x, t))ξn(x, t)dxdy

∣∣∣∣
≤ ess sup

(x,y,t)∈I2×[0,T ]

|sin(u(y, t)− u(x, t))| ×
∣∣∣∣∫
I2

(
Wn(x, y)−W (x, y)

)
ξn(x, t)dxdy

∣∣∣∣
≤
[∫
I2

(
Wn(x, y)−W (x, y)

)2

dxdy

] 1
2
[∫
I

(ξn(x, t))
2
dx

] 1
2

≤‖W −Wn‖L2(I2)‖ξn‖L2(I2).

(30)

Using continuity of sin(·), we estimate the third term on the right-hand side of (28)∣∣∣∣∫
I

h[sin(un(x, t))− sin(u(x, t))]ξn(x, t)dx

∣∣∣∣
≤h
∣∣∣∣∫
I

[un(x, t)− u(x, t)]ξn(x, t)dx

∣∣∣∣
=h

∣∣∣∣∫
I

(ξn(x, t))
2
dx

∣∣∣∣
=h‖ξn‖2L2(I).

(31)
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Combining (29), (30) and (31), we obtain
d

dt
‖ξn‖2L2(I) ≤4‖ξn‖2L2(I) + 2‖W −Wn‖L2(I2)‖ξn‖L2(I) + h‖ξn‖2L2(I)

=(4 + h)‖ξn‖2L2(I) + 2‖W −Wn‖L2(I2)‖ξn‖L2(I).
(32)

For the sake of national simplicity, we set

φε (t) =
√
‖ξn‖2L2(I) + ε,

where ε > 0 is arbitrary but fixed.
By (32), we have

d

dt
φε(t)

2 ≤(4 + h)φε(t)
2 + 2‖W −Wn‖L2(I2)φε(t). (33)

Because φε(t) is positive [0, T ], from (33), we obtain
d

dt
φε (t) ≤ (4 + h)

2
φε (t) + ‖W −Wn‖L2(I2), t ∈ [0, T ] .

We now use Gronwall’s inequality to have

sup
t∈[0,T ]

φε(t) ≤
(
φε(0) +

‖W −Wn‖L2(I2)

2 + h
2

)
exp{(2 +

h

2
)T}. (34)

Due to ε > 0 is arbitrary, from (34), we get

sup
t∈[0,T ]

‖ξn(t)‖L2(I) ≤
(
‖g − gn‖L2(I) +

C2‖W −Wn‖L2(I2)

2 + h
2

)
exp{(2 +

h

2
)T}. (35)

Note that
Wn →W and gn → g, as n→∞,

almost everywhere on I2 and I respectively. Hence, by the dominated convergence theorem, we have

‖W −Wn‖L2(I2) → 0 as n→∞.

The statement of the theorem follows from (35). The proof is completed.

4 ASYMPTOTIC BEHAVIOR OF THE DISCRETE KURAMOTO MODEL ON W-RANDOM
GRAPHS BY RANDOM SEQUENCES

Definition 4.1. (W−random graph) Denote X = (x1, x2, x3 . . .) and Xn = (x1, x2, . . . , xn), where xi, i ∈ N are
independent identically distributed (IID) random variables(RVs). RV x1 has uniform on I = [0, 1] distribution, that
is L (x1) = U (I). Let W ∈ W0 be a class of symmetric functions on I2 with values in I. Define Gn = 〈[n]), E (Gn)〉
such that for each (i, j) ∈ [n]

2

P {(i, j) ∈ E (Gn)} =

{
W (xi, xj) , i 6= j,

0, otherwise,

where P {·} stands for the probability of an event. Graph Gn is called a W−random graph generated by the random
sequence Xn and denoted by Gn = G (Xn,W ).

For convenience, (2) can be rewritten as
∂

∂t
u (x, t) = ω +

∫
I

W (x, y) sin (u (y, t)− u (x, t)) dy + h sin (u (x, t)) ,

u (x, 0) = g (x) , x ∈ I.
(36)

On {Gn}, the corresponding discrete Kuramoto model of (36) is shown below:
d

dt
uni(t) = ω +

1

n

∑
j:(i,j)∈E(Gn)

sin(unj − uni) + h sin(uni),

uni(0) = g(xi), i ∈ [n].

(37)
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Define the projection of the solution for (36) u(x, t) onto Xn by

PXnu (x, t) = (u (x1, t) , u (x2, t) , · · · , u (xn, t)) .

Both un (t) and PXn
u (x, t) are defined on the discrete set Xn. For such functions, we will use the weighted Euclidean

inner product

(u, v)n =
1

n

n∑
i=1

uivi,

where u = (u1, u2, · · ·un)T , v = (v1, v2, · · · vn)T , and the corresponding norm ‖u‖2,n =
√

(u, u)n. We are going to use
‖ · ‖2,n to figure out the relationship between the solutions of (1) and (2) in this and the next section.

