Superscript
-: Average value

References

  1. Alamolhoda, F.; Shamiri, A.; Hussain, M. A.; Zarghami, R.; Sotudeh-Gharebagh, R.; Mostoufi, N., Detection of Agglomeration by Analysis of Vibration Signatures in a Pilot-Scale fluidized Bed Reactor of Propylene Polymerization, Int. J. of Chem. Reactor Eng., 2019, 17, 2.
  2. Chmelar, J.; Matuska, P.; Gregor, T.; Bobak, M.; Fantinel, F.; Kosek, J., Softening of polyethylene powders at reactor conditions, Chem. Eng. J., 2013, 228, 907-916.
  3. Datta, S.; Sarkar, P.; Chavan, P. D.; Saha, S.; Sahu, G.; Sinha, A. K.; Saxena, V. K., Agglomeration behaviour of high ash Indian coals in fluidized bed gasification pilot plant, Applied Thermal Eng., 2015, 86, 222-228.
  4. Elled, A. L.; Åmand, L. E.; Steenari, B. M., Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels, Fuel 2013, 111, 696-708.
  5. Montes, A.; Ghiasi, E.; Tran, H.; Xu, C., Study of bed materials agglomeration in a heated bubbling fluidized bed (BFB) using silica sand as the bed material and KOH to simulate molten ash, Powder Technol., 2016, 291, 178-185.
  6. Zhong, Y.; Wang, Z.; Guo, Z.; Tang, Q., Prevention of agglomeration/defluidization in fluidized bed reduction of Fe2O3 by CO: The role of magnesium and calcium oxide, Powder Technol., 2013, 241, 142-148.
  7. Ye M.; Li H.; Zhao Y.; Zhang T.; Liu Z., MTO process development: The key of mesoscale studies, Advances in Chem. Eng., 2016, 47: 279-335
  8. Geldart, D., Types of gas fluidization, Powder Technol., 1973, 7, 285-292.
  9. Botterill, J. S. M., Teoman, Y. and Yuregir, K. R., The effect of operating temperature on the velocity of minimum fluidization, bed voidage and general behaviour, Powder Technol., 1982, 31, 101-110.
  10. Lucas, A., Arnaldos, J., Casal, J. and Puigjaner, L., High temperature incipient fluidization in mono and polydisperse systems, Chem. Eng. Comm., 1986, 41, 121-132.
  11. Lettieri, P.; Newton, D.; Yates, J. G., High temperature effects on the dense phase properties of gas fluidized beds, Powder Technol., 2001, 120, 34-40.
  12. Cui, H.; Chaouki, J., Inter-particle forces in high temperature fluidization of Geldart A particles, China Particuology, 2004, 2, 113-118.
  13. Shabanian, J.; Chaouki, J., fluidization characteristics of a bubbling gas–solid fluidized bed at high temperature in the presence of inter-particle forces, Chem. Eng. J., 2016, 288, 344-358
  14. Raso, G.; Damore, M.; Formisani, B.; Lignola, P. G., The Influence of Temperature on the Properties of the Particulate Phase at Incipient fluidization, Powder Technol., 1992, 72, 71-76.
  15. Formisani, B.; Girimonte, R.; Mancuso, L., Analysis of the fluidization process of particle beds at high temperature, Chem. Eng. Sci., 1998, 53, 951-961.
  16. Chirone R.; Poletto M.; Barletta D.; Lettieri, P., The effect of temperature on the minimum fluidization conditions of industrial cohesive particles, Powder Technol., 2020, 362, 307–322.
  17. Makkawi, Y. T.; Wright, P. C., fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography, Chem. Eng. Sci., 2002, 57, 2411-2437.
  18. Du, B.; Warsito, W.; Fan, L.-S., ECT studies of the choking phenomenon in a gas-solid circulating fluidized bed, AIChE J., 2004, 50, 1386-1406.
  19. Li, X.; Jaworski, A. J.; Mao, X., Bubble size and bubble rise velocity estimation by means of electrical capacitance tomography within gas-solids fluidized beds, Measurement, 2018, 117, 226-240.
  20. Guo, Q.; Meng, S.; Zhao Y.; Ma, L.; Wang D.; Ye M.; Yang W.; Liu, Z., Experimental verification of solid-like and fluid-like states in the homogeneous fluidization regime of Geldart A particles, Ind. Eng. Chem. Res., 2018, 57, 2670−2686.
  21. Ye M.; Luo Q.; Meng S.; Zhang T.; and Liu Z., An electrical capacitance tomography sensor withstanding high temperature and its fabrication method, Chinese Patent: ZL201510623768.9, 25 Sept. 2015.
  22. Ye M.; Guo Q.; Meng S.; Zhang T.; and Liu Z., An electrical capacitance tomography sensor withstanding high temperature, Chinese Patent: ZL201510967356.7, 18 Dec. 2015.
  23. Huang, K.; Meng, S.; Guo, Q.; Ye, M.; Shen, J.; Zhang, T.; Yang, W.; Liu, Z., High-temperature electrical capacitance tomography for gas–solid fluidized beds, Meas. Sci. Technol., 2018, 29, 104002.
  24. Wang, D.; Xu, M.; Marashdeh, Q.; Straiton, B.; Tong, A.; Fan, L.-S., Electrical Capacitance Volume Tomography for Characterization of Gas–Solid Slugging fluidization with Geldart Group D Particles under High Temperatures, Ind. Eng. Chem. Res., 2018, 57, 2687-2697.
