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ABSTRACT

This paper presents i) a model for ultra-wideband (UWB) wave propagation through a human thorax and ii) estimation via simulation, of transmission coefficient at various frequencies in the UWB range 1-10 GHz using CST Microwave Studio.  This study clearly indicates that the variation of power transmission coefficient of UWB signal has a strong correlation to the instantaneous dimension of the heart in a cardiac cycle, a feature that can be exploited in detecting cardiac activity of human being in inaccessible conditions using radar based principles.  
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1. 
2.    INTRODUCTION
The measurement, monitoring of heartbeat and its rate are necessary to know the health of the heart of human beings. In addition, they are needed for applications like criminal investigation, law enforcement, defense and military usage, search, rescue operation etc. The ultra-wideband (UWB) radars found growing interest in recent years as they are able to overcome the limitations of continuous-wave (CW) Doppler radars in detecting human heartbeat. Modelling and analysis of the UWB pulse propagation behavior through a human body is important to initiate the building of a practical UWB radar. Several researchers have estimated the reflected signals to study if their variations correlate with the heartbeat rate. However, the reflected signal strength carrying Doppler information received at the radar after a two-way propagation of the RF signal was found to be too weak for detection. 
Study of monitoring cardiac activity using radar principles has become a promising means for various detection and/or monitoring health issues. There are many major biomedical applications, modern potential methods of criminal investigations which are based on the heartbeat performance of the human subject.  In such cases, detection of the small amplitude of heartbeat becomes imperative. The contact based methods such as stethoscope or electrocardiogram (ECG), require physical contact with the human body and was found to be ineffective in criminal investigations.1 Heartbeat measurement can be more effective, if the method of detection of heartbeat is such that the human subject is unaware of being under test. Moreover, the contact based methods have the constraint that they depend on the accessibility of the affected part of the subject. ECG electrodes need preparation prior to the measurement and can cause irritation for infants or burn victims. Moreover, the medical personnel might need more time for the preparation of sensors that provide signals for the thorax area medical imaging. So detection and/or monitoring of cardiac performance using non-contact based methods like radars become promising as they are non-invasive and suitable in case of inaccessible human subjects as well, by placing the radar at a remote location, away from the subject under observation.
Although the CW Doppler radars are still being appreciated and refined for assessment of human life-signs, the recent years have spawned growing interest in the use of UWB radars for medical applications due to its multiple advantageous features.2-4 Following the invention of the first UWB radar model by McEwan and two of his patents in 1996 and 1998, respectively, there have been continuous efforts to determine the feasibility of a UWB radar to detect cardiac activities.5-7 Various UWB radar models for heartbeat detection with direct exposure of UWB signal to the human being have been reported by several researchers.8-19 The study of heartbeat detection with real time measurements using UWB radar has been found in the literature.20-23
In this paper, the transmission coefficients are estimated from a planar multilayered structure of the human thorax using CST Microwave Studio (MWS). The calculations of the transmission coefficients of the UWB signal have been performed considering the frequency dependent properties of various layers and the multiple reflections that take place at the boundaries. It has been observed that the basic characteristic of the heart, namely, the heartbeat rate essentially depends on the variation of heart dimensions. Studies have shown that the time dependent transmission characteristics at specific frequencies of UWB do indicate the heartbeat rate, thus leading to the possibility of using the transmission coefficient as a parameter to estimate the strength of the heart. 
3. The human thorax model
The one-dimensional model using selected biological tissues consisting of skin, fat, muscle, cartilage, lungs and heart obtained from the Visible Human Project is used in the present study. 24 The structure of human thorax including the heart is divided into several layers from the chest skin up to the posterior skin [Figure 1]. 19 The respiratory rate of the lung is 0.3 Hz. 25 But, in this work it is assumed that the lung is in the deflated state. A similar assumption was made by Cavagnaro et al. to model the cardiac activity. 18


Figure 1:  Tissue structure of the Human Thorax Model. The numbers in the diagram indicate the thickness of the tissue layers in millimeters.