Theorem 4.2. Let T > 0 and assume that the solution of the IVP for (36) u(x, t) satisfies the following inequality

min
t∈[0,T ]

∫
I


∫
I

W (x, y) sin (u(y, t)− u(x, y))
2
dy −

∫
I

W (x, y) sin(u(y, t)− u(x, t))dy

2
 dx ≥ C1, (38)

for some constant C1 > 0. Then the solutions of the IVPs for the discrete and continuum models (37) and (36) have
the following relation

lim
n→∞

P

{
n

1
2 sup
t∈[0,T ]

‖un(t)−PXn
u (x, t)‖2,n ≤ C

}
= 1,

for some constant C > 0.

Because u ∈ C (0, T ;L∞ (I)), ‖W‖L∞(I2) = 1 and continuity of sin(·), the use of min in (38) can be proved. To
prove the theorem 4.2, we need to apply the Lyapunov Central Limit Theorem (cf.19). The following lemma will be
useful.

Lemma 4.3. Let f ∈ L∞
(
I2
)
. Define RVs {ςij} , (i, j) ∈ N2, such that L (ςij |X ) = Bin (W (xi, xj)), here L (·)

denotes the probability distribution of a RV, Bin (W (xi, xj)) is the binomial distribution with parameter W (xi, xj).
In particular,

P (ςij = 1 |X ) = W (xi, xj) ,P (ςij = 0 |X ) = 1−W (xi, xj) .

Denote
ηij = ςijf (xi, xj) , (i, j) ∈ N2,

zni =
1

n

n∑
j=1

ηij −
∫
I

f (xi, y)W (xi, y) dy, and Sn =

n∑
i=1

z2
ni.

We assume

σ2 =

∫
I2

f(x, y)
2
W (x, y)dxdy −

∫
I

∫
I

f (x, y)W (x, y) dy

2

dx > 0.

Then
Sn − σ2

n−1/2
√

5σ4 + O (n−1)
→d N (0, 1) ,

where →d stands for convergence in distribution, and N (0, 1) is the standard normal distribution.

Proof. {ηij} are IID RVs, and

u (xi) = E (ηij |xi ) =

∫
I

f (xi, y)W (xi, y) dy.

Thus,
u =Eηij = EE(ηij |xi) =

∫
I

∫
I

f(x, y)W (x, y)dxdy.
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Vηij =EE((ηij − u(xi))
2|xi)

=EE((η2
ij − 2ηiju(xi) + u(xi)

2
)|xi)

=EE((η2
ij − 2ηijE(ηij |xi) + E(ηij |xi)2

)|xi)
=E[E(η2

ij |xi)− 2E(ηij |xi)E(ηij |xi) + E(ηij |xi)2
]

=EE(η2
ij |xi)− E[E(ηij |xi)2]

=

∫
I2

f(x, y)
2
W (x, y)dxdy −

∫
I

(∫
I

f(x, y)W (x, y)dy

)2

dx = σ2.

Let yni =
√
nzni. Then we will apply the Lyapunov CLT to

n∑
i=1

y2
ni. So let’s do the next calculation,

Ey2
ni =

1

n
EE
( ∑

1≤j,k≤n

(ηij − u(xi))(ηik − u(xi))|xi
)

=
2

n
EE
( ∑

1≤j<k≤n

(ηij − u(xi))(ηik − u(xi))|xi
)

+
1

n
EE
( ∑

1≤j≤n

(ηij − u(xi))
2|xi

)
=σ2.

Because when j 6= k, ηij − u (xi) and ηik − u (xi) are independent of each other, and E ( (ηij − u (xi))|xi) = 0.
Once again, we calculate

Ey4
ni =

1

n2
EE
( ∑

1≤j1,j2,j3,j4≤n

(ηij1 − u(xi)) · · · (ηij4 − u(xi))|xi
)

=
6

n2
EE
( ∑

1≤j<k≤n

(ηij − u(xi))
2
(ηik − u(xi))

2|xi
)

+
1

n2
E
( ∑

1≤j≤n

E((ηij − u(xi))|xi)4

)
=

6n(n− 1)

n2
σ4 + O(n−1)

≤6σ4 + O(n−1).

Ey6
ni =

1

n3
EE

 ∑
1≤j1,j2,j3,j4,j5,j6≤n

(ηij1 − u (xi)) · · · (ηij6 − u (xi)) |xi


=

(
6

2

)(
4

2

)
1

n3
E

 ∑
1≤j<k<l≤n

E (ηij − u(xi) |xi )
2
E(ηik − u(xi) |xi )2

× E(ηil − u(xi) |xi )2
)

+ O
(
n−1

)
=

90n (n− 1) (n− 2)

n3
σ6 + O

(
n−1

)
≤90σ6+O

(
n−1

)
.

For n ∈ N, let

ζni =
y2
ni − Ey2

ni√
nV ar (y2

ni)
=

y2
ni − σ2

n
1
2

√
5σ4 + O (n−1)

, i ∈ [n] .