  25. Kanada T., Estimation of sphericity by means of statistical processing for roundness of spherical parts, Precision Eng., 1997, 20, 117-122
  26. Yang, W. Q.; Peng, L., Image reconstruction algorithms for electrical capacitance tomography, Meas. Sci. Technol., 2003, 14 (1), R1-R13
  27. Liu, S.; Fu, L.; Yang, W. Q., Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography, Meas. Sci. Technol., 1999, 10 (7), L37-L39.
  28. Huang, K.; Meng, S.; Guo, Q.; Yang, W.; Zhang, T.; Ye, M.; Liu, Z., Effect of Electrode Length of an Electrical Capacitance Tomography Sensor on Gas−Solid fluidized Bed Measurements, Ind. Eng. Chem. Res., 2019, 58 (47), 21827-21841.
  29. Banaei, M.; van Sint Annaland, M.; Kuipers, J. A. M.; Deen, N. G., On the accuracy of Landweber and Tikhonov reconstruction techniques in gas-solid fluidized bed applications, AIChE J., 2015, 61 (12), 4102-4113.
  30. Grace, J. R.; Sun, G., Influence of particle size distribution on the performance of fluidized bed reactors, The Canadian J. of Chem. Eng., 1991, 69 (5), 1126-1134.
  31. Agrawal, V.; Shinde, Y. H.; Shah, M. T.; Utikar, R. P.; Pareek, V. K.; Joshi, J. B., Estimation of Bubble Properties in Bubbling fluidized Bed Using ECVT Measurements, Ind. Eng. Chem. Res., 2018, 57 (24), 8319-8333.
  32. Chandrasekera, T. C.; Li, Y.; Moody, D.; Schnellmann, M. A.; Dennis, J. S.; Holland, D. J., Measurement of bubble sizes in fluidized beds using electrical capacitance tomography, Chem. Eng. Sci., 2015, 126, 679-687.
  33. Agu, C. E.; Pfeifer, C.; Eikeland, M.; Tokheim, L.-A.; Moldestad, B. M. E., Models for Predicting Average Bubble Diameter and Volumetric Bubble Flux in Deep fluidized Beds, Ind. Eng. Chem. Res., 2018, 57 (7), 2658-2669.
  34. Shabanian, J.; Chaouki, J., Hydrodynamics of a gas–solid fluidized bed with thermally induced inter-particle forces, Chem. Eng. J., 2015, 259, 135-152.
  35. Chandrasekera, T. C.; Li, Y.; Moody, D.; Schnellmann, M. A.; Dennis, J. S.; Holland, D. J., Measurement of bubble sizes in fluidized beds using electrical capacitance tomography, Chem. Eng. Sci., 2015, 126, 679-687.
  36. Xu, C.; Zhu, J. X., Effects of gas type and temperature on fine particle fluidization, China Particuology, 2006, 4 (3-4), 114-121.
  37. Rhodes, M. J.; Wang, X. S.; Forsyth, A. J.; Gan, K. S.; Phadtajaphan, S., Use of a magnetic fluidized bed in studying Geldart Group B to A transition, Chem. Eng. Sci., 2001, 56 (18), 5429-5436.
  38. Ye, M.; van der Hoef, M. A.; Kuipers, J. A. M., A numerical study of fluidization behavior of Geldart A particles using discrete particle model, Powder Technol., 2004, 139: 129-139.
  39. Ye, M.; van der Hoef, M. A.; Kuipers, J. A. M., The effects of particle and gas properties on the fluidization of Geldart A particles, Chem. Eng. Sci., 2005, 60 (16), 4567-4580.
  40. Agu, C. E.; Tokheim, L.-A.; Eikeland, M.; Moldestad, B. M. E., Determination of onset of bubbling and slugging in a fluidized bed using a dual-plane electrical capacitance tomography system, Chem. Eng. J., 2017, 328, 997-1008.
  41. Subramani, H. J.; Mothivel Balaiyya, M. B.; Miranda, L. R., Minimum fluidization velocity at elevated temperatures for Geldart’s group-B powders, Experimental Thermal and Fluid Science, 2007, 32 (1), 166-173
  42. Rapagnà, S.; Foscolo, P.U.; Gibilaro, L.G. , The influence of temperature on the quality of gas fluidization, Int. J. Multiph. Flow, 1994, 20, 305-313.
  43. Castellanos A.; Valverde, J.M. ; Quintanilla, M.A.S., The Sevilla powder tester: a tool for characterizing the physical properties of fine cohesive powders at very small consolidations, KONA Powder Part J. 2004, 22 , 66–81
  44. Molerus O., Theory of Yield of Cohesive Powders, Powder Technol., 1975, 12, 259-275
  45. Guo Q.; Meng S.; Zhao Y.; Ma L.; Wang D.; Ye M.; Yang W.; Liu Z., Experimental verification of solid-like and fluid-like states in the homogeneous fluidization regime of Geldart A particles, Ind. Eng. Chem. Res., 2018, 57, 2670−2686.
  46. Valverde, J. M.; Castellanos, A., Types of gas fluidization of cohesive granular materials, Phys. Rev. E, 2007, 75, 031306.
  47. Girimonte, R.; Formisani B., The minimum bubbling velocity of fluidized beds operating at high temperature, Powder Technol., 2009, 189, 74-81.