When the thorax is illuminated by the UWB signal emitted   by a transmitter, the signal encounters various tissues. The signal propagates from the front through the pulsating heart and then leaves at the back of the thorax. A pulsating heart is subject to the variation of dimensions longitudinally towards its apex (pointed end) during diastole and systole of each cardiac cycle. 26 With reference to the transverse cross-section of human heart 19 shown in Figure 2, the parts of the pulsating heart close to its apex and along its short axis the UWB signal is assumed to encounter during its propagation are, the right ventricle (RV) wall, RV cavity, inter ventricular septum, left ventricle (LV) cavity and LV wall. The instantaneous heart dimensions 19 calculated as the sum of the instantaneous dimensions of all the above parts during one cardiac cycle are shown in Figure 3.


Figure 2:  Transverse section of human heart.


Figure 3: Variation of instantaneous heart dimensions with time during a cardiac cycle. 
3.1 UWB transmission in human thorax using Debye first order model
The transmission coefficient of a signal through a multilayer structure depends essentially on the sum of the losses occurring  when  i) the wave propagates through each layer of the material and ii) the wave gets reflected at the interface of the layers. The amplitude of the electromagnetic signal reduces while propagating through the successive layers of a multilayer system. Transmission coefficient (dB) is mathematically defined as, 27

						Transmission coefficient (dB) 							(1)
Eqn. (1) can be rewritten as,

						   (2)
The EM wave propagation through the layered model shown in Figure 1 is created using CST MWS to study the interaction of human thorax in terms of transmission coefficient (dB). The tissue parameters associated with permittivity, permeability, and conductivity used in this work are from Gabriel’s data book.28 In view of the assumption of normal incidence of a planar wave on the layered model, the CST MWS implements a TEM mode, generated by using the waveguide ports of the model by mimicking a plane wave with the defined wave guide ports and by specifying the appropriate boundary conditions. The solver excites the structure with an UWB Gaussian pulse in the time domain, by default. The simulation of the model is performed using the time-domain solver. In order to allow for the dispersive behavior of the tissues, the Debye 1st order model was used in the simulation. The CST MWS software tool requires to input the values of (i) optical dielectric constant ε, (ii) dielectric constant of vacuum ε0 and (iii) relaxation time constant of the tissue (s), which were obtained from the internet resource (http://niremf.ifac.cnr.it/docs/DIELECTRCIC/AppendixC.html) for the compilation of dielectric properties of body tissues at RF and Microwave frequencies. The value of Mue (permeability), by default, is taken to be one for the entire band of frequencies throughout the simulations. The simulation results are presented in Section 3.

4. Simulation results
The transmission coefficients (dB) were calculated for the varying dimensions of heart over one cardiac cycle [Figure 3] using CST MWS. Their variations with time in one cardiac cycle at specific frequencies in the UWB range 1-10 GHz are shown in Figure 4 (a) through (s).
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Figure 4: Variation of transmission coefficient with heart dimensions during a cardiac cycle at specific frequencies in the range 1-10 GHz.
It is seen from the CST MWS simulations that there is the same trend of increase (upto 0.3s), maximum at 0.3s (time at which the heart is completely in contracted state) and decrease (from 0.3 to 0.8s) at the specific frequencies. The shapes of variations of transmission coefficients are consistent with the variations of heart size in a cardiac cycle. This is a unique observation for the transmission coefficients (dB) of the UWB signal corresponding to the varying dimensions of heart over one cardiac cycle.
Thus, the present study indicates that the transmission coefficients follow the trend of variation of the instantaneous physical dimensions of the heart element during every successive heartbeat and hence can be used as an indicator of the state of the heart of a human being.

5. Conclusion
The study, primarily aimed at investigating the possibility of using UWB principle to probe a human body, clearly indicates that the variation of transmission coefficient follows the dimensional variation of a pulsating heart at all instants of a cardiac cycle. This feature can be utilized to develop an alternate non-invasive method of human heartbeat detection using UWB radar principles. Further, the results show that the transmission coefficients at all frequencies are in the order of 50-60 dB, which indicate the possibility of using measurement of transmission coefficient as one of the  methods for the detection of live human being under inaccessible conditions.
  In this work, the waves incident on and refracted from the layers are assumed to be plane waves. In order to improve the modeling, the plane wavefront may be replaced with the actual wavefront profile. In addition, the highly inhomogeneous nature of the tissues associated with the human thorax with respect to permittivity has to be accounted for. 
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