Thus, ζni, i ∈ [n] are IID RVs. Further, Eζni = 0, V

(
n∑
i=1

ζni

)
= 1.

Now let’s verify the Lyapunov conditions,

n∑
i=1

E|ζni|3 ≤

n∑
i=1

E
(
y6
ni + 3y4

niσ
2 + 3y2

niσ
4 + σ6

)
n

3
2 (5σ4 + O (n−1))

= O
(
n
−1
2

)
→ 0 as n→ +∞.

Thus by the CLT, we come to the conclusion that
n∑
i=1

(
y2
ni − σ2

)
√
n (5σ4 + O (n−1))

=

n−1
n∑
i=1

y2
ni − σ2

n
−1
2

√
5σ4 + O (n−1)

→dN (0, 1) as n→ +∞.
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that is,
Sn − σ2

n
−1
2

√
5σ4 + O (n−1)

→d N (0, 1) .

This completes the proof.

In order to prove the Theorem 4.2, we need to extend Lemma 4.3.

Corollary 4.4. Suppose that f in Lemma 4.3 also depends on t ∈ [0, T ], and f ∈ C
(
0, T ;L∞

(
I2
))
, f(t) = f(·, t).

All variables defined in terms of f in Lemma 4.3 are related to t. In addition, preserve the notation of the Lemma
4.3, we assume that

min
t∈[0,T ]

σ2 (t) ≥ C1 > 0.

Then for every t ∈ [0, T ], we have the following relation:

Sn (t)− σ2 (t)

n
−1
2

√
5σ4 (t) + O (n−1)

→d N (0, 1) as n→ +∞.

Proof. Because f ∈ C
(
0, T ;L∞

(
I2
))

and

σ
2

(t) =

∫
I

∫
I

f(x, y, t)
2
W (x, y) dxdy −

∫
I

∫
I

f (x, y, t)W (x, y) dy

2

dx,

we have
0 < C1 ≤ σ2 (t) ≤ 2 ‖f‖2C(0,T ;L∞(I2)) .

We show that t-dependent moments of y2
ni (t) are bounded uniformly in t ∈ [0, T ]. Therefore, according to the proof

process of the Lemma 4.3, the corollary can be proved to be true for every t ∈ [0, T ].

Now we are able to prove the Theorem 4.2 of this section.
Proof of Theorem 4.2. Denote ξni (t) = u (xi, t)− uni (t), i ∈ [n] and let

ξn (t) = (ξn1 (t) , ξn2 (t) , · · · ξnn (t)) .

At x = xi, we have

d

dt
ξni(t) =zni(t) +

1

n

n∑
j=1

ςij [sin(u(xj , t)− u(xi, t))− sin(unj(t)− uni(t))]

+ h[sin(u(xi, t))− sin(uni(t))],

(39)

where

zni (t) =

∫
I

W (xi, y) sin (u (y, t)− u (xi, t)) dy −
1

n

n∑
j=1

ςij sin (u (xj , t)− u (xi, t)),

and ςij are defined in the Lemma 4.3.
Next, we multiply 1

nξni on both sides of (39) and sum over i to obtain

1

2

d

dt
‖ξn(t)‖22,n = (zn(t), ξn(t))n +

h

n

n∑
i=1

[sin(u(xi, t))− sin(uni(t))]ξni

+
1

n2

n∑
i,j=1

ςij [sin(u(xj , t)− u(xi, t)) − sin(unj(t)− uni(t))] ξni,
(40)

where zn = (zn1, zn2, · · · , znn).
We use the Cauchy-Schwarz inequality to estimate the first term on the right-hand side of (40) as follows:

|(zn, ξn)n| ≤ ‖zn‖2,n‖ξn‖2,n ≤
1

2

(
‖zn‖22,n + ‖ξn‖22,n

)
. (41)
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By using |ςij | ≤ 1, the Cauchy-Schwarz inequality, the triangle inequality and the bound on sin(·), |sin(·)| ≤ 1, we
estimate the second term on the right-hand side of (40) as follows:∣∣∣∣∣ 1

n2

n∑
i,j=1

ςij [sin (u (xj , t)− u (xi, t))− sin (unj (t)− uni (t))] ξni

∣∣∣∣∣
≤ 1

n2

n∑
i,j=1

|u (xj , t)− u (xi, t)− unj (t) + uni (t)| |ξni (t)|

=
1

n2

n∑
i,j=1

|ξnj (t)− ξni (t)| |ξni (t)|

≤ 1

n2

n∑
i 6=j

(|ξnj (t)|+ |ξni (t)|) |ξni (t)|

≤2 ‖ξn (t)‖22,n .

(42)

We use the Cauchy-Schwarz inequality and continuity of sin(·) to estimate the third term on the right-hand side of
(40) as follows:∣∣∣∣∣hn

n∑
i=1

[sin (u (xi, t))− sinuni (t)]ξni

∣∣∣∣∣ ≤hn
n∑
i=1

|u (xi, t)− uni (t)| |ξni| =
h

n

n∑
i=1

|ξni|2 = h ‖ξn‖22,n. (43)

Combining (41), (42) and (43), we obtain
d

dt
‖ξ‖22,n ≤ (5 + 2h) ‖ξ‖22,n + ‖zn‖22,n .

We now use Gronwall’s inequality to obtain

sup
t∈[0,T ]

‖ξn‖22.n ≤
sup
t∈[0,T ]

‖zn (t)‖22,n

5 + 2h
exp {(5 + 2h)T} .

To estimate the bound sup
t∈[0,T ]

‖ξn (t)‖22,n, we need to estimate the bound sup
t∈[0,T ]

‖zn (t)‖22,n. Let

f (x, y, t) = sin (u (y, t)− u (x, t)) .

We use u ∈ C (0, T ;L∞ (I)) and the triangle inequality to have the following relation:

‖f‖C(0,T ;L∞(I2)) ≤ max
t∈[0,T ]

ess sup
(x,y)∈I2

|u (y, t)− u (x, t)| ≤ 2‖u‖C(0,T ;L∞(I)).

This implies that
C1 ≤ σ2 (t) ≤ 4 ‖u‖2C(0,T ;L∞(I))

∆
= C2.

By using Corollary 4.4, we have
n ‖zn (t)‖22,n − σ2 (t)

n
−1
2

√
5σ4 (t) + O (n−1)

→d N (0, 1) .

As n→∞, we have
P
(∣∣∣n ‖zn (t)‖22,n − σ

2 (t)
∣∣∣ > 1

)
=P


∣∣∣n∥∥∥zn (t)

2
2,n

∥∥∥− σ2 (t)
∣∣∣

n
−1
2

√
5σ4 (t) + O (n−1)

>
n

1
2√

5σ4 (t) + O (n−1)


≤P

(∣∣∣∣∣ n ‖zn (t)‖22,n − σ2 (t)

n
−1
2

√
5σ4 (t) + O (n−1)

∣∣∣∣∣ > n
1
2√

5C2
2 + O (n−1)

)

≤P

(∣∣∣∣∣ n ‖zn (t)‖22,n − σ2 (t)

n
−1
2

√
5σ4 (t) + O (n−1)

∣∣∣∣∣ > n
1
2

C2

)
→ 0.

(44)
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Convergence in (44) is uniform for t ∈ [0, T ]. Thus, ‖zn (t)‖22,n tends to zero in probability uniformly in t. As n→∞,

P
(
‖zn (t)‖22,n > (C2 + 1)n−1

)
≤ P

(∣∣∣n ‖zn (t)‖22,n − σ
2 (t)

∣∣∣ > 1
)
→ 0.

uniformly for t ∈ [0, T ]. For arbitrary ε > 0, some N ∈ N, we have

P

(
sup
t∈[0,T ]

‖zn (t)‖22,n > C3n
−1

)
< ε.

where C3 := C2 + 1. This completes the proof.

5 ASYMPTOTIC BEHAVIOR OF THE DISCRETE KURAMOTO MODEL ON
SMALL-WORLD GRAPHS

In this section, we consider the Kuramoto model on SW graphs. Because complex systems in real life are not regular
and symmetry, neither the regular network nor the random network mentioned above can be used to simulate the
complex systems in the real world. In 1998, SW graphs proposed by Watts and Strogatz, interpolate between graphs
with regular local connections and completely random graphs, they exhibit the combination of properties that are
characteristic to both regular and random graphs, it is used to abstract and describe various complex networks in
real life. such as social networks, etc.

Definition 5.1. (SW graph) Let

Xn =

{
0,

1

n
,

2

n
, · · · , n− 1

n

}
,

and

W (x, y) =

{
1, d (x, y) ≤ r,
0, otherwise,

where d (x, y) = min {|x− y| , 1− |x− y|}, and parameter r ∈ (0, 1) is fixed. Next, define

Wp (x, y) = (1− p)W (x, y) + p (1−W (x, y)) , p ∈ [0, 0.5] .

With the above definitions, Gn,p = G (Wp, Xn) is called a SW graph.

Replacing W by Wp in (2) yields the continuum Kuramoto model on SW graphs as follows:
∂

∂t
u (x, t) = ω +

∫
I

Wp (x, y) sin (u (y, t)− u (x, t)) dy + h sin (u (x, t)) ,

u (x, 0) = g (x) , x ∈ I.
(45)

A discrete counterpart of (45) on Gn,p is given by
d

dt
uni (t) = ω +

1

n

∑
(i,j)∈E(Gn,p)

sin (unj − uni) + h sin (uni(t)) ,

uni (0) = g (xi) , i ∈ [n] .

(46)

We define a step-function un : I × R→ R as follows

un (x, t) = uni (t) , x ∈
[
(i− 1)n−1, in−1

]
, i ∈ [n] , t ∈ R,

where un (t) = (un1 (t) , un2 (t) , · · ·unn (t)) is the solution of the IVP (46).

Theorem 5.2. Let Wp ∈ W0 is almost everywhere continuous on I2, and g ∈ L∞ (I). Assume that the solution
of the IVP (46) u (x, t) satisfies the following inequality

min
t∈[0,T ]

∫
I2

sin (u (y, t)− u (x, t))
2
Wp (x, y) (1−Wp (x, y)) dxdy > 0, (47)

for some T > 0. Then as n→∞ we have

‖un − u‖C(0,T ;L2(I))→P 0. (48)
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The convergence in (48) is in probability.

Because u ∈ C (R, L∞ (I)) and Wp is bounded, the integral in 46 denotes a continuous function of t. Hence, the
use min in 47 can be proved. In order to prove Theorem 5.2, we need to borrow some of auxiliary results below. The
first result is similar to Lemma 4.3 of the previous section.

Lemma 5.3. Let {Wnij} be a real array and {fnij} be a bounded real array, these two arrays are denoted for
n ∈ N and i, j ∈ [n]. Suppose {ξnij}, n ∈ N, (i, j) ∈ [n]2 is independent binomial RVs L(ξnij) = Bin(Wnij) with
parameter 0 ≤Wnij ≤ 1. Denote

σ2
ni = n−1

n∑
j=1

f2
nijWnij(1−Wnij), i ∈ [n], σ2

n = n−1
n∑
i=1

σ2
ni,

lim
n→∞

inf σ2
n > 0, ηnij = ξnijfnij ,(i, j) ∈ [n]

2
,

zni =
1

n

n∑
j=1

(ηnij − fnijWnij), Sn =

n∑
i=1

z2
ni.

Then
Sn − σn2

n
−1
2

√
5σn4 + O(n−1)

→dN (0, 1) as n→ +∞.

Proof. According to the definition of the independent RVs {ηnij}, n ∈ N, (i, j) ∈ [n]2, we have

Eηknij = fknijWnij , k ∈ N.

Hence, for yni =
√
nzni, i ∈ [n], we have

Eyni =E
(√
nzni

)
= E

(
√
n · 1

n

n∑
j=1

(ηnij − fnijWnij)

)

=

√
n

n
E

(
n∑
j=1

(ηnij − fnijWnij)

)
=

√
n

n

n∑
j=1

E (ηnij − fnijWnij)

=

√
n

n

n∑
j=1

[E (ηnij)− fnijWnij ] =

√
n

n

n∑
j=1

(fnijWnij − fnijWnij) = 0.

Then we will apply the Lyapunov CLT to
n∑
i=1

y2
ni. So let’s do the next calculation,

Ey2
ni = E(nz2

ni) = E
[
n

(
1

n

n∑
j=1

ηnij − fnijWnij

)2]

=E
[

1

n

( n∑
j=1

ηnij − nfnijWnij

)2]
=n−1E

( ∑
1≤j,k≤n

(ηnij − fnijWnij)(ηnik − fnikWnik)

)
=n−1E

( ∑
1≤j≤n

(ηnij − fnijWnij)
2

)
+ 2n−1E

( ∑
1≤j<k≤n

(ηnij − fnijWnij)(ηnik − fnikWnik)

)
=σ2

ni + 2n−1
∑

1≤j<k≤n

E(ηnij − fnijWnij)E(ηnik − fnikWnik)

=σ2
ni,
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and

σ2
ni =n−1E

( ∑
1≤j≤n

(
ηnij − fnijWnij

)2)
=n−1

∑
1≤j≤n

E(ηnij − fnijWnij)
2

=n−1
∑

1≤j≤n

E
(
η2
nij − 2ηnijfnijWnij + fnij

2Wnij
2
)

=n−1
∑

1≤j≤n

[
E
(
η2
nij

)
− 2E

(
ηnijfnijWnij

)
+ E

(
fnij

2Wnij
2
)]

=n−1
∑

1≤j≤n

[
E
(
η2
nij

)
− E

(
fnij

2Wnij
2
)]

=n−1
∑

1≤j≤n

E
(
η2
nij − fnij

2Wnij
2
)

=n−1
∑

1≤j≤n

(
fnij

2Wnij − fnij2Wnij
2
)

=n−1
∑

1≤j≤n

fnij
2Wnij (1−Wnij).

Once again, we calculate

Ey4
ni =n−2E

( ∑
1≤j1,j2,j3,j4≤n

(ηnij1 − fnij1Wnij1)· · · (ηnij4 − fnij4Wnij4)

)
=6n−2

∑
1≤j<k≤n

E(ηnij − fnijWnij)
2E(ηnik − fnikWnik)

2
+ n−2

∑
1≤j≤n

E(ηnij − fnijWnij)
4

=
6n(n− 1)

n2
σ4
ni + O(n−1)

≤6σ4
ni + O(n−1).

and

Ey6
ni =n−3E

( ∑
1≤j1,j2,j3,j4,j5,j6≤n

(ηnij1 − fnij1Wnij1)· · · (ηnij6 − fnij6Wnij6)

)

=(
6

2
)(

4

2
)n−2

∑
1≤j<k<l≤n

E(ηnij − fnijWnij)
2 × E(ηnik − fnikWnik)2E(ηnil − fnilWnil)

2 + O(n−1)

=
90n(n− 1)(n− 2)

n3
σ6
ni + O(n−1)

≤90σ6
ni + O(n−1).

For n ∈ N, let

ζni =
y2
ni − Ey2

ni√
nV ar (y2

ni)
=

y2
ni − σni2

n
1
2

√
5σ4

ni + O (n−1)
, i ∈ [n] .

Consider
ζn1, ζn2, · · · , ζnn.

Thus ζni, i ∈ [n] are IID RVs. Further, Eζni = 0, V

(
n∑
i=1

ζni

)
= 1.

Now let’s verify the Lyapunov conditions,

n∑
i=1

E|ζni|3 ≤

n∑
i=1

E
(
y6
ni + 3y4

niσni
2 + 3y2

niσni
4 + σni

6
)

n
3
2 (5σni4 + O (n−1))

= O
(
n
−1
2

)
→ 0 as n→ +∞.
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Thus by the CLT, we come to the conclusion that, as n→∞
n∑
i=1

(
y2
ni − σni2

)
√
n (5σn4 + O (n−1))

=

n−1
n∑
i=1

y2
ni − σn2

n
−1
2

√
5σn4 + O (n−1)

→dN (0, 1) ,

that is,
Sn − σn2

n
−1
2

√
5σn4 + O (n−1)

→dN (0, 1) .

This completes the proof.

In order to prove the Theorem 5.2, we need to extend Lemma 5.3.

Corollary 5.4. Suppose fnij in Lemma 5.3 depend on real parameter t ∈ [0, T ] for some T and the functions
fnij (t), n ∈ N, i, j ∈ [n], are uniformly bounded for t ∈ [0, T ]. We add t-dependence to all variables defined using
fnij (t), keeping the notation of Lemma 5.3 and assume that

lim
n→∞

inf σ2
n (t) = lim

n→∞
inf n−2

n∑
i,j=1

f2
nij (t)Wnij (1−Wnij) ≥ C1 > 0, (49)

for every t ∈ [0, T ].
Then for every t ∈ [0, T ], we have the following relation:

Sn (t)− σn2 (t)

n
−1
2

√
5σn4 (t) + O (n−1)

→dN (0, 1) as n→∞.

The proof of Theorem 5.2 in addition to the CLT used above, we need to introduce an auxiliary IVP for the
Kuramoto model on a weighted graph G̃n = H (W,Xn). The latter is a complete graph with the node set V

(
G̃n

)
= [n].

Each edge of G̃n is supplied with the weight

Wnij = W (xni, xnj) , (i, j) ∈ [n]
2
, i 6= j.

The IVP for the discrete Kuramoto model on the weighted graph G̃n
d

dt
vni(t) = ω +

1

n

∑
j:(i,j)∈E(G̃n)

Wnij sin (vnj (t)− vni (t)) + h sin (vni(t)) ,

vni(0) = g (xi) , i ∈ [n]

(50)

Let vn (t) = (vn1 (t) , vn2 (t) , · · · , vnn (t)) be the solution of the IVP 50. Define a function vn (x, t) on I × R

vn (x, t) = vn (t) , t ∈ R, x ∈ Ini, i ∈ [n].

Next, denote a step-function Wn on I2

Wn (x, y) = Wnij , (x, y) ∈ Ini × Inj , i, j ∈ [n].

Then by construction vn (x, t) satisfies the following IVP
∂

∂t
vn (x, t) = ω +

∫
I

Wn (x, y) sin (vn (y, t)− vn (x, t)) dy + h sin (vn (x, t)) ,

vn (x, 0) = g (xni) , x ∈ Ini, i ∈ [n] .

(51)

Theorem 3.3 shows that for large n, vn (x, t) is approximately the solution of IVP 45. Therefore, we have the lemma
shown below.

Lemma 5.5. Assume W ∈ L∞
(
I2
)
is almost everywhere continuous on I2, and g ∈ L∞ (I). Then for T > 0 is

arbitrary,
‖u− vn‖C(0,T ;L2(I)) → 0 as n→∞.

We need to use Lemma 5.5 to show the following result.
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Lemma 5.6. Assume W ∈ W0 is continuous almost everywhere on I2, and g ∈ L∞ (I). Let u (x, t) and vn (x, t)

be the solutions of the IVPs 45 and 51 respectively, and let

σ2 (t) =

∫
I2

sin (u (y, t)− u (x, t))
2
Wp (x, y) (1−Wp (x, y)) dxdy,

σ2
n (t) =

∫
I2

sin (vn (y, t)− vn (x, t))
2
Wn (x, y) (1−Wn (x, y)) dxdy.

Then
sup
t∈[0,T ]

∣∣σ2
n (t)− σ2 (t)

∣∣ ≤ C2

[
‖vn − u‖C(0,T ;L2(I)) + ‖Wn −Wp‖L2(I2)

]
,

for some C2 > 0. In particular, σ2
n → σ2 uniformly in t ∈ [0, T ].

Proof. The proof is divided into three steps.
Step 1. We now use triangle inequality, continuity of sin(·) and the bound on sin(·), |sin(·)| ≤ 1 to obtain that for

any t ∈ [0, T ],∣∣∣∣∫
I2

sin (vn(y, t)− vn(x, t))
2 − sin (u(y, t)− u(x, t))

2
dxdy

∣∣∣∣
≤

∣∣∣∣∣∣
∫
I2

[sin(vn(y, t)− vn(x, t))− sin(u(y, t)− u(x, t))] ×[sin(vn(y, t)− vn(x, t)) + sin(u(y, t)− u(x, t))]dxdy

∣∣∣∣
≤2

∣∣∣∣∫
I2

[sin(vn(y, t)− vn(x, t))− sin(u(y, t)− u(x, t))]dxdy

∣∣∣∣
≤2

∣∣∣∣∫
I2

[vn(y, t)− vn(x, t)− u(y, t) + u(x, t)]dxdy

∣∣∣∣
≤2

∫
I2

|vn(y, t)− u(y, t)|+ |vn(x, t)− u(x, t)|dxdy

≤4‖vn − u‖C(0,T ;L2(I)) → 0, as n→∞.
Thus,

max
t∈[0,T ]

∣∣∣∣∣∣
∫
I2

sin (vn (y, t)− vn (x, t))
2
dxdy

∣∣∣∣∣∣ ≤ C3, n ∈ N, (52)

for some C3 independent of n.
Step 2. Denote q (x) = x (1− x). For x, y ∈ [0, 1], |q (x)− q (y)| ≤ |x− y|. Hence,

|q (x)− q (y)| ≤ |Wp −Wn| . (53)

Step 3. Finally, we estimate
∣∣σ2
n (t)− σ2 (t)

∣∣. For any t ∈ [0, T ], we have∣∣∣∣∫
I2

sin (vn(y, t)− vn(x, t))
2
q(Wn(x, y))dxdy−

∫
I2

sin (u(y, t)− u(x, t))
2
q(Wp(x, y))dxdy

∣∣∣∣
≤
∣∣∣∣∫
I2

sin (vn(y, t)− vn(x, t))
2
[q(Wn(x, y))− q(Wp(x, y))]dxdy

∣∣∣∣
+

∣∣∣∣∫
I2

[sin (vn(y, t)− vn(x, t))
2 − sin (u(y, t)− u(x, t))

2
]× q(Wp(x, y))dxdy

∣∣∣∣.
(54)

We now use the Cauchy-Schwarz inequality, |q (Wp)| ≤ 1, 52 and 53 from 54 to obtain

sup
t∈[0,T ]

|σ2
n(t)− σ2(t)| ≤ C2‖Wp −Wn‖L2(I2) + 4‖vn − u‖C(0,T ;L2(I)). (55)
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As n→∞, Wn → Wp at every point of continuity Wp, that is almost continuous everywhere on I2. So we have the
following relationship by the the dominated convergence theorem,

‖Wp −Wn‖L2(I2) → 0 as n→ +∞. (56)

We combine 55, 56 with Lemma 5.5 to prove the Lemma 5.6.

Proof of Theorem 5.2. Denote ςni (t) = uni (t)− vni (t), i ∈ [n], and

ςn (t) = (ςn1 (t) , ςn2 (t) , · · · , ςnn (t)) .

By subtracting Equation i in 50 from the corresponding equation in 46, we obtain

d

dt
ςni =

1

n

(
n∑
j=1

ξnij sin(unj − uni)−
n∑
j=1

Wnij sin(vnj − vni)

)
+ h[sin(uni)− sin(vni)]

=
1

n

n∑
j=1

ξnij [sin(unj − uni)− sin(vnj − vni)] + zni + h[sin(uni)− sin(vni)],

(57)

where zni = 1
n

n∑
j=1

ξnij sin(vnj − vni)− 1
n

n∑
j=1

Wnij sin(vnj − vni).

We multiply n−1ςni on both sides of 57 and sum it over i to obtain

1

2

d

dt
‖ςn‖22,n =

1

n2

n∑
i,j=1

ξnij [sin(unj − uni)− sin(vnj − vni)]ςni

+ (zn, ςn)n +
h

n

n∑
i=1

[sin(uni)− sin(vni)]ςni.

(58)

We use |ξnij | ≤ 1, the Cauchy-Schwarz inequality, continuity of sin(·) and the triangle inequality to estimate the first
term on the right-hand side of (58) as follows:∣∣∣∣ 1

n2

n∑
i,j=1

ξnij [sin(unj − uni)− sin(vnj − vni)]ςni
∣∣∣∣

=
1

n2

n∑
i,j=1

|ξnij ||unj − uni − vnj + vni||ςni|

=
1

n2

n∑
i,j=1

|ξnij ||ςnj − ςni||ςni|

≤ 1

n2

n∑
i,j=1

(|ςnj |+ |ςni|)|ςni|

≤2‖ςn‖22,n.

(59)

We use the Cauchy-Schwarz inequality to estimate the second term on the right hand side of (58)

|(zn, ςn)n| ≤ ‖zn‖2,n‖ςn‖2,n ≤
1

2

(
‖zn‖22,n + ‖ςn‖22,n

)
, (60)

where zn = (zn1, zn2, · · · znn).
We use the Cauchy-Schwarz inequality and continuity of sin(·) to estimate the third term on the right-hand side

of (58) as follows: ∣∣∣∣hn
n∑
i=1

[sin(uni)− sin(vni)]ςni

∣∣∣∣ ≤ h

n

n∑
i=1

|uni − vni||ςni| =
h

n

n∑
i=1

|ς2ni| = h‖ςn‖22,n. (61)

Combining (58), (59), (60) and (61), we obtain
d

dt
‖ςn‖22,n ≤ (5 + 2h) ‖ςn‖22,n + ‖zn‖22,n .
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We use Gronwall’s inequality to yield

max
t∈[0,T ]

‖ςn‖22,n ≤
max
t∈[0,T ]

‖zn‖22,n

(5 + 2h)
exp {(5 + 2h)T} . (62)

Hence,

max
t∈[0,T ]

‖ςn‖2,n ≤
max
t∈[0,T ]

‖zn‖2,n√
(5 + 2h)

exp {(5 + h)T} . (63)

In order to estimate ‖zn‖2,n, we use Corollary (5.4) with

fnij (t) = sin (vnj (t)− vni (t)) and Wnij = W (xni, xnj) .

By Lemma 5.6 and (47), we have
min
t∈[0,T ]

σ2
n (t) ≥ C4 > 0, (64)

for sufficiently large n. In particular, (49) holds. Hence, by Lemma (5.6), we obtain

max
t∈[0,T ]

σ2
n (t) ≤ C5, n ∈ N. (65)

For arbitrary t ∈ [0, T ], we use Corollary (5.4) to have

P
(∣∣∣n ‖zn (t)‖22,n − σn

2 (t)
∣∣∣ > 1

)
=P

∣∣∣∣∣∣
n
∥∥∥zn (t)

2
2,n

∥∥∥− σ2
n (t)

n
−1
2

√
5σn4 (t) + O (n−1)

∣∣∣∣∣∣ > n
1
2√

5σn4 (t) + O (n−1)


≤P

∣∣∣∣∣∣
n
∥∥∥zn (t)

2
2,n

∥∥∥− σ2
n (t)

n
−1
2

√
5σn4 (t) + O (n−1)

∣∣∣∣∣∣ > n
1
2√

5C2
5 + O (n−1)

→ 0,

(66)

as n→∞.
Combining (65) with (66), we have

P
(
‖zn (t)‖22,n ≤ (C5 + 1)n−1

)
≤ P

(∣∣∣n ‖zn (t)‖22,n − σ
2
n (t) > 1

∣∣∣)→ 0 as n→∞. (67)

Due to t ∈ [0, T ] is arbitrary in (67), we have

lim
n→∞

P
(

max
t∈[0,T ]

‖zn (t)‖2,n ≤ C6n
−1
2

)
= 0. (68)

We combine (62) with (68) to find that ‖ςn‖2,n tends to 0 in probability.
With the definitions of ‖ςn‖ and un in hand, we have

‖un − u‖C(0,T ;L2(I)) ≤ max
t∈[0,T ]

‖ςn (t)‖2,n + ‖vn − u‖C(0,T ;L2(I)).

The Lemma 5.2 combines with (68), we show that ‖un − u‖C(0,T ;L2(I)) tends to 0 in probability as n→∞.

6 CONCLUSION

This paper improves on the previous ones and adds external drive of a certain strength to the Kuramoto model
oscillators. We study coupled Kuramoto model with external drive and show that the solutions of the IVPs for discrete
Kuramoto model converge to the solution of the IVP for its continuum limit on deterministic graphs, W-random
graphs and SW graphs respectively. Our results also reveal that properties of graphs affect the convergence rate of
discrete problem solutions and the accuracy of the continuous limit. For deterministic graphs, we show that the rate
of convergence depends on the regularity of the boundary of support of the graph limit. For random graphs, the rate
of convergence depends on the Central Limit Theorem and the regularity of the graph on W . However, studies on the
generalized Kuramoto model under different network structures are limited and the complexity of complex networks
makes the study of complex networks challenging, it is hoped that further studies can be carried out in the future.
For example: We can study asymptotic behavior of generalized Kuramoto model on scale-free networks.